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Abstract: Some applications in control require the state vector of a system to be expressed in the
appropriate coordinates so as to satisfy to some mathematical properties which constrain the studied
system dynamics. This is the case with the theory of linear interval observers which are trivial to
implement on cooperative systems, a rather limited class of control systems. The available literature
shows how to enforce this limiting cooperativity condition for any considered system through a state-
coordinate transformation. This article proposes an overview of the existing numerical techniques
to determine such a transformation. It is shown that in spite of being practical, these techniques
have some limitations. Consequently, a reformulation of the problem is proposed so as to apply
non-smooth control design techniques. A solution is obtained in both the continuous- and discrete-
time frameworks. Interestingly, the new method allows to formulate additional control constraints.
Simulations are performed on three examples.

1 Introduction

To be applicable, many observation and control strategies applied to linear systems are required to
comply with some constraints on the designed dynamics. These constraints are expressed through
mathematical properties which should be satisfied by the resulting system state-space representation
matrices. For example, considering the case of interval observers [1], a constructive cooperativity
condition [2] on the observation error dynamics is looked for, which is linked to properties of the
resulting state matrix. In the continuous-time case, this matrix should be Metzler which means that
its off-diagonal elements should be positive. For a given system, this property is rarely satisfied in the
original state coordinates. However, a change of coordinates can be calculated so that cooperativity
is satisfied in the new coordinates [3, 4]. Various techniques – which are detailed in this paper –
currently exist to determine such a transformation. Their advantages lie in their simplicity. However,
they rely on “first guess” and are hardly compatible with additional constraints related to control
performance. In the case of interval observers, it may be expected that the error dynamics should
satisfy to additional constraints like disturbances rejection. To the authors opinion, the fact that the
observer gain and the state-coordinate transform cannot be simultaneously computed to satisfy to the
Metzler property and to an additional disturbance rejection constraint is a limit to these methods.

An overview of the aforementioned existing techniques is presented in this article. Their limitations
motivate a reformulation of the problem. This is presented in this article both in the continuous-
and discrete-time frameworks. This leads to an optimization problem which is solved using non-
smooth optimization techniques usually dedicated to control design. Using such techniques, additional
control constraints can be taken into account in the determination of the appropriate state-coordinate
transformation. This article extends the preliminary results presented in [5]. This approach was
motivated by the interval observers cooperativity requirement but it is expected to be generalizable
to any problem requiring specific structures of the matrices of the studied system. It is important
to understand that no theoretical addition is brought to the existing interval observer framework
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but rather on a computation-related sub-problem. Note that the use of time-varying changes of
coordinates [3] is not considered since our method is not applicable in this case.

The core of the technique is to reformulate the mathematical conditions on a matrix – like the
Metzler requirement on the state-matrix – into a stabilization control problem. Using recent theoretical
results [6] of the structured controller synthesis field, a control law synthesis is then performed on
multiple models in view of the specified control requirements. The approach is applied to various
examples of interval observer problems. Numerical and simulation results are compared to the ones
obtained using the existing techniques.

This paper is organized as follows. The notations and definitions required to understand the
motivations and the resulting computation-related problems are presented in Sect. 2. The theory of
interval observers is recalled in Sect. 3. In the same section, an overview of the existing techniques to
compute the necessary state-coordinate transformation is performed. This raises a difficult numerical
problem which is described in Sect. 4. A solution based on multiple models control law synthesis is
proposed in Sect. 5 for both the continuous- and discrete-time frameworks. The approach is then
applied on various examples in Sect. 6 before concluding in Sect. 7.

2 Notations and definitions

The Laplace transform is denoted s and the Z-transform is denoted z. Let denote Z the set of integers,
R the set of real numbers and R+ the set of positive real numbers. Let Z+ = Z∩R+. If not otherwise
stated, the indices (i, j, k, l,m, n) are integers in Z+. The H2-norm of a transfer function T (s) (resp.
T (z)) is denoted ‖T (s)‖2 (resp. ‖T (z)‖2) and is defined as

‖T (s)‖2 =

√
1

2π

∫ ∞
−∞

tr [T (jω)? T (jω)] dω

resp. ‖T (z)‖2 =
√

1
2π

∫ π
−π tr

[
T (ejω)? T (ejω)

]
dω, where “tr” is the trace operator and T (jω)? the

conjugate transpose of T (jω). The elements of a matrix A ∈ Rn×m are referred to using the lowercase
notation aij where i ≤ n and j ≤ m. The ordering operators>, <, ≤ and≥ are understood component-
wise when applied to multi-dimensional signals. Known (or computed) time-varying bounds on a
multi-dimensional signal x ∈ Rn are denoted x(t) and x(t):

∀t, x(t) ≤ x(t) ≤ x(t) (1)

In this article, only linear time-invariant (LTI) systems are considered. In the continuous-time
case, let an LTI system (G) be defined by

(G)


ẋ = Ax+B1u+B2d
y = Cx
x(0) = x0

(2)

where x ∈ Rn, u ∈ R, d ∈ R and matrices are of appropriate dimensions.

Definition 1 (Interval observer, continuous-time). Suppose quantities x0, x0 and signals d(t), d(t)
are known such that x0 ≤ x0 ≤ x0 and d(t) ≤ d(t) ≤ d(t), ∀t. Then, the dynamical system

(
G]
)

ż = A]z +B]
1u+B]

2

[
d

d

]
∈ R2n[

x
x

]
= C]z with rank

(
C]
)

= 2n

(3)

associated with the initial condition z0 =
(
C]>C]

)−1 [
x0 x0

]>
, where the newly defined matrices

are of appropriate dimensions, is a linear interval observer of the system (G) in Eq. (2) if, see [7,
Definition 4]:

1.
(
G]
)

is Input-to-State Stable;
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2. The solutions to Eqs. (2) and (3) with respectively x0 and z0 as initial conditions are defined
∀t ∈ R+ and fulfil

x(t) ≤ x(t) ≤ x(t), ∀t

3. If
∣∣d(t)− d(t)

∣∣ is uniformly bounded then ‖x(t)− x(t)‖ is also uniformly bounded and if d(t) =

d(t), ∀t ∈ R+ then ‖x(t)− x(t)‖ → 0.

A similar definition is obtained in the discrete-time case. This definition means that any system
can be an interval observer as long as the two conditions are satisfied. However, this is quite hard in
general to find the required matrices A], B]

1, B
]
2 and C]. To do so, some constructive assumptions

are gradually made on the considered systems structures so as to easily satisfy both conditions. For a
given matrix A ∈ Rn×m, let define A+ = max(A, 0) and A− = A+ − A. To determine matrix B]

2 and
C], the following Lemma will be used.

Lemma 1. (see [8, Lemma 1] and the associated proof) Let x ∈ Rn s.t. x(t) ≤ x(t) ≤ x(t) and
A ∈ Rm×n a constant matrix s.t. A = A+ −A−. Then ∀t,

A+x(t)−A−x(t) ≤ Ax(t) ≤ A+x(t)−A−x(t) (4)

The following definitions will be useful to define A] and obtain interval observers on linear systems.

Definition 2 (Metzler matrix). Let A = (aij) ∈ Rn×n. The matrix A is said to be Metzler if

∀i 6= j, aij ≥ 0 (5)

Definition 3 (Non-negative matrix). Let Ad = (aij) ∈ Rn×n. The matrix Ad is said to be non-negative
if

∀ (i, j) , aij ≥ 0 (6)

The theory of cooperative systems is extensively used when designing interval observers. Such
systems have interesting properties as far as trajectory ordering is considered. This is used to fulfil
the second condition in Def. 1 straightforwardly.

Definition 4 (Cooperative system, continuous-time). An autonomous continuous-time linear system
(G) is said to be cooperative if its state matrix A is a Metzler matrix.

Remark 1. In the case of a continuous-time linear system with inputs (and D = 0), it is said to be
cooperative if A is Metzler, B ∈ Rn×l+ and C ∈ Rm×n+ . A cooperative continuous-time system is thus a
positive system.

Of course, discrete-time systems can also be cooperative under slightly different conditions.

Definition 5 (Cooperative system, discrete-time). An autonomous discrete-time linear system (Gd)
is said to be cooperative if its state matrix Ad is a non-negative matrix.

3 Motivations

In many control applications, it is required to enforce specific properties on a system state-space
representation. This is the case when designing interval observers as defined in Def. 1.

3.1 Motivating problem

The linear interval observer framework and existing techniques to compute a state-coordinate trans-
formation such that the state-matrix is Metzler or non-negative are now presented.
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3.1.1 Interval observer literature

The theory of interval observers was first introduced in [1] and [9] as a deterministic state “framing”
method in the case of cooperative systems [2] disturbed by unknown disturbances with known bounds.
When the original system is not cooperative, a state-coordinate transformation is considered. In [10]
the authors show (on a precise class of systems) exponential stability of a time-varying interval observer
obtained using a time-varying state-coordinate change. This is applied in [3] on a broader class. A
similar transformation is also proposed in [11]. The approach is extended in [12] to Linear Time
Varying (LTV) systems. In other works, a more classical approach leads to time-invariant linear
interval observers with weaker stability guarantees but broader system classes. In [4], a time-invariant
state coordinate transform is used to obtain a cooperative observation error dynamics on which an
interval observer is designed. This is extended to a class of nonlinear and LPV1/LTV systems in [13]
and [8]. Another formulation is proposed in [14]. An extensive study of these techniques is available
in [15] and [16].

The theory of interval observers applied to discrete-time systems [17] is very similar to the
continuous-time case. Extensions to discrete-time LPV systems have been proposed in [18]. An
extension to continuous-time systems with discrete measurements is proposed in [16].

Note there exists other approaches based on Internal Positive Representations of systems [7, 17]
In this paper, the considered systems are linear time-invariant systems and the results in [4] are

used.

3.1.2 Interval observer design using a classical observer

Let consider an LTI continuous-time system with a state-space representation as in Eq. (2) where u ∈ R
is the control signal, d ∈ R is an unknown state disturbance and x0 ∈ Rn is the initial condition. The
following hypotheses are considered

Assumption 1. Couples (x0, x0) and
(
d, d
)

are known s.t. x0 ≤ x0 ≤ x0 and

∀t ≥ 0, d(t) ≤ d(t) ≤ d(t) (7)

Assumption 2. The pair (A,C) in Eq. (2) is detectable.

To fulfil the first condition in Def. 1, a classical observer of the system in Eq. (2) is used:

(Gobs)


˙̂x = Ax̂+B1u+ L (y − Cx̂)
ŷ = Cx̂
x̂(0) = x̂0

(8)

where L ∈ Rn×m is defined such that A− LC is Hurwitz. The underlying estimation error dynamics
is deduced from both Eqs. (2) and (8):

(Ge)

{
ė = (A− LC) e+B2d
e0 = x0 − x̂0 (9)

where e = x− x̂. If A− LC is not Metzler, (Ge) is not cooperative and it is not possible to fufil the
second condition in Def. 1 without a state coordinate change. Under Hyp. 1 one obtains bounds on
the initial error e0: e0 = x0 − x̂0 and e0 = x0 − x̂0.

Assumption 3. A state coordinate transformation P ∈ Rn×n is known s.t. M = P (A− LC)P−1 is
Metzler.

The error dynamics in Eq. (9) expressed in the new coordinates becomes

(Gez)

{
ėz = Mez +B′2d
ez(0) = Pe0

(10)

1Linear Parameter Varying
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where ez = Pe and B′2 = PB2. According to Def. 1 and using Lemma 1 and Hyp. 3, an interval
observer

(
G]
)

on the system in Eq. (10) is defined by the following dynamic system

(
G]ez

)
ėz = Mez +B′+2 d−B′−2 d

ėz = Mez +B′+2 d−B′−2 d
ez(0) = P+e0 − P−e0
ez(0) = P+e0 − P−e0

(11)

Let T = P−1. To obtain bounds in the original coordinates e = Tez, the following relations are
used {

e = T+ez − T−ez
e = T+ez − T−ez

(12)

which preserve state ordering under Lemma 1. Thus, for any e0 ∈ [e0, e0] the following framing is
obtained:

∀t ≥ 0, e(t) ≤ e(t) ≤ e(t) (13)

which in turn leads to

∀t ≥ 0, x(t) = x̂(t) + e(t) ≤ x(t) ≤ x̂(t) + e(t) = x(t) (14)

Using an appropriate state coordinate transformation, the state of a generic disturbed linear time-
invariant continuous-time system can thus be bounded.

In the discrete-time case, the formalism is very close to the continuous-time case with a slight
difference on the properties to be satisfied by the state matrix, since it should be Schur-stable and
non-negative, as stated in Def. 5:

Assumption 4. A state coordinate transformation P ∈ Rn×n is known s.t. M = P (A− LC)P−1 is
non-negative.

3.2 An overview of existing techniques to find an appropriate state coordinate
transform

In the framework presented in Sect. 3.1.2, Hyp. 3 and 4 are strong hypotheses. In the case of high-order
systems, choosing a satisfying state coordinate transformation matrix P is not obvious:

Problem 1. (continuous-time case) Find P ∈ Rn×n and L ∈ Rn×m such that M = P (A− LC)P−1

is Hurwitz Metzler.

Problem 2. (discrete-time case) Find P ∈ Rn×n and L ∈ Rn×m such that M = P (A− LC)P−1 is
Schur-stable and non-negative.

In this section, the existing methods to determine a solution to Pbs. 1 and 2 are presented along
with their advantages and limitations.

3.2.1 Real-constrained pole placement (trivial solution)

This trivial solution is obtained by noticing that diagonal matrices satisfy to Def. 2. Supposing that
the pair (A,C) is observable (or that the unobservable eigenvalues are real negative, which is stronger
than simple detectability), the matrix L is chosen such that A−LC only has negative real eigenvalues.
Then, choosing P as the matrix of the right-hand eigenvectors means M = P (A− LC)P−1 is diagonal
hence is a Metzler matrix.

The advantage of this technique is its simplicity since it only requires a pole placement and an
eigenstructure determination algorithm. Three main limitations can however be mentioned:

• placing real poles can result in very large observation gains L resulting in sensitivity problems;

5
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• an observer with complex poles may achieve better results;

• due to floating-point computations precision errors, the computed matrix M is Metzler up to
the machine precision.

Remark 2. In the discrete-time case, the poles have to be placed on real values between 0 and 1 to
comply with the definitions of Schur-stability and non-negativity.

3.2.2 Resolution of a Sylvester equation

To find a solution to Pb. 1, another approach can be used

• choose M ∈ Rn×n to be a Metzler matrix;

• choose Q ∈ Rn×m, this will represent the matrix product PL;

• using algorithms for example proposed in [19] or [20], solve the following Sylvester equation in
P :

−MP + PA = PLC = QC (15)

If M and A have no common eigenvalues, this equation has a unique solution for any Q.

One thus obtains a Metzler matrix M = P (A− LC)P−1 where the observer gain is defined by
L = P−1Q. This method was proposed in [4] along with a constructive lemma [4, Lemma 1, p. 261]
to solve the equation using observability criteria. However this Lemma is difficult to apply in case
complex eigenvalues are looked for since there is no trivial (i.e. diagonal or triangular) Metzler matrix
M with complex eigenvalues. Numerical errors may also occur in case of badly-conditioned matrices.
A solution to the Sylvester equation can be obtained for example using [20].

Remark 3. In the discrete-time case, Remark 2 is still valid here.

3.3 Conclusions on the interests of an alternative approach

Both techniques proposed in the literature bring the advantage of simplicity and only use built-in
functions of any numerical computation software. This will be sufficient in most considered cases.

However, in more complex cases – high-order systems, ill-conditioned system matrices, additional
constraints like observer error dynamics decay rate optimization, etc. – it seems more difficult to
obtain satisfying results due to numerical precision problems as well as to the method philosophy.
Indeed, the chosen matrices M and Q could lead to non-optimal results in view of other control
constraints. Moreover, it seems difficult to obtain an expression of a Metzler matrix from expected
complex eigenvalues.

An alternative technique is hereby proposed which could complement the existing methods by
taking these more complex cases into account.

4 Problems statement

In this section, the different problems which arise in the proposed approach are exposed. As far as
the state coordinate transformation determination is concerned, a reformulation into a control law
synthesis problem is proposed, as exposed in [5]. A numerical approach to find a solution simulta-
neously satisfying to these problems is then proposed in Sect. 5. It uses existing controller synthesis
techniques as permitted by the reformulation.

4.1 State coordinate transformation determination

In Sect. 3, the design of interval observers has motivated the need for state coordinate transformation
determination methods. This article proposes a new approach based on solving a control design
problem.

6
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4.1.1 Initial problem

Let recall the initial state coordinate transformation problem as stated in Pb. 1.

Problem 3. (Mathematical formulation) Given (A,C) detectable, determine simultaneously P ∈
Rn×n and L ∈ Rn×m such that M = P (A− LC)P−1 is

• Metzler and Hurwitz (continuous-time case);

• non-negative and Schur-stable (discrete-time case).

In other words, finding a solution to Pb. 3 in the continuous-time case is equivalent to finding P
and L under n(n−1) positivity requirements on the off-diagonal elements of M = (mij) ∈ Rn×n. This
directly comes from the definition 2 of a Metzler matrix:

mij ≥ 0, ∀i 6= j ⇔ −mij ≤ 0, ∀i 6= j

In terms of control theory, these last inequalities are reminiscent of the stabilisation condition on
a “fictitious” mono-dimensional system having its real pole located at −mij .

4.1.2 Reformulation into a control design problem

A reformulation of Pb. 3 into a control design problem is done in the following proposition.

Proposition 1. (Equivalent control design problem, continuous-time case) Let (A,C) detectable and

mij (P,L) =
[
P (A− LC)P−1

]
ij

for P ∈ Rn×n and L ∈ Rn×m. If the following system

(Gc)

{
ẋ1 = (A− LC)x1
ẋij = −mij (P,L)xij ∀i 6= j

(16)

is Hurwitz-stable for given P and L then P (A− LC)P−1 is Metzler and Hurwitz.

Proof. Straightforward considering the definition of a Metzler matrix, see Def. 2, and the definitions of
the coefficients mij (P,L). In particular, ensuring positiveness of mij (P,L) is equivalent to stabilizing
ẋij = −mij (P,L)xij .

The states xij ∈ R are called “fictitious” states since they do not have any physical meaning. For
an initial matrix A ∈ Rn×n, n (n− 1) “fictitious” states are considered.

Remark 4. Prop. 1 is reminiscent of a structured control design problem which is NP-hard in general.
It is usually solved using algorithms with local optimality certificates which are known to work in
practice. There is however no guarantee that the locally optimal solution stabilizes Eq. (16).

Remark 5. In the discrete-time case, n2 “fictitious” states are considered since the diagonal elements
of matrix M should also be non-negative. However, due to the definition of Schur-stability, using
Prop. 1 would lead to −mij(P,L) ∈ [−1, 1] , ∀(i, j) which does not comply with the definition of non-
negativity. In that case, the system in Eq. (16) is replaced by the following system:

(Gc,d)

{
x1,t+1 = (A− LC)x1,t
xij,t+1 = f (−mij (P,L))xij,t ∀ (i, j)

(17)

where f : R → R is a linear function which maps
[
−mmax

ij , 0
]

onto [−1, 1] with mmax
ij > 0 a design

parameter which will be useful later:

f(x) =
2

mmax
ij

x+ 1 (18)

Using this function has proved to be effective in practice.
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4.2 Adding control requirements: resulting optimization problem

As already mentioned in Sect. 3.3, choosing P and L simultaneously such that additional control
constraints are fulfilled is difficult. For example, considering the observation error dynamics in Eq. (9),
it may be beneficial in terms of estimation quality to minimize a normalized value of the H2-norm of
the transfer from the disturbance d to the observation error e:

minP,L max {‖W (s)Td→e(s, L)‖2 , ‖T2(s, P, L)‖2 , ‖T3(s, P, L)‖∞ , . . .}
subject to Gc (P,L) (Eq. (16)) is stable.

(19)

where W (s) is an appropriate weighting and T2(s, P, L) and T3(s, P, L) are additional design transfer
functions. Note that the cost function is nonsmooth. This type of optimization problem is typical of the
kind of problem encountered when synthesizing structured controllers against multiple requirements
over multiple models. The idea is thus to use such formalism to find at least a local minimizer to this
problem.

4.3 Structured controller synthesis

The synthesis of full-order controllers through H∞ methods has been widely studied and used in the
past two decades. Solutions to the problem of H∞ synthesis in the case of MIMO systems were
provided for example in [21] and [22]. When considering controllers with a fixed order much lower
than the original plant, the problem of finding a controller is a non-convex optimization problem.
A local solution to this problem was proposed in [23] and implemented in consecutive works [24].
Other implementations for computing fixed-order controllers include [25]. More recent works [26, 6,
27] consider the case of finding a controller satisfying to multiple requirements on multiple models.
Considering these techniques, it appears possible to solve the minimisation problem in Eq. (19).

5 Nonsmooth optimization-based approach

In this section, the structured controller synthesis approach is detailed to solve the optimization
problem in Sect. 4.2. An illustration of the technique to determine an interval observer state coordinate
transformation is also proposed, which is then applied to three examples in Sect. 6.

5.1 Structured controller synthesis algorithm

As mentioned in Sect. 4.2, it appears that the reformulation proposed in Prop. 1 joined to additional
control requirements leads to a structured controller synthesis problem. As already mentioned, this
problem has been solved in [6, 23]. In this article, the systune function – along with the TuningGoal

structure – from the Matlab Robust Control Toolbox [28] is used to solve the problem. This function
uses nonsmooth optimization algorithms to solve nonsmooth non-convex optimization problems. The
method is provably convergent and computes certified locally optimal solutions from any remote
starting point.

In the following sections, the models and requirements needed to solve the optimization problem
in Sect. 4.2 using these tools are detailed.

5.2 Models definition

As was already mentioned, recent control synthesis techniques allow to set multiple requirements on
multiple models, be they describing an existing physical system or mathematical constraints, as is
the case with the “fictitious” states used in Prop. 1. In the continuous-time case, let define n(n− 1)
fictitious systems: (

GijM

)
ẋij = −mij (P,L)xij , ∀i 6= j (20)

and, in the discrete-time case, let define the following n2 fictitious systems:

8
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(
GijM,d

)
xij,t+1 = f (−mij (P,L))xij,t, ∀ (i, j) (21)

The required synthesis models are enumerated here in the form of collections of models. Note that
some collections only apply to the continuous- (CT) or discrete-time case (DT).

(C1–CT) n(n− 1) unidimensional fictitious systems
{
GijM

}
i,j,i6=j

as defined in Eq. (20);

(C1–DT) n2 unidimensional fictitious systems
{
GijM,d

}
i,j

as defined in Eq. (21) with f a linear

function mapping
[
−mmax

ij , 0
]

onto [−1, 1] where mmax
ij is a design parameter playing the same

role as in (C2–CT) (see Remark 5);

(C2–CT) (optional) n(n− 1) unidimensional fictitious systems
{
G
ij
M

}
i,j,i6=j

with state matrix equal

to mij(P,L)−mmax
ij ∈ R. This helps to restrict the set of acceptable solutions when 0 < mmax

ij <
+∞. The initialising variables excursion is thus limited around a smaller set of potential local
optima;

(C3) any other model in state-space representation, describing the control or observation problem,
thus including tunable controller or observer parameters.

A series of requirements are now expressed on each collection.

5.3 Requirements

For each collection in Sect. 5.2, a set of requirements (or constraints, see Sect. 4.3) is expressed.

(R1–CT) a requirement on the closed-loop poles location is expressed on (C1–CT) in the form of a
constraint on the minimum decay rate. This ensures negativity of −mij(P,L) hence positivity
of mij , ∀i 6= j (CT case);

(R1–DT) similar requirement to (R1–CT) but expressed on the n2 models in (C1–DT);

(R2–CT) similar to previous requirements sets but applied on (C2–CT). This ensures negativity of
mij −mmax

ij , ∀i 6= j;

(R3) any control requirement to enforce on (C3) like disturbance rejection, closed-loop poles, etc.

6 Applications

In this section, the method proposed in Sect. 5 is applied to three examples, including an unstable
system, using the interval observers formalism presented in Sect. 3. A comparison with the methods
proposed in the literature is also provided.

6.1 Continuous-time stable sixth-order example

The formalism of interval observers in the continuous-time case is presented in Sect. 3.1.2. The method
presented in this article proposes to enforce Hyp. 3 by computing P and L such that M is Hurwitz
Metzler.

The following example is inspired from [3]. The considered system dynamics is given by{
ẋ = Ax+B1u
y = Cx+ d

(22)

where x ∈ R6, u(t) = sin(t) and d(t) is an unknown but bounded measurement disturbance with
d = −2 ≤ d(t) ≤ 1 = d, ∀t. A random number generator with limited range is used in simulation.
The system matrices are numerically given by

9
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A =



−1 1 0 0 −1 0
−1 −2 0 −1 0 1
−2 0 −3 −2 0 0
−1 0 −2 −3 0 1
−1 0 2 0 −4 0
−1 −1 0 1 0 −1

 , B1 =



−18
−13
−5
−4
−10

22

 , C =
[
1 0 0 0 0 0

]
(23)

The system is stable and it is initialized at x0 =
[
20 10 6 20 30 40

]>
. The Luenberger

observer is initialized at x̂0 = 0 and the initial state is supposed to lie in [−x0, x0] where x0 =

50
[
1 1 1 1 1 1

]>
. Thus, the initial observation error e0 lies in [e0, e0] = [−x0 − x̂0, x0 − x̂0].

The observation error dynamics is defined by{
ė = (A− LC)e− Ld
e0 = x0 − x̂0 (24)

which is not cooperative. Under Hyp. 3, the following system is an interval observer for the observation
error dynamics in Eq. (24), where P+

L = max(PL, 0) and P−L = P+
L − PL.

ez = Mez + P+
L d− P−L d

ez = Mez + P+
L d− P−L d

ez(0) = P+e0 − P−e0
ez(0) = P+e0 − P−e0

(25)

Reverting back to the initial coordinates is done using Eq. (12). The three following methods are
considered to determine P and L:

• real pole placement allowing state matrix diagonalization;

• resolution of a Sylvester equation;

• application of the nonsmooth control-based method.

6.1.1 Existing techniques

The numerical results obtained using existing techniques are presented here.

Real pole placement The following pole placement gives rather good results in simulation as far
as the convergence speed of the observer is concerned

p =
[
−4.7 −4.6 −2.1 −1.2 −1.1 −0.3

]
(26)

Using the pole placement and diagonalization approach in Sect. 3.2.1, one obtains the following P
and L matrices

P =



−2.5932 1.9801 −9.9547 −12.1661 −3.7046 2.7530
−2.8007 2.1553 −9.4734 −12.2466 −4.6679 2.8031

1.6458 −0.1905 1.6282 −1.5989 −0.8662 1.6268
−20.6249 −16.3609 −11.6690 17.8681 7.3660 −7.5362

19.8606 16.2310 10.4293 −16.7563 −6.8485 5.2526
0.0250 0.4350 0.6878 −0.9352 −0.0068 −0.7146

 , L =



−0.0000
−1.2981
−1.1800
−1.0496
−0.0981
−0.3113

 (27)

which leads to the following matrix M = P (A− LC)P−1

10
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Table 1: Control-based approach parameters for the example described in Sect. 6.1, p(A−LC) refers to the poles
of the observer error dynamics (24)

Syn. model Requirement Settings

(C1–CT) (R1–CT) -
(C2–CT) (R2–CT) mmax

ij = 200

(C3) (R3)-1 Re(pA−LC) ∈
]
−∞,−3.10−3

]
(R3)-2

∥∥ 1
0.4Td→e(s)

∥∥ ≤ 1

M =



−4.7000 0.0000 −0.0000 0.0000 0.0000 −0.0000
−0.0000 −4.6000 −0.0000 0.0000 0.0000 −0.0000
−0.0000 0.0000 −2.1000 0.0000 0.0000 0.0000

0.0000 −0.0000 −0.0000 −1.2000 −0.0000 0.0000
−0.0000 0.0000 0.0000 0.0000 −1.1000 −0.0000
−0.0000 0.0000 −0.0000 −0.0000 −0.0000 −0.3000

 (28)

Due to numerical errors, the observation error dynamics is however not certified to be cooperative.

Sylvester equation The approach in Sect. 3.2.2 is applied to the considered system. The following
upper-triangular Metzler matrix M is proposed

M =



−4.7000 1.0000 1.0000 1.0000 1.0000 1.0000
0 −4.6000 1.0000 1.0000 1.0000 1.0000
0 0 −2.1000 1.0000 1.0000 1.0000
0 0 0 −1.2000 1.0000 1.0000
0 0 0 0 −1.1000 1.0000
0 0 0 0 0 −0.3000

 (29)

along with Q =
[
1 2 3 4 5 6

]>
. Solving Eq. (15) for these values, one obtains

P =



11.1557 −23.0016 −41.8920 58.6245 −3.1677 54.8212
8.6278 −19.1428 −35.4258 48.3810 −2.9658 45.4833

15.8575 −28.1624 −53.0607 70.9787 −6.0558 71.5056
11.3015 −26.6410 −53.7302 70.7881 −3.8611 64.4377
1.8712 −16.6031 −28.5216 38.4000 −0.7267 32.0343
−0.8742 −15.2203 −24.0624 32.7206 0.2363 25.0003

 , L =



0.0000
−1.2981
−1.1800
−1.0496
−0.0981
−0.3113

 (30)

which leads to the following matrix M = P (A− LC)P−1

M =



−4.7000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0000 −4.6000 1.0000 1.0000 1.0000 1.0000
−0.0000 −0.0000 −2.1000 1.0000 1.0000 1.0000

0.0000 −0.0000 0.0000 −1.2000 1.0000 1.0000
−0.0000 −0.0000 0.0000 −0.0000 −1.1000 1.0000
−0.0000 −0.0000 0.0000 −0.0000 0.0000 −0.3000

 (31)

In this case, numerical errors also appear in the final result.

6.1.2 Control-based approach

The method proposed in Sect. 4 and 5 is used. The synthesis models and requirements used are
recalled in Table 1 and refer to notations used in Sect. 5.

Using the control law synthesis algorithm presented in Sect. 5.1, a locally optimal solution is
found in 287s after 3 restarts and requiring 1107 iterations. The following results are obtained, where
M = P (A− LC)P−1 is Hurwitz Metzler.
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Figure 1: In blue, simulation results for the system in Eq. (22) and in magenta (resp. black/red), for the
classical observer in Eq. (8) obtained using the observer gain L in Eq. (32) (resp. Eq. (27) or Eq. (30)) produced
by the control-based approach (resp. real pole placement or Sylvester equation resolution).

M =



−0.9015 0.0000 22.5484 0.0002 0.0054 0.0001
0.0231 −2.5523 0.1372 0.0000 0.4259 0.0589
0.0000 0.0114 −1.4533 0.0001 0.0622 0.0000
0.0831 26.4981 0.0000 −4.4748 4.3388 2.7824
0.0000 0.0000 0.0050 0.5871 −3.4814 0.0335
1.3946 0.0000 0.5513 0.0010 0.0032 −1.0506

 ,

P =



−0.5886 −0.9537 −1.2910 1.7496 0.3504 0.3355
0.0110 0.0364 −0.1391 0.1713 −0.0840 0.0965
0.0398 0.0055 −0.0037 0.0087 −0.0221 0.0337
1.4422 −0.3846 −0.7972 3.8482 −0.4497 2.3833
0.1262 0.0438 −0.8724 0.3191 0.2818 0.4526
0.2464 −1.0668 −0.7884 1.4262 −0.2453 2.5864

 , L =



−0.0862
0.0583
−0.1903

0.0349
0.0366
−0.1631

 (32)

6.1.3 Simulations and comparisons

The system is initialized at x0 and simulated over 40s using u(t) = sin(t) and a random-number-
generated signal d(t) ∈ [−2, 1]. Results are shown on Fig. 1 and 2.

The results obtained using the control-based approach are highly satisfying. Although the obtained
interval observer seems slower than the one obtained using real pole placement, it converges closer to
the system state. Additional requirements could be used to deal with the convergence speed. The
results obtained using the Sylvester equation approach are very bad due to the difficulty of selecting
appropriate matrices M and Q. Moreover, P is used to determine L while this is not the case in the
other methods.
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Figure 2: In blue, simulation results for the system in Eq. (22) and in magenta (resp. black/red), bounds of
the interval observer obtained using the control-based approach (resp. real pole placement/Sylvester equation
resolution). The lower bounds are represented using a dashed line. The plots on the left are the same as the
plots on the right but with limited ordinate excursion.
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6.2 Continuous-time unstable third-order example

The following example is adapted from [4]. The considered system dynamics is given by{
ẋ = Ax+Bd
y = Cx

(33)

where x ∈ R3 and d(t) is an unknown but bounded state disturbance with d(t) = −1 ≤ d(t) ≤ 1 = d(t),
∀t. The signal d(t) = sin(2t) will be used in simulation. The system matrices are defined as follows

A =

 2 0 0

1 −4
√

3

−1 −
√

3 −4

 , B =

−1
0
1

 , C =
[
1 0 0

]
(34)

This system is unstable and detectable. The initial state is given by x0 =
[
−2 1.5 −1

]>
and the

initial observer state by x̂0 = 0. Bounds on the initial state are supposed to equal x0 =
[
−2 −2 −2

]>
and x0 = −x0. The initial observation error e0 lies in [e0, e0] = [x0 − x̂0,−x0 − x̂0].

The observation error dynamics is defined by{
ė = (A− LC) e+Bd
e0 = x0 − x̂0 (35)

which is not cooperative. Under Hyp. 3, the following system is an interval observer for the observation
error dynamics in Eq. (35), where P+

B = max (PB, 0) and P−B = P+
B − PB.

ez = Mez + P+
B d− P−B d

ez = Mez + P+
B d− P−B d

ez(0) = P+e0 − P−e0
ez(0) = P+e0 − P−e0

(36)

Reverting back to the initial coordinates is done using Eq. (12). The two following methods are
considered to determine P and L:

• application of [4, Lemma 1, p. 261];

• application of the nonsmooth control-based method.

6.2.1 Application of the constructive Lemma

In this section, Lemma 1 in [4, p. 261] is used as a practical method to solve the Sylvester equation
presented in Sect. 3.2.2. At first, one has to choose the observer gain so that A− LC is Hurwitz, for

example L =
[
3 0 0

]>
. Then, a targeted matrix M is selected such that it is Metzler and has the

same eigenvalues as A− LC:

M =

−3 2 0
0 −3 2
2 0 −3

 (37)

Using [4, Lemma 1, p. 261] with e1 =
[
1 0 1

]>
and e2 =

[
1 1 0

]>
, one obtains

P =

 0.4085 0.8660 0.5000
0.5915 −0.8660 0.5000
−0.0915 0.0000 −1.0000

 , M = P (A− LC)P−1 =

−3.0000 2.0000 −0.0000
−0.0000 −3.0000 2.0000

2.0000 0.0000 −3.0000


(38)
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Table 2: Control-based approach parameters for the example described in Sect. 6.2, p(A−LC) refers to the poles
of the observer error dynamics (35)

Syn. model Requirement Settings

(C1–CT) (R1–CT) -
(C2–CT) (R2–CT) mmax

ij = 100

(C3) (R3)-1 Re(pA−LC) ∈
[
−10,−3.10−3

]
(R3)-2

∥∥ 1
0.8Td→e(s)

∥∥ ≤ 1

6.2.2 Control-based approach

In this section, the approach proposed in Sect. 4 and 5 is used. The synthesis models and requirements
used, along with the settings values, are presented in Table 2.

Using the control law synthesis algorithm presented in Sect. 5.1, a locally optimal solution is found
after 5 restarts requiring less than 400 iterations each. The execution time rises to 15s. The result is
given below.

P =

0.4622 −1.1708 −1.6588
0.3043 2.0962 −0.0391
0.0021 −0.0165 0.0372

 , L =

 2.9830
1.2172
−1.2948

 , M =

−2.8253 2.0267 0.0000
0.0000 −3.1910 98.5812
0.0404 0.0000 −2.9666

 (39)

where M = P (A− LC)P−1 with no numerical error.

6.2.3 Simulations and comparisons

The system initialized at x0 is simulated over 10s with d(t) = sin(2t). As expected, the system state
diverges. However, considering the observation error e rather than the state x, the bounds e and
e obtained using the interval observer in Eq. (36) are expected to converge. Simulation results are
displayed on Fig. 3 and 4.

In this particular example, the results obtained using the proposed control-based approach are
better. The obtained matrix M is certified to be Hurwitz Metzler. By adding control requirements
and simultaneously synthesizing P and L, the disturbance can be better rejected.

6.3 Discrete-time example

This example is adapted from [18]. The following discrete-time system with sample time Ts = 1s is
considered {

xt+1 = Adxt +Bddt
yt = Cdxt

(40)

where xt ∈ R5 and dt is an unknown disturbance bounded by [−1, 1] and which is simulated by a
random number generator on a limited range and with a time sampling of Ts. The numerical values
used for the system matrices are

Ad =


−0.54 0.45 0.36 0 0

0.63 0.45 0.18 0.36 0
0.09 0.45 0.27 0.09 0.18

0 0 0.25 0.25
√

2 −0.25
√

2

0 0 0 0.25
√

2 0.25
√

2

 , Bd =


−1

0
0
0
1


>

, Cd =

[
1 0 0 0 0
0 0 0 1 0

]
(41)

The system is Schur-stable. It is initialized at x0 =
[
−0.3 −0.5 0.6 0.9 −0.2

]>
. The Lu-

enberger observer is initialized at x̂0 = 0 and the initial state is supposed to lie in [−x0, x0] where

x0 =
[
1 1 1 1 1

]>
. The initial observation error e0 lies in [e0, e0] = [−x0 − x̂0, x0 − x̂0]. The

observation error dynamics is defined by
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Figure 3: In blue, simulation results over 2s for the system in Eq. (33) and in magenta (resp. black), bounds
of the interval observer obtained using the control-based approach (resp. Lemma 1 in [4]).
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of the interval observer obtained using the control-based approach. The results obtained using Lemma 1 in [4]
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Table 3: Control-based approach parameters for the example described in Sect. 6.3, Tdt→et(z) refers to the
transfer function from et to dt, stability of the observation error dynamics is also ensured

Syn. model Requirement Settings

(C1–DT) (R1–DT) mmax
ij = 100

(C3) (R3)-1 Stab. Eq. (42)
(R3)-2 ‖Tdt→et(z)‖2 ≤ 1

{
et+1 = (Ad − LCd)et +Bddt
e0 = x0 − x̂0 (42)

which is not cooperative for any value of L. Under Hyp. 4, the following system is an interval observer
for the observation error dynamics defined in Eq. (42), where P+

B = max(PBd, 0) and P−B = P+
B −PBd.

ez,t+1 = Mdez,t + P+
B dt − P−B dt

ez,t+1 = Mdez,t + P+
B dt − P−B dt

ez,0 = P+e0 − P−e0
ez,0 = P+e0 − P−e0

(43)

Reverting back to the initial coordinates is performed using Eq. (12). In that case, the Sylvester
method proposed in Remark 3 yields very poor results with the chosen arbitrary pole placement and
non-negative matrix Md. The two remaining methods: real pole placement as described in Remark 2
and the approach proposed in this article are compared.

6.3.1 Real pole placement and diagonalization

A pole placement is used as described in Remark 2 in Sect. 3.2.1. The desired poles are chosen
arbitrarily as real numbers inferior to 1 and positive

p3 =
[
0.1 0.3 0.5 0.7 0.9

]
(44)

The following P and L matrices are thus obtained

P =


−0.4816 −1.3788 −0.8972 −0.5748 0.0763
−0.3375 −0.5564 0.0284 0.9356 −0.9400
−0.1471 −0.9124 0.8567 0.2861 −0.2092

0.5944 −1.4806 −0.7589 −0.4881 0.2457
−0.1690 0.0094 0.1658 0.2565 1.1357

 , L =


−1.1993 −0.2234

0.6217 0.2992
−0.0161 0.2228
−0.0205 −0.4136
−0.0333 0.4069

 (45)

which leads to the following matrix M = P (A− LC)P−1

M =


0.9000 0.0000 −0.0000 0.0000 −0.0000
−0.0000 0.7000 −0.0000 0.0000 0.0000
−0.0000 −0.0000 0.1000 −0.0000 0.0000

0.0000 0.0000 0.0000 0.5000 −0.0000
−0.0000 −0.0000 0 −0.0000 0.3000

 (46)

Due to numerical errors, the matrix M is not non-negative up to the machine precision.

6.3.2 Control-based approach

The approach proposed in Sect. 4 and 5 is used, in the case of discrete-time systems. The synthesis
models and requirements used are recalled in Table 3.

Using the control law synthesis algorithm presented in Sect. 5.1, a local optimal solution is found
after 3 restarts and 400 iterations at maximum. The execution time rises to 41s. The following
matrices are obtained
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Figure 5: Left : in blue, simulation results for system (40) and in magenta (resp. black), for the discrete-time
formulation of the classical observer in Eq. (8) obtained using the observer gain L produced by the control-based
approach (resp. real pole placement). Right : bounds of the interval observer compared to the simulated state.

Md =


0.1552 0.0166 0.0000 3.9459 0.0000
0.0108 0.3773 0.1110 0.0035 0.0240
0.0000 0.1725 0.0529 0.0281 0.0050
0.0000 0.0761 0.0877 0.1050 0.0000
0.4027 0.0181 0.1069 0.0066 0.4067

 ,

P =


0.9952 0.4521 0.0923 0.2680 −0.0638
−0.3055 1.0187 0.1835 0.2143 −0.3359
−0.5536 0.0632 0.9009 0.1155 −0.5773
−0.0634 0.1535 0.1303 0.2667 −0.0216

0.1970 0.2770 0.2393 0.1984 1.2526

 , L =


−0.5400 −0.9321

0.6300 0.1244
−0.0900 −0.4325

0.3536 0.3300
−0.3536 0.4908

 (47)

where Md = P (Ad − LCd)P−1 is Schur-stable and non-negative as required.

6.3.3 Simulations and comparisons

The disturbance dt used for the simulation is randomly generated with dt ∈ [−1, 1]. The simulation
results are shown on Fig. 5.

The results obtained using the control-based approach are very satisfactory. The simultaneous
synthesis of P and L leads to a more precise observer. An arbitrary choice of the poles is not required
anymore since it is included in the optimization process.

7 Conclusions

In this article, a new approach to compute an appropriate change of coordinates for a system to be
cooperative in these new coordinates has been introduced following preliminary results in [5]. Both
the continuous- and discrete-time cases have been considered. An overview of the existing techniques
to determine such transformation has been performed. The new approach has been applied on three
examples and compared with the existing techniques.

The proposed method is based on structured controller synthesis techniques [6, 23]. It is used to
enforce specific properties on the state-space matrices of a system. The main addition of the method
in comparison with existing ones is the possibility to satisfy additional constraints dealing with the
dynamics of the observer. Also, in the case of interval observers, matrices P and L are determined
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simultaneously while other methods require to choose a targeted Metzler matrix M with the same
eigenvalues as A− LC, which is not an easy task from the authors point of view.

The current limitation of the method is the computation time which increases with the order of the
system. Also, it uses algorithms which were not specifically designed for this task. The consequence is
a loss in computational efficiency. As far as the theory of interval observers is concerned, the proposed
method currently only applies to determining a time-invariant change of coordinates in the linear
time-invariant case. A perspective of this work could be to extend the approach to the time-varying
case for which theoretical results have been proposed [8].
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