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Abstract: In the present paper, we deal with a stationary isotropic random field X : Rd → R
and we assume it is partially observed through some level functionals. We aim at providing a
methodology for a test of Gaussianity based on this information. More precisely, the level func-
tionals are given by the Euler characteristic of the excursion sets above a finite number of levels.
On the one hand, we study the properties of these level functionals under the hypothesis that the
random field X is Gaussian. In particular, we focus on the mapping that associates to any level u
the expected Euler characteristic of the excursion set above level u. On the other hand, we study
the same level functionals under alternative distributions of X, such as chi-square, harmonic
oscillator and shot noise. In order to validate our methodology, a part of the work consists in
numerical experimentations. We generate Monte-Carlo samples of Gaussian and non-Gaussian
random fields and compare, from a statistical point of view, their level functionals. Goodness-
of-fit p−values are displayed for both cases. Simulations are performed in one dimensional case
(d = 1) and in two dimensional case (d = 2), using R.

MSC 2010 subject classifications: Primary 62G10 ; secondary 60G10, 60G15, 60G60.
Keywords and phrases: Test of Gaussianity, Gaussian fields, Excursion sets, Level sets, Euler
characteristic, Crossings.

Introduction

The question of the Gaussianity of a phenomenon is a historical and fundamental problem in statistical
literature. This type of information can be crucial in many application problems: oceanography and
waves behavior, hydrology and climatology, agronomy, neurology and spike behavior, insurance and
finance, astrophysics. For instance, in this latter application, during the last decade a large number of
researchers joined efforts to decide whether the Cosmic Microwave Background (CMB) temperature is
Gaussian or not.
The problem of determining whether an i.i.d random sample comes from a Gaussian distribution has
been studied extensively. In the case where the mean and the variance of the random variable are
known, one can use a classical goodness-of-fit test. However, if these parameters need to be estimated
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the test of Lillifors and a variant of the Cramer-Von Mises test, with estimated parameters, are well
adapted. These tests are no more distribution-free and depend on the true value of the parameters.
The p−values must be obtained by simulations.
The situation becomes more complicated when the sample comes from a stationary stochastic process
satisfying some mixing conditions. For this type of problem, some tests have been designed to deter-
mine whether the one dimensional marginals are Gaussian. We can cite, by way of illustration: the Eps
test [12] based on the empirical characteristic function; the test built by Lobato and Velasco [22] that
uses a test of symmetry and kurtosis; the test of Subba and Gabr [30] where the bi-spectral density is
the basis for the test. A remarkable exception is the test built in Cuesta-Albertos et al. [11]. There, the
method for constructing the test uses a one dimensional random projection, after which the projected
sample is subjected to a test that infers whether the one dimensional marginal is Gaussian. Actually,
the random projection procedure allows one to test whether the whole distribution of the process is
Gaussian or not, and hence is not limited to marginal distributions.

In the present article, we deal with a real valued stationary isotropic random field and we use the in-
formation given by level functionals of a single realisation of the process to build a test of Gaussianity.
The level functional is the Euler characteristic (EC) of the excursion sets above some levels. Our first
motivation comes from the article [1] Section 7 (Model identification). In the aforementioned paper,
Adler suggests to use the EC of the excursion sets as a way to determine what is the actual distribution
of the observed process. His words can describe better than ours the main goal “Suppose that we are
given a real valued random field f on R3, which we observe on the unit cube [0, 1]3. Our problem is
that we are not certain what the distribution of the field is. For simplicity, we shall assume that the
choices are Gaussian and χ2, where both are assumed to be stationary and isotropic. Then one way
to choose between the two is to calculate, from the data, an empirical Euler characteristic curve, .....”
c.f. [1]. If the data is Gaussian, then the theoretical curve is a very precise one (see Figures 1 and 9,
left panels), depending on the second spectral moment of the process and some other invariant quan-
tities. Otherwise, if it is a χ2-process, Kramer oscillator process or a shot noise process, a completely
different curve appears (see Figures 6, 8 left panel, 10 left panel, and 11). In what follows, we offer a
methodology that tries to implement these ideas.

The idea of observing level functionals of a random field in order to infer some information on the
distribution of the field is not new. In [20], Lindgren provides estimators for the second spectral moment
of an univariate Gaussian process that are based on the number of upcrossings at various levels. In [8],
Cabaña builds a test of isotropy, for a two dimensional random field, that is based on the perimeter
and the area of excursion sets. In [31], the covariance function of a bivariate Gaussian field is inferred
from the excursion sets Euler characteristic. The same idea has inspired many precursors working
in materials science, see for instance [28], [24]. In those papers, the modelling of images or slices of
a two-phases materials (even more complicated) is achieved by using a two dimensional stationary
Gaussian field that has been thresholded at a certain level. The observed data are the lengths of the
respective two phases along any line extracted from the image. The aim of these studies is to identify
the Gaussian covariance function. Let us also mention [2] where the authors start from the observation
of a neurological space-time signal at some moderate levels and deduce some parameters that help in
estimating the probability of exceeding very high values. Not far from this thema, one can find the
question of exceedances or the study of extreme values, when considering high levels (see, e.g., the
seminal work of Rice [27] and [35]). We will not go further in that direction and, at the opposite, stay
with the observation of moderate levels. In all the mentioned papers, the field that is under study is
assumed to be Gaussian. On the contrary, in the present paper, Gaussianity is not assumed but has
to be inferred without knowing the spatial correlation.
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To be more precise, we aim at proving that the function that associates u to the mean excursions EC
at level u provides a kind of signature of the distribution of the random field under study. Although
a so complex information as the knowledge of the whole distribution cannot be summarize in a single
function, our guess is that the shape of its graph could be enough to discriminate between Gaussianity
and non Gaussianity. Our main tool will be a Central Limit Theorem for the EC of an excursion set of
a stationary isotropic Gaussian random field. This asymptotic normality takes place when the domain
grows to Rd. The result is proved in [13] with the help of a Breuer-Major Theorem [25]. We will also
need some generalisations, extensions and explicit computations of this result.
In particular, in the present work, we extend the results in [13] by showing that the random variables

Zi
k = |Ti|−1/2 (φ(X,Ti, uk)− E[φ(X,Ti, uk)]) for i = 1, . . . ,m; k = 1, . . . , p;

with φ(X,Ti, uk) the EC of a standard Gaussian field X associated to the level uk in the domain Ti and
E[φ(X,Ti, uk)] the theoretical Gaussian mean of excursions EC at level uk, are asymptotically jointly
distributed as Gaussian when the disjoint domains Ti grow up and satisfy asymptotic independence
(see Proposition 5 for further details). Furthermore, we provide a tractable expression of the associated
asymptotic variances (see Propositions 2 and 8).

The aforementioned results are used to build a Gaussianity test for a standard random field X. Indeed,

I. if the H0 hypothesis: “the random field X is Gaussian” holds true,

then the test statistic based on the sum of the scaled Zi
k’s follows an appropriate chi-squared distri-

bution. This case is for instance, illustrated by the pretty QQ-plots alignments and high p−values of
goodness-of-fit tests in Sections 4.1.3 and 5.1.
Conversely,

II. if the underlying standard random field X is not Gaussian with a given second spectral moment
(in particular if X is a χ2 or a Kramer oscillator process),

we deliberately center again, as in the I. case, the Zi
k’s variables by using the (wrong) theoretical

Gaussian mean of excursions EC at level uk (see Equation (6)) with the same second spectral moment.
In this case, we obtain a very small goodness-of-fit p−values for the chi-squared distribution associated
to the considered test statistics based on Zi

k’s (see Sections 4.2.1 and 4.2.2). Then we are able to reject
the H0 hypothesis under considered alternatives. The crucial point is that the theoretical mean of
excursions EC has a very different shape in the Gaussian case with respect to the considered alterna-
tives: χ2-process or a Kramer oscillator process. This evident difference allows us to easily discriminate
between Gaussian and non Gaussian setting.

As mentioned above, we consider two alternative hypothesis versus the Gaussianity: χ2-process and
Kramer oscillator process. These processes are chosen for two types of reasons. First, the mean ex-
cursions EC curve for the considered processes can be analytically known. Secondly, they are typical
examples of models with specific properties: positive asymmetry or oscillation. This variety of beha-
viors can cover real-life situations in the applications. For the same types of reasons, we also consider
a discontinuous shot noise process as an alternative. However, due to the non-smoothness property of
this process, we separate its study in a specific section (see Section 6). A further discussion in this
sense is postponed to the conclusion section.

Main contributions of the paper. Under the assumption of stationarity and isotropy for the
Gaussian field X, we give a new explicit formula for the second moment of the excursions EC (see
Proposition 1 and Proposition 2). We extend the results in [13] by showing a Central Limit Theorem for
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the joint excursions EC concerned with different levels and disjoint domains (see Proposition 5). We also
show finiteness of the asymptotic variance of the excursions EC of a chi-square field (see Proposition
7). A numerically tractable formula for the asymptotic variance in the univariate Gaussian case is
given in Proposition 8. We propose a statistical methodology to test the Gaussianity distribution and
we implement that on simulated data-sets to evaluate the finite-sample performance of our strategy.

Outline of the paper. Section 1 contains the general setting and the definition of the observation tool,
namely the Euler characteristic of excursion sets. In Section 2, we focus on the Gaussian hypothesis.
Assuming that the field under study X is a stationary isotropic Gaussian field, we give explicit formulas
for the first two moments of the excursions EC. We also recall the Central Limit Theorem satisfied
by the excursions EC when the domain tends to Rd (see Theorem 4) and give an extension for the
joint excursions EC concerned with different levels and disjoint domains. It allows us to describe the
situation in term of a statistical model with observations whose distribution is known under the null
hypothesis H0. Section 3 is concerned with the study of two alternative distributions of the observed
random field: χ2 and Kramer oscillator. In both cases, we give an explicit formula for the mean EC
of excursion sets. Section 4 is devoted to numerical illustrations for univariate processes. We generate
trajectory samples of stationary processes, Gaussian and non Gaussian, and compare the theoretical
mean function of the excursions EC and the empirical one. We also build some chi-square statistics and
associated goodness-of-fit tests in order to quantify the deviation between Gaussian and non Gaussian
case. At last, in Section 5, we go further in the numerical study by considering two dimensional
random fields. We generate Gaussian and χ2 samples and compare with the theoretical situation. All
the random generations and numerical computations are performed with R. In the last Section 6, we
consider a shot noise process as a potential alternative, giving a preliminar study that could lead to a
more general test of Gaussianity for non smooth processes. In order to keep the methodological spirit
of the present paper, we have reported the technical proofs to the appendix section.

1. Setting

Let us start by introducing some definitions and terminology. Let X be a real valued random field
defined on Rd. We will sometimes call it a multivariate process. We say that it is stationary if its
distribution is invariant under translations in Rd and isotropic if its distribution is invariant under
rotations in Rd. Hence, the distribution of a stationary isotropic random field is invariant under the
action of the isometry group of Rd.
Assuming X is smooth enough, we write X ′ for its derivative, which is a random vector field from Rd

to Rd. We also write X ′′ for its second derivative. For any t ∈ Rd, we denote by ∇2X(t) the 1
2d(d+1)

random vector that contains the upper coefficients of the symmetric Hessian matrix X ′′(t) and by X(t)
the d+ 1

2d(d+ 1) + 1 random vector (X ′(t),∇2X(t), X(t)).
Let us assume now that X is stationary, isotropic and centered. If almost every realisation of X is of
class C1, then the covariance matrix of X ′(0) has the following form

E(X ′(0)X ′(0)t) = λ Id , (1)

for some λ > 0 usually named as second spectral moment.

All over the paper, we consider a real valued random field X defined on Rd that satisfies the fol-
lowing assumption.

Assumption (A): The random field X is stationary, isotropic, E(X(0)) = 0, Var(X(0)) = 1 and
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almost all realisations belong to C3(Rd). For any fixed t in Rd,

the covariance matrix of the random vector X(t) has full rank.

At last, the covariance function r is such that,

ψ(t) → 0 when ∥t∥ → +∞ and ψ ∈ L1(Rd) ,

where ψ(t) = max
(∣∣∣∂kr

∂tk
(t)
∣∣∣ ; k = (k1, . . . , kd) ∈ Nd, k1 + . . .+ kd ≤ 4

)
.

Remark: Assumption (A) could appear too strong for the task described in this paper. Actually,
we are not interesting in working under the weakest assumption, our aim is rather to provide a metho-
dology that applies for any dimension d. Since the theoretical tools that we use are mainly derived
from [13], we chose to work with the same assumption setting as in this paper.

Notations.
• for any u ∈ R and any compact T ⊂ Rd, we call “excursion set of X above the level u within the
domain T” the following set {t ∈ T : X(t) ≥ u},
• pZ(.) denotes the probability density function of any random vector Z (assuming it exists),
• | · | denotes without any ambiguity, either the absolute value, or the d-dimensional Lebesgue measure.

Euler characteristic.
The Euler characteristic of a compact domain K in Rd can be heuristically defined in the case d = 1 as
the number of connected components ofK, or in the case d = 2 as the number of connected components
minus the number of holes in K. In the case where K is an excursion set {t ∈ T : X(t) ≥ u},
with T a rectangle in Rd and u a real number, there exists a rather tractable formula that uses the
theory of Morse functions (see [3] Chapter 9, for instance). It states that the Euler characteristic of
{t ∈ T : X(t) ≥ u} is equal to a sum of two terms. The first one only depends on the restriction of X
to the interior of T , it is given by the quantity φ(X,T, u) defined in Equation (2) below. The second
one exclusively depends on the behaviour of X on the l-dimensional faces of T , with 0 ≤ l < d. From
now on, we focus on the term φ(X,T, u), named as “modified Euler characteristic” in [13], and we still
call it Euler characteristic (EC). It is defined by the following,

φ(X,T, u) =
d∑

k=0

(−1)kµk(T, u), where (2)

µk(T, u) = #{t ∈ T̊ : X(t) ≥ u, X ′(t) = 0, index(X ′′(t)) = d− k},

with T̊ the interior of T and the “index” stands for the number of negative eigenvalues.

Special case 1: dimension one. When d = 1, writing [0, T ] instead of T for a while, Equation
(2) becomes

φ(X, [0, T ], u) = #{local maxima of X above u in (0, T )} (3)

−#{local minima of X above u in (0, T )}.

Morse’s theorem says that this quantity is linked with the number of up-crossings,

U(X, [0, T ], u) = #{t ∈ [0, T ] : X(t) = u, X ′(t) ≥ 0} ,
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by the relation

φ(X, [0, T ], u) + 1{X(0)>u,X′(0)<0} + 1{X(T )>u,X′(T )>0} = U(X, [0, T ], u) + 1{X(0)>u}.

Taking expectation in both expressions and using stationarity yield the next formula that we will use
in the forthcoming sections, namely Sections 3 and 4,

E[φ(X, [0, T ], u)] = E[U(X, [0, T ], u)]. (4)

Special case 2: dimension two. When d = 2, Equation (2) can be rewritten in the following way.
With the notations introduced within this equation, µ0(T, u) denotes the number of local maxima
above u, µ2(T, u) denotes the number of local minima above u and µ1(T, u) the number of local saddle
points above u. Hence,

φ(X,T, u) = #{local extrema of X above u in T̊} (5)

− #{local saddle points of X above u in T̊}.

2. Under Gaussian hypothesis

In this section, we assume that X is Gaussian and satisfies Assumption (A) described in Section 1.

2.1. First two moments of the Euler characteristic of an excursion set

Let T be a cube in Rd. This section is devoted to explicit formulas for the first two moments of
φ(X,T, u). They are based on the decomposition in (2) and on Rice formulas for the factorial mo-
ments of µk(T, u) (see for instance [3] Chapter 11 or [5] Chapter 6).

In particular, using the stationarity of X, the expectation can be computed as follows

E[φ(X,T, u)] = (−1)d
∫
T

E[1[u,∞)(X(t)) det(X ′′(t)) |X ′(t) = 0] pX′(t)(0) dt

= (−1)d |T | (2πλ)−d/2 E[1[u,∞)(X(0)) det(X ′′(0))] ,

where we recall that λ is the second spectral moment of X, see (1). Moreover, it is proved in [3] Lemma
11.7.1, through a regression and due to Wick’s formula, that

E[1[u,∞)(X(0)) det(X ′′(0))] = (−1)d (2π)−1/2 λdHd−1(u) e
−u2/2 ,

where Hk stands for the Hermite polynomial of order k. Hence, the next formula holds

E[φ(X,T, u)] = |T | (2π)−(d+1)/2 λd/2Hd−1(u) e
−u2/2 . (6)

In what follows, we will be particularly interested in the next function

C(u) = (2π)−(d+1)/2 λd/2Hd−1(u) e
−u2/2 , (7)

that yields E[φ(X,T, u)] = |T |C(u). Equation (7) shows that C(u) implicitly depends on X through
its dimension parameter d and its second spectral moment λ. Whenever necessary in the next sections,
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we will emphasize this dependence by writing C(u) = C(u, λ).

For the second moment, a so nice formula as (6) seems to be out of reach. Nevertheless, in the next
proposition, we express the second moment as an integral that can be numerically evaluated. Let us
mention the paper [32] where a similar formula is established but concerning another modified Euler
characteristic, namely the differential topology (DT) characteristic. In this reference, the authors also
give the second moment of the excursions DT characteristic as an integral of conditional distribution
functionals and they propose a Monte-Carlo simulation method to evaluate these functions.
We will use the following functions, defined for u ∈ R and t ∈ Rd,

g(u) = E[1[u,∞)(X(0)) | det(X ′′(0))| ]
D(t) = (2π)2d det(λ2Id − r′′(t)2)

G(u, t) = E[1[u,∞)(X(0))1[u,∞)(X(t)) det(X ′′(0)) det(X ′′(t)) |X ′(0) = X ′(t) = 0]

 (8)

In the one dimensional case, explicit formulas for the expectation functions g(u) and G(u, t) are given
in the numerical Section 4 (see Proposition 8).

Proposition 1. Assume that X is Gaussian and satisfies Assumption (A).
Then, for any u ∈ R, the map t 7→ G(u, t)D(t)−1/2 is integrable on any compact set in Rd and

E[φ(X,T, u)2] =

∫
Rd

|T ∩ (T − t)|G(u, t)D(t)−1/2 dt+ |T | (2πλ)−d/2 g(u) .

Proof. Integrability comes from [13] Proposition 1.1 sinceX ∈ C3. In order to compute the expectation
of φ(X,T, u)2, let us start with (2). It yields

φ(X,T, u)2 =
∑

0≤k≤d

µk(T, u) +
∑

0≤k≤d

µk(T, u)(µk(T, u)− 1) +
∑

0≤k ̸=l≤d

(−1)k+lµk(T, u)µl(T, u).

The expectation of the first term is equal to

E[
∑

0≤k≤d

µk(T, u)] = E[#{t ∈ T : X(t) ≥ u, X ′(t) = 0} ]

=

∫
T

E[1[u,∞)(X(t)) | detX ′′(t)| |X ′(t) = 0] pX′(t)(0) dt

= |T | g(u) pX′(0)(0) ,

where we have used Rice Formula to get the second line and stationarity as well as the independence
between X ′(0) and (X(0), X ′′(0)) to get the third one.
For the second and third terms, we introduce, for k, l = 1, . . . , d and s, t ∈ Rd,

F k,l
u (s, t) = E[1[u,∞)(X(s)) | detX ′′(s)|1Dk(X

′′(s))

×1[u,∞)(X(t)) | detX ′′(t)|1Dl(X
′′(t)) |X ′(s) = X ′(t) = 0],

where Dk denotes the set of symmetric matrices having index equal to d− k. Hence, Rice Formula for
the second factorial moment allows us to obtain

E[
∑

0≤k≤d

µk(T, u)(µk(T, u)− 1)] =

∫
T×T

(
∑

0≤k≤d

F k,k
u (s, t)) pX′(s),X′(t)(0, 0) dsdt.
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Given that Dk ∩Dl = ∅ for k ̸= l, one can adapt the proof of the second moment Rice formula to get

E[
∑

0≤k ̸=l≤d(−1)k+lµk(T, u)µl(T, u)]

=

∫
T×T

(
∑

0≤k ̸=l≤d

(−1)k+lF k,l
u (s, t)) pX′(s),X′(t)(0, 0) dsdt.

Let us remark that ∑
0≤k≤d

F k,k
u (s, t) +

∑
0≤k ̸=l≤d

(−1)k+lF k,l
u (s, t) = G(u, t− s) .

It yields

E[φ(X,T, u)2] =
∫
Rd

|T ∩ (T − t)|G(u, t) pX′(0),X′(t)(0, 0) dt+ |T | g(u) pX′(0)(0).

It remains to compute the probability density function of (X ′(0), X ′(t)). The covariance matrix of this

vector is equal to

(
λId −r′′(t)

−r′′(t) λId

)
and so pX′(0),X′(t)(0, 0) = D(t)−1/2. Hence the result. �

2.2. Asymptotic variance

In the next proposition, we let the cube T grow to Rd and we give a formula for the asymptotic variance
of φ(X,T, u). Actually, we consider

T (N) = {Nt : t ∈ T}
the image of a fixed cube T by the dilation t 7→ Nt and we let N grow to +∞.

Proposition 2. Assume that X is Gaussian and satisfies Assumption (A) and let T be a cube in Rd.
Then for any u in R,

lim
N→+∞

Var[|T (N)|−1/2 φ(X,T (N), u)] = V (u) < +∞

with

V (u) =

∫
Rd
(G(u, t)D(t)−1/2 − C(u)2) dt+ (2πλ)−d/2 g(u) , (9)

where C(u), g(u), G(u, t), D(t) have been defined in (7) and (8).

Proof. From Proposition 1, for a fixed cube T , we have

Var[|T |−1/2φ(X,T, u)]

=

∫
Rd

|T ∩ (T − t)|
|T |

G(u, t)D(t)−1/2 dt+ (2πλ)−d/2 g(u)− |T |−1 (Eφ(X,T, u))2

=

∫
Rd

|T ∩ (T − t)|
|T |

(G(u, t)D(t)−1/2 − C(u)2) dt+ (2πλ)−d/2 g(u) ,

where we have used the relation |T |2 =
∫
Rd |T ∩ (T − t)| dt to get the last line. Hence, the asymptotic

formula can easily be derived using Lebesgue dominated convergence theorem conditionally to the fact
that t 7→ G(u, t) D(t)−1/2 − C(u)2 belongs to L1(Rd). This point is the matter of the next lemma.
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Lemma 3. The map t 7→ G(u, t) D(t)−1/2 − C(u)2 belongs to L1(Rd).

The proof of Lemma 3 is postponed in the appendix section. �

Beyond the existence of a finite asymptotic variance as stated in the previous proposition, φ(X,T (N), u)
satisfies a Central Limit Theorem.

Theorem 4 (Theorem 2.6 in [13]). Assume that X is Gaussian and satisfies Assumption (A) and let
T be a cube in Rd. Then for any u in R, the next convergence holds in distribution

|T (N)|−1/2 (φ(X,T (N), u)− E[φ(X,T (N), u)])
L−→

N→∞
N (0, V (u)) , (10)

where N (0, V (u)) stands for the centered Gaussian distribution with variance V (u) (see Equation (9)).

2.3. Disjoint domains and various levels

We now consider two domains T1 and T2 that are disjoint and two levels u1 and u2 that can be equal
or not.

Proposition 5. Assume that X is Gaussian and satisfies Assumption (A).
(a) Let T1 and T2 be two cubes in Rd such that |T1| = |T2| and dist(T1, T2) > 0 and let u1 and u2

belong to R. For any integer N > 0, we introduce

Z
(N)
i = |T (N)

i |−1/2 (φ(X,T
(N)
i , ui)− E[φ(X,T (N)

i , ui)]) for i = 1, 2.

As N → +∞,
(
Z

(N)
1 , Z

(N)
2

)
converges in distribution to a centered Gaussian vector with diagonal

covariance matrix

(
V (u1) 0

0 V (u2)

)
where V (ui) is prescribed by (9).

(b) Let T be a cube in Rd and let u1 and u2 belong to R. For any integer N > 0, we introduce

ζ
(N)
i = |T (N)|−1/2 (φ(X,T (N), ui)− E[φ(X,T (N), ui)]) for i = 1, 2.

As N → +∞,
(
ζ
(N)
1 , ζ

(N)
2

)
converges in distribution to a centered Gaussian vector with covariance

matrix

(
V (u1) V (u1, u2)

V (u1, u2) V (u2)

)
, where V (ui) is prescribed by (9) and V (u1, u2) is a finite real number.

Comment. In [13] Theorem 2.5, the covariance V (u1, u2) is prescribed by a series expansion that,
although convergent, is so awkward that it cannot be used to evaluate it in practise.

Proof of Proposition 5.

Concerning item (a), we first have to establish that the fields Z
(N)
1 and Z

(N)
2 are asymptotically inde-

pendent. Intuitively, it comes from the fact that the distance between the cubes T
(N)
1 and T

(N)
2 goes to

infinity and the covariance function of X has a sufficient rate of decay at infinity due to Assumption
(A). Precisely, the asymptotic decorrelation is given in the next lemma.

Lemma 6. Under assumptions of Proposition 5 and using the same notation, it holds that

Cov
(
Z

(N)
1 , Z

(N)
2

)
→

N→+∞
0.
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Lemma 6 is proved in the appendix section. By using this result and Theorem 4, we know that the

covariance matrix of the random vector (Z
(N)
1 , Z

(N)
2 ) tends to

(
V (u1) 0

0 V (u2)

)
. One can use the same

arguments as those in [13] (which were inspired by the Breuer-Major Theorem of [25]) to establish

that any linear combination xZ
(N)
1 + yZ

(N)
2 has a Gaussian limit in distribution.

Item (b) is proved in [13], Theorem 2.5. �

2.4. Statistical model

We are now able to build a test for the H0 hypothesis: “the random field X is Gaussian”.
Actually, we assume that X is observed through the family (Y i

k )1≤i≤m;1≤k≤p where

Y i
k =

φ(X,Ti, uk)

|Ti|
, i = 1, . . . ,m ; k = 1, . . . , p ,

for disjoint domains T1, . . . , Tm that have the same large volume and are at large distance one from
each other, and various levels u1 ≤ . . . ≤ up. Under these conditions, by using Proposition 5 and
Equation (6), one can write the following approximation valid under H0,

Y i
k ≈ C(uk, λ) + ϵik , i = 1, . . . ,m ; k = 1, . . . , p , (11)

where (ϵik)i,k is a mp-dimensional centered Gaussian vector with covariance

Cov(ϵik, ϵ
j
l ) = Cov(Y i

k , Y
j
l ) = δij V (uk, ul)/|Ti| . (12)

The deterministic value C(uk, λ) is given by Equation (7). It depends on the level uk and on the
standard field X only through its second spectral moment λ. For k = l, V (uk, ul) = V (uk) is given by
(9), and for k ̸= l, since no explicit formula is available for V (uk, ul) in practise, it has to be estimated.
Using the statistical model in (11)-(12), we will focus on two particular cases.

(a) Diagonal case. We take m disjoint domains T1, . . . , Tm and m levels u1, . . . , um, such that each
level uk is associated to a single domain Tk. In this setting we have m observations Y 1

1 , . . . , Y
m
m

and a diagonal covariance matrix equal to diag(V (u1)/|T1|, . . . , V (um)/|Tm|).
(b) Crossed case. We takem disjoint domains T1, . . . , Tm and p levels u1, . . . , up, such that different

levels uk are associated to the same domain Ti. In this setting we have mp observations (Y i
k )i,k

and their covariance matrix is given by (12).

3. Under alternative hypothesis

3.1. χ2 hypothesis

In this section, we deal with χ2 distributions instead of Gaussian ones. Let us fix s, a non negative
integer, as the degrees of freedom.
We start with {Xi(.)}si=1, an independent sample of standard stationary Gaussian fields on Rd that
satisfy Assumption (A) of Section 1. We denote by rX their covariance function and recall that
rX(0) = 1. Consider now the following stationary fields

χ2
s(·) =

s∑
i=1

(Xi(·))2 and Z(s)(·) = 1√
2s

(
s∑

i=1

(Xi(·))2 − s) .
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Note that for any t ∈ Rd, χ2
s(t) is a chi-square random variable with s degrees of freedom. One get

readily that
E[Z(s)(0)] = 0, Var[Z(s)(0)] = 1, E[Z(s)(t)Z(s)(0)] = rX(t)2.

Therefore, Z(s) also satisfies Assumption (A). Moreover, its second spectral moment is equal to λ with
λ = −((rX)2)′′(0) = −2r′′X(0).

We are now interested in the expectation of the Euler characteristic of

{t ∈ T : Z(s)(t) ≥ u} = {t ∈ T : χ2
s(t) ≥ s+ u

√
2s} ,

for a fixed cube T ⊂ Rd and a fixed level u in R. A formula for the mean EC of excursion sets of χ2

fields is given in [34], Theorem 3.5 (see also Theorem 15.10.1 in [3]). It applies in our context, although
we have to handle carefully with the second spectral moment of the Xi’s, which is equal to λ/2. It
yields

E[φ(Z(s), T, u)] (13)

= |T |
(
λ

π

)d/2
e−(s+u

√
2s)/2 (s+ u

√
2s)(s−d)/2

2(s−2+2d)/2Γ(s/2)
Pd,s(s+ u

√
2s)1[0,∞)(s+ u

√
2s) ,

where Pd,s(·) is a polynomial of degree d − 1 with integer coefficients (see Section 3.3 in [34]). In
particular, we stress that P1,s(u) = 1 and P2,s(u) = u− s+ 1.

Let us recall that, in dimension one, the mean Euler characteristic of the excursion above the level u is
equal to the mean number of upcrossings at level u, see Equation (4). With this point of view, Formula
(13) can also be found in [29] for instance. Next proposition is concerned with the second moment in
dimension one, in the same spirit as Proposition 2.

Proposition 7. Let d = 1. Let us assume that the X ′
is are one dimensional i.i.d. Gaussian processes

that satisfy Assumption (A) for i = 1, . . . , s.
Then, for any u in R and T in [0,+∞), φ(Z(s), [0, T ], u) admits a finite second moment.
Morever, there exists vs(u) ∈ [0,+∞) such that

lim
T→+∞

1

T
Var[φ(Z(s), [0, T ], u)] = vs(u) .

The proof of Proposition 7 can be found in the appendix section.

3.2. Kramer oscillator hypothesis

We work in dimension d = 1. Let us consider the following system of stochastic differential equations,
well known as Kramer oscillator system,

dQ(t) = P (t)dt,

dP (t) = σdW (t)− (cP (t) + V ′(Q(t))dt,

}
(14)

where V (q) = a0q
4 − a1q

2 for positive constants a0 and a1, σ and c are also positive constants, and W
is a Brownian motion. The asymptotic properties of such a system have been studied for instance in
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[36]. Besides, it is well known that the Markov process (Q,P ) has an invariant measure µ that can be
written (up to a numerical constant factor) as

dµ(p, q) = exp

(
− 2c

σ2
(
p2

2
+ V (q))

)
dp dq.

From now on, we assume that (Q(0), P (0))’s distribution is proportional to µ, so that (Q,P ) is station-
ary. Here, we are interested in the process Q. It is stationary, centered, but certainly not Gaussian since
its distribution is proportional to exp

(
− 2c

σ2V (q)
)
dq. Nevertheless, the distribution of its derivative

process, Q′ = P , is actually Gaussian with zero mean and variance equal to σ2

2c . An application of Rice
formula gives the mean number of upcrossings of Q in [0, T ] at any level u and hence, using (4), we
get

E[φ(Q, [0, T ], u)] = E[U(Q, [0, T ], u)]

= T

(
1√

2π(σ2/2c)

∫ ∞

0

p exp−(
c

σ2
p2)dp

)
pQ(u)

=
T σ

2
√
πc

pQ(u) with pQ(u) =
exp(− 2c

σ2V (u))∫
R exp(− 2c

σ2V (q))dq
. (15)

Moreover, let us remark that a suitable choice of the parameters σ, c, a0, a1 allows us to get Var(Q(0)) =
1 and Var(Q′(0)) = λ, so that Q satisfies the same moments constraints as the generic process X in

Section 1. Actually, it is sufficient to prescribe σ2

2c = λ and to solve the following non linear equation∫
R
exp

(
− 2c

σ2
(a0q

4 − a1q
2)
)
dq =

∫
R
q2 exp

(
− (

2c

σ2
(a0q

4 − a1q
2)
)
dq. (16)

4. Univariate numerical illustrations

In this section, we focus on the one dimensional case and hence only deal with univariate processes.
Both for Gaussian and alternative distributions, we first compare the theoretical formulas for the
moments of excursions EC with the empirical ones, obtained by Monte Carlo simulations. Secondly,
we perform the test statistics and calculate associated goodness-of-fit p−values. A graphical illustration
of our test is also provided by drawing QQ-plots.

4.1. Gaussian process

4.1.1. First and second moments: E[φ(X,T, u)] and V (u)

We rewrite Equations (6) and (9) of Section 2 in the case d = 1 under H0 hypothesis, i.e. when X is a
stationary isotropic standard Gaussian process with covariance function r and second spectral moment
λ = −r′′(0):

E[φ(X,T, u)] = |T |C(u, λ) with C(u, λ) = (2π)−1 λ1/2 e−u2/2 , (17)

and Var[φ(X,T, u)] ∼ |T |V (u) as |T | → +∞, with

V (u) =

∫
R
(G(u, t)D(t)−1/2 − C(u, λ)2) dt+ (2πλ)−1/2 g(u) , (18)
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where D(t) = (2π)2 (λ2 − r′′(t)2) and g(u), G(u, t) are given by (8). In the one dimensional case, it
yields

g(u) = E[1[u,∞)(X(0)) |X ′′(0)| ]
G(u, t) = E[1[u,∞)(X(0))1[u,∞)(X(t))X ′′(0)X ′′(t) |X ′(0) = X ′(t) = 0].

Our first task is now to provide formulas for g(u) and G(u, t) that can be numerically evaluated. They
will obviously include Gaussian integrals and, therefore, we need to describe the Gaussian distributions
that are involved.

On the one hand, introducing γ = r(4)(0), the covariance matrix of (X(0), X ′′(0)) is

(
1 −λ
−λ γ

)
.

On the other hand, the conditional distribution

L(X(0), X(t), X ′′(0), X ′′(t) | X ′(0) = X ′(t) = 0)

is a 4-dimensional centered Gaussian distribution with covariance matrix given by

Γ(t) = C11(t)− C12(t)C22(t)
−1C12(t)

T ,

where C11(t) is the covariance matrix of the vector (X(0), X(t), X ′′(0), X ′′(t)), C22(t) is the covariance
matrix of the vector (X ′(0), X ′(t)) and C12(t) is the matrix of the covariances between those two
vectors.
We still need some extra notations:
• ϕ denotes the standard Gaussian density, Φ the standard Gaussian distribution, and Φ(·) = 1−Φ(·);
• for any (u, α,m) ∈ R3, we introduce

Q(0)(u, α,m) =

∫ ∞

u

Φ(αx+m)ϕ(x)dx ; Q(1)(u, α,m) = −
∫ ∞

u

ϕ(αx+m)ϕ′(x)dx

Q(2)(u, α,m) = −
∫ ∞

u

ϕ′(αx+m)ϕ(x)dx ; Q(3)(u, α,m) =

∫ ∞

u

Φ(αx+m)ϕ′′(x)dx.

In Proposition 8 below, we finally give explicit formulas for the functions g and G. They will be useful
to give a numerical evaluation of V (u) in (18) for various values of u.

Proposition 8. Let X be a Gaussian process that satisfies Assumption (A).

1. For any u in R,

g(u) = λϕ(u)

(
2Φ(

λu

(γ − λ2)1/2
)− 1

)
+

(
2γ

π

)1/2

Φ

((
γ

(γ − λ2)

)1/2

u

)
.

2. Let u ∈ R and t ∈ R be fixed. We denote by (lij)1≤i≥j≤4 the coefficients of any lower triangular
matrix L(t) such that L(t)L(t)T = Γ(t). Then

G(u, t) = (l41l31 + l42l32 + l43l33)Q
(0)

(
u

l11
,− l21

l22
,
u

l22

)
+(l42l31 + l41l32)Q

(1)

(
u

l11
,− l21

l22
,
u

l22

)
+l42l32Q

(2)

(
u

l11
,− l21

l22
,
u

l22

)
+ l41l31Q

(3)

(
u

l11
,− l21

l22
,
u

l22

)
.
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The proof of this proposition is postponed in the appendix section.

In order to illustrate (17) and (18), we generate a 300 Monte-Carlo sample of a stationary standard

Gaussian process with covariance function r(t) = e−t2 . Note that it implies the second spectral moment
λ = 2. By using the Cholesky function chol in R programm we are able to numerically evaluate L(t)
matrix, for all t. These quantities are necessary to build g, G and numerically approximate the integral
that gives the asymptotic variance V (u) (see Equation (18)). In order to evaluate φ(X,T, u) on each
realisation of X, we use Equation (3) for various values of u. Comparison between theoretical formulas
and empirical counterparts are shown in Figure 1.

−3 −2 −1 0 1 2 3

0
10

20
30

40
50

u

−3 −2 −1 0 1 2 3

0.
00

0.
05

0.
10

0.
15

u

V(
u)

Fig 1. Left: Theoretical u 7→ E[φ(X,T, u)] from Equation (17) for |T | = 200 (full line). We also display, for different

levels u, the empirical counterpart Ê[φ(X,T, u)] (red dots) based on 300 Monte Carlo simulations. We also display the

associated empirical intervals. The map u 7→ |T |C(u, λ̂) from Equation (17), by using the estimated spectral moment λ̂
as in Section 4.1.2, is represented in dashed line. Right: Theoretical u 7→ V (u) from Equation (18) for various values
of u (black triangles) and empirical variance of |T |−1/2 φ(X,T, u) (red dots) based on 300 Monte Carlo simulations with
|T | = 200 and the same values of u. X(·) is a Gaussian univariate process (d = 1) with E(X(0)) = 0, Var(X(0)) = 1

and covariance function r(t) = e−t2 . In this case λ = 2.

4.1.2. Estimation of the second spectral moment

It has been already quoted that the second spectral moment of X, denoted by λ, plays an important
role in Equation (17). Actually, all the influence of X in E[φ(X,T, u)] is summarised through this
parameter. From our statistical point of view, since we aim at inferring the distribution of X from
observations of the excursions of X, parameter λ is unknown a priori. It has to be estimated from the
observed level functionals X.
We estimate γ = λ1/2 by using an unbiased estimator introduced by Lingren [20] for stationary zero-
mean Gaussian processes. It is based on p different levels u1 < u2 < . . . < up by the following
prescription,

γ̂ =

p∑
k=1

ckγ̂uk , with γ̂uk = 2π T−1 eu
2
k/2 φ(X, [0, T ], uk) . (19)

Actually, in the paper of Lingren, the number of up-crossings of level uk in the interval [0, T ], namely
U(X, [0, T ], uk), is used instead of φ(X, [0, T ], uk) (recall the analogy described in Section 1). As a
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general rule, considering

p = 3 , (u1, u2, u3) = (−u, 0, u), with u =
2

3

√
V ar(X(t)) , c1 = c2 = c3 =

1

3

seems to be an acceptable choice (see discussion in [20]). In this case λ̂1/2 = γ̂ = 1
3 (γ̂−u + γ̂0 + γ̂−u).

An illustration of this estimation procedure is given in Figure 2. This estimation of λ1/2 is also used
in Figure 1 (left), dashed line.

0.
6

0.
8

1.
0

1.
2

1.
4

Spectral moment estimation by means of level−crossings
 c_i = 1/3, u = (−2/3, 0, 2/3)

Fig 2. Boxplot, based on 300 Monte Carlo simulations, of the ratio between theoretical value λ1/2 and estimated value
γ̂ given by (19). X(·) is a Gaussian univariate process (d = 1) with E(X(0)) = 0, Var(X(0)) = 1 and covariance

function r(t) = e−t2 . In this case λ = 2. We choose p = 3, c1 = c2 = c3 = 1
3
and u = (−2/3, 0, 2/3).

The same estimation strategy could be developed in the alternative hypothesis framework as soon as
we have at our disposal a closed formula linking the mean EC with the second spectral moment (see
for instance Equation (21) in the univariate chi-square case).

4.1.3. Chi-square statistics

In the following we will consider particular sub-cases of the two cases presented in Section 2.4, diagonal
case (a) and crossed case (b). In particular, we focus on the four next models.

(a) Diagonal case. Each level uk is associated to a single domain Tk. We have m observations
Y 1
1 , . . . , Y

m
m in the statistical model (11).

(a.1) Case with same level u, i.e. u1 = . . . = um = u, and m disjoint domains T1, . . . , Tm.

(a.2) Case with different levels u1 < . . . < um and m disjoint domains T1, . . . , Tm.

(b) Crossed case. Different levels uk can be associated to the same domain Ti. We have mp obser-
vations (Y i

k )1≤i≤m,1≤k≤p in (11).

(b.1) Case with one single domain T (m = 1) and p different levels u1 < . . . < up.

(b.2) Case with m disjoint domains T1, . . . , Tm and p different levels u1 < . . . < up.
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We will now associate chi-square statistics with each of the four aforementioned models. For the
diagonal case (a.1), we consider

Fa1 :=
m∑
i=1

(
φ(X,Ti, u)− E[φ(X,Ti, u)]√

|Ti|V (u)

)2

F̃a1 :=
m∑
i=1

φ(X,Ti, u)− Ê[φ(X,Ti, u)]√
V̂ ar(φ(X,Ti, u))

2

where E[φ(X,Ti, u)] = |Ti|C(u, λ) is given by (17) and V (u) is given by (18). Furthermore, Ê and

V̂ ar in F̃a1 are respectively the empirical mean and the empirical variance on considered Monte-Carlo
sample generations.
Under H0 hypothesis, a consequence of (11)-(12) is that both random variables Fa1 and F̃a1 are
approximately χ2

m distributed, i.e. central chi-square with m degrees of freedom. We evaluate Fa1 and

F̃a1 on 300 Monte Carlo simulations. We choose m = 3 and u = 1.2. The QQ-plot comparison between
the obtained empirical quantiles with the theoretical quantiles of a centered χ2

m distribution is gathered
in Figure 3 (first and second panels).
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Fig 3. QQ-plot based on 300 Monte Carlo simulations. First and second panels: quantiles of Fa1, F̃a1 versus quantiles
of the χ2

m distribution for m = 3 disjoint domains T1, T2, T3 with |Ti| = 200 and a single level u = 1.2. Third and

fourth panels: quantiles of Fa2, F̃a2 versus quantiles of the χ2
m distribution for m = 3 disjoint domains T1, T2, T3

with |Ti| = 200 and different levels u1 = −1.2, u2 = 0, u3 = 1.2. X(·) is a Gaussian univariate process (d = 1)

with E(X(0)) = 0, Var(X(0)) = 1 and covariance function r(t) = e−t2 with λ = 2. See associated goodness-of-fit test
p−values in Table 1.

Consider now the diagonal case (a.2). Let

Fa2 :=

m∑
i=1

(
φ(X,Ti, ui)− E[φ(X,Ti, ui)]√

|Ti|V (ui)

)2

F̃a2 :=

m∑
i=1

φ(X,Ti, ui)− Ê[φ(X,Ti, ui)]√
V̂ ar(φ(X,Ti, ui))

2

where Ê and V̂ ar are respectively the empirical mean and the empirical variance on considered Monte
Carlo sample generations. By using again the statistical model in (11)-(12), both Fa2 and F̃a2 are
approximately χ2

m distributed. An illustration is presented in Figure 3 (third and fourth panels), by
choosing 300 Monte Carlo simulations, m = 3, |Ti| = 200 and different levels u1 = −1.2, u2 = 0, u3 =
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GOF test p−values for χ2
m Cramér-von Mises test Anderson-Darling test

Fa1 0.7162 0.7519

F̃a1 0.6379 0.7585

Fa2 0.8933 0.9576

F̃a2 0.7518 0.7731

Table 1
Goodness-of-fit test p−values associated to test statistics Fa1, F̃a1, Fa2 and F̃a2 in Figure 3. The considered process

X(·) is a Gaussian univariate process (d = 1) with E(X(0)) = 0, Var(X(0)) = 1 and covariance function

r(t) = e−t2 .

1.2. Furthermore, in Table 1 we display the goodness-of-fit test p−values for Fa1, F̃a1, Fa2 and F̃a2 in
Figure 3. Obtained p−values allow us to statistically accept the χ2

m distribution for these test statistics.
Moreover, we highlight how p−values increase when one evaluates the EC curve for several levels ui
(see Fa2 and F̃a2 cases).

For the crossed case (b.1), let us now consider different levels u1 < . . . < up and one single domain
T , i.e. m = 1. Let us define

Fb1 := ||Λ−1(Z− E[Z])||2, F̃b1 := ||Λ̂−1(Z− Ê[Z])||2,

where Z is the p-dimensional Gaussian vector given by

Z =

(
φ(X,T, uk)

|T |1/2

)
1≤k≤p

,

Ê is the empirical mean on the Monte-Carlo simulations and the matrices Λ and Λ̂ are defined below.
Let Γ = (V (uk, ul))1≤kl,≤p be the (theoretical) covariance matrix of Z and let Λ stand for any square

root of Γ. Similarly, let Γ̂ be the empirical covariance matrix of Z evaluated on the Monte-Carlo sample
generations, and let Λ̂ be any of its square root matrix. Hence, Fb1 and F̃b1 are both approximately
χ2
mp distributed, with m = 1. An illustration of the behaviour of F̃b1 is presented in Figure 4 (first

panel), by choosing 300 Monte-Carlo simulations, m = 1, |T | = 200 and p = 3 different levels u1 =
−1.5, u2 = 0, u3 = 1.5.

Consider now the crossed case (b.2). In this setting we have m disjoint domains T1, . . . , Tm and p
different levels u1 < . . . < up. Let

Fb2 :=

m∑
i=1

||Λ−1(Zi − E[Zi])||2, F̃b2 :=

m∑
i=1

||Λ̂(i)
−1(Zi − Ê[Zi])||2,

where for any i ∈ {1, . . . ,m}, Zi is the p-dimensional Gaussian vector given by

Zi =

(
φ(X,Ti, uk)

|Ti|1/2

)
1≤k≤p

and Ê is the empirical mean on the Monte-Carlo simulations. Let Γ = (V (uk, ul))1≤kl,≤p be the (theo-

retical) covariance matrix of Zi. Let Λ stand for any square root of Γ. Similarly, let Γ̂(i) be the empirical

covariance matrix of Zi evaluated on the Monte-Carlo sample generations, and let Λ̂(i) be any of its
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square root matrix. Hence, ||Λ−1(Zi −E[Zi])||2 and ||Λ̂(i)
−1(Zi − Ê[Zi])||2 are both approximately χ2

p

distributed.
Moreover, since for 1 ≤ i ̸= j ≤ m, the Gaussian vectors Zi and Zj are independent, Fb2 and F̃b2 are
still centered χ2 distributed with now mp degrees of freedom.

An illustration of the behaviour of F̃b2 is presented in Figure 4 (second panel), by choosing 300 Monte
Carlo simulations, m = 3 disjoint domains T1, T2, T3 with |Ti| = 200 and p = 3 different levels
u1 = −1.5, u2 = 0, u3 = 1.5. Furthermore, in Table 2 we display the goodness-of-fit test p−values for
F̃b1 and F̃b2 in Figure 4. Obtained p−values allow us to statistically accept the chi-squared distribution
for these test statistics.
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Fig 4. QQ-plot based on 300 Monte Carlo simulations. First panel: quantiles of F̃b1 versus quantiles of the χ2
p distri-

bution for m = 1, with |T | = 200 and p = 3 different levels u1 = −1.5, u2 = 0, u3 = 1.5. Second panel: quantiles of

F̃b2 versus quantiles of the χ2
mp distribution for m = 3 disjoint domains T1, T2, T3 with |Ti| = 200 and p = 3 different

levels u1 = −1.5, u2 = 0, u3 = 1.5. X(·) is a Gaussian univariate process (d = 1) with E(X(0)) = 0, Var(X(0)) = 1

and covariance function r(t) = e−t2 with λ = 2. See associated goodness-of-fit test p−values in Table 2.

GOF test p−values for χ2
mp Cramér-von Mises test Anderson-Darling test

F̃b1 (m = 1, p = 3) 0.7725 0.8548

F̃b2 (m = 3, p = 3) 0.9745 0.9886

Table 2
Goodness-of-fit test p−values associated to test statistics F̃b1 and F̃b2 in Figure 4. The considered process X(·) is a

Gaussian univariate process (d = 1) with E(X(0)) = 0, Var(X(0)) = 1 and covariance function r(t) = e−t2 .

4.2. Alternative processes

In this section, we simulate trajectories of an alternative standard process Z. We compare it with a
standard Gaussian process X having the same second spectral moment.
Similarly to Section 4.1.3, we now consider a test statistic. For sake of brevity, we only focus on the
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diagonal case (a.1) with a unique level u and m disjoint domains T1, . . . , Tm, and we introduce

D :=
m∑
i=1

φ(Z, Ti, u)− E[φ(X,Ti, u)]√
V̂ ar(φ(Z, Ti, ui))

2

, (20)

where E[φ(X,Ti, u)] is the mean Euler characteristic of the excursions of X given by (6) with d = 1

and V̂ ar(φ(Z, Ti, ui)) is the empirical variance on considered Monte-Carlo sample generations. In order
to use this empirical variance, one has to be sure that the variance of the Euler characteristic of the
excursions of Z is finite. We recall that this is the case when Z is chi-square distributed (see Proposition
7).
Under H0 hypothesis, the D statistic is asymptotically distributed as a chi-square with m degrees of
freedom.

4.2.1. First alternative: χ2 process

In conformity with Section 3.1, we consider

Z(s)(·) = 1√
2s

(χ2
s(·))− s) with χ2

s(·) =
∑

1≤i≤s

Xi(·)2 ,

where the Xi’s are independent copies of a stationary standard Gaussian process with covariance
function r(t) = e−t2/2. Hence, we get λ = −2r′′(0) = 2 and then the obtained process Z(s) has the
same variance and the same second spectral moment λ as the previous Gaussian one presented in
Section 4.1.
In the first and third panels of Figure 5, we display the boxplot for the ratio between the empirical
mean of 300 Monte Carlo values of φ(Z(s), T, u) and the theoretical mean given by (13) in the case
d = 1, i.e.,

E[φ(Z(s), T, u)] = |T |
(
λ

π

)1/2
(s+ u

√
2s)(s−1)/2

2s/2Γ(s/2)
e−(s+u

√
2s)/2 1[0,∞)(s+ u

√
2s). (21)

This expectation has to be compared with the expectation given by (17) when X is a stationary
standard Gaussian process with second spectral moment λ = 2. Therefore, in the second and fourth
panels of Figure 5, we display the boxplot for the ratio between the empirical 300 Monte Carlo mean
value of φ(Z(s), T, u) and the Gaussian theoretical expectation given in (17).

Remark. When the degrees of freedom s tend to infinity, the CLT implies that Z(s) tends in distri-
bution to a stationary centered Gaussian process with covariance function equal to t 7→ r(t)2, which
implies a variance equal to 1 and a second spectral moment equal to 2 (exactly as the Gaussian process
X considered in Section 4.1). On the other hand, using Stirling approximation for the Γ function, one
can prove that the right-hand side of (21) tends to the right-hand side of (17), i.e.,

E[φ(Z(s), T, u)] → |T |λ1/2 (2π)−1 e−u2/2, when s→ ∞.

See also Formula (3.4) in [29] for the same remark. The comparison between the second and fourth
panels in Figure 5, as well as Figure 6, illustrate this convergence.

In Figure 7 below, we show the QQ-plot of the test statistic D (see (20)) versus the quantiles of χ2
m.

Since the considered chi-square process Z(s) is not Gaussian, a deviation can be observed. In order
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Fig 5. First and third panels: Boxplot for the ratio between the empirical 300 Monte Carlo values of φ(Z(s), T, u)
and the theoretical mean given by Equation (21). Second and fourth panels: Boxplot for the ratio between the same
empirical values and the theoretical mean in the Gaussian case given by Equation (17). In both cases λ = 2. The degrees
of freedom s is chosen equal to 2 and 10 respectively.
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Fig 6. Boxplots of the empirical 300 Monte Carlo values of φ(Z(s), T, u) for the considered chi-square univariate
process Z(s) and different values of u. Red points represent the theoretical means given by Equation (21) for the same
values of u; blue ones are the Gaussian means given by Equation (17). In this case λ = 2, |T | = 200, s = 2 (left panel)
and s = 10 (right panel).

to quantify how we are really able to reject the null hypothesis H0 under the alternative, in Table 3
we display the generated p−values for the goodness-of-fit test of D. One can easily see that this test
allows us to reject the fact that the considered underlying process Z(s) is Gaussian. This is particularly
evident if one compares these p−values with those in Tables 1 and 2.

Figure 7 shows a huge deviation from the bisector of the first orthant in the case s = 2 whereas this
deviation is less significant in the case s = 10. It emphasizes the convergence in distribution of Z(s)

towards a Gaussian as s tends to infinity.
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Fig 7. QQ-plot: quantiles of D versus quantiles of the χ2
m distribution for fixed level u = 1.2 and m = 6 disjoint

domains. Here |Ti| = 200 for i ∈ {1, . . . ,m}. The dashed red line represents the bisector of the first orthant. We take
300 Monte Carlo simulations. The considered process Z(s)(·) is a chi-square univariate process (d = 1) with s = 2
(first panel), s = 10 (second panel), E(Z(s)(0)) = 0, Var(Z(s)(0)) = 1 and λ = 2. See associated goodness-of-fit test
p−values in Table 3.

GOF test p−values for χ2
m Cramér-von Mises test Anderson-Darling test

D with s = 2 7e-08 2e-06
D with s = 10 0.0003 2e-06

Table 3
Goodness-of-fit test p−values associated to test statistics D in Figure 7 versus a χ2

m distribution with m = 6. The
considered process Z(s)(·) is a chi-square univariate process (d = 1) with E(Z(s)(0)) = 0, Var(Z(s)(0)) = 1 and

λ = 2.

4.2.2. Second alternative: Kramer oscillator process

In this section we generate a 300 Monte-Carlo sample of a Kramer oscillator process as defined in
Section 3.2. In order to obtain a process Q with zero mean, unit variance and second spectral moment
equal to 2, we solve Equation (16) and choose

σ = 2 , c = 1 , a0 = 1 , a1 = 2.3373 , C = 4.886.

The generation procedure is the following. We define a discretized schema to simulate the solution
(Q(t), P (t)) of the stochastic differential system in (14). Actually, we use the Metropolization of the
Euler-Verlet schema with a sufficient small discretization step. The interested reader is referred to
Algorithm 2.11 (Generalized Hybrid Monte-Carlo) in [19].

The comparison between the (theoretical) expectation given by (15) and the empirical one is shown
in left panel of Figure 8 below.
Furthermore, as we did in previous Section 4.2.1, we also consider the D test statistic. The QQ-plot
of D versus χ2

m distribution is shown in right panel of Figure 8. Since the considered process Q is not
Gaussian, a strong deviation is observed. It allows us to reject the H0 hypothesis. To quantify this
deviation we present the generated p−values for the goodness-of-fit test associated to D in Table 4.
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QQplot D versus χ2(6)

m= 6, u= 1.2

Fig 8. Left: Theoretical u 7→ E[φ(Q,T, u)] from Equation (15) for |T | = 200 (full line). We also display, for different

levels of u, the empirical counterpart Ê[φ(Q,T, u)] (red dots), with associated empirical intervals, based on 300 Monte
Carlo simulations. Right: QQ-plot: quantiles of D versus quantiles of the χ2

m distribution for fixed level u = 1.2
and m = 6 disjoint domains. The dashed red line represents the bisector of the first orthant. Here |Ti| = 200 for
i ∈ {1, . . . ,m}. We take 300 Monte Carlo simulations. Q(·) is a Kramer oscillator process as defined in Section 3.2
with E(Q(0)) = 0, Var(Q(0)) = 1 and second spectral moment λ = 2. See associated goodness-of-fit test p−value in
Table 4.

GOF test p−values for χ2
m Cramér-von Mises test Anderson-Darling test

D 0.000097 2e-06

Table 4
Goodness-of-fit test p−value associated to test statistic D in Figure 8 (right) versus a χ2

m distribution with m = 6.
The considered process Q(·) is a Kramer oscillator process as defined in Section 3.2 with E(Q(0)) = 0,

Var(Q(0)) = 1 and second spectral moment λ = 2.

5. Bivariate numerical illustration

In this section, we focus on two dimensional random fields. For both Gaussian and chi-square distribu-
tions, we apply the same methodology as in the previous section. In particular, we use the test statistic
D introduced in (20), its definition being not specific to dimension one.

5.1. Under H0 hypothesis

We consider a stationary centered Gaussian random fieldX = {X(t) : t ∈ R2}. Its restriction to a finite
regular grid included can be seen as a model for a grey level image. The modified Euler characteristic
of an excursion set in the rectangle domain T above level u is given by Equation (5). On the other
hand, Equation (6) in dimension d = 2 gives its expectation,

E[φ(X,T, u)] = |T |C2(u, λ) with C2(u, λ) = (2π)−3/2 λu e−u2/2. (22)

In what follows, we generate a 300 Monte-Carlo sample of a bivariate stationary centered Gaussian ran-
dom field X with covariance function r(t) = e−||t||2 , t ∈ R2. In that case, E(X(0)) = 0, Var(X(0)) = 1
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and the second spectral moment λ is equal to 2. We use (5) in order to compute φ(X,T, u) for a
fixed cube T and various values of u. The local extremum points of X are given by the R function
extrema2dC in the EMD package. To identify the saddle points, we find all the stationary points of X in
the considered domain T (i.e., all the points with an associated null gradient function) and we exclude
the points previously identified as local extremum points.

In the left panel of Figure 9, the comparison between the theoretical mean given by (22) and the
empirical mean based on the simulations is illustrated.
In the right panel, we consider the chi-square statistic D introduced in (20) for a unique level u and
m disjoint domains T1, . . . , Tm. The considered process is now the Gaussian bivariate process X.
Furthermore, in Table 5, we display the goodness-of-fit test p−values forD. The obtained high p−values
allow us to statistically accept the χ2

m distribution for the test statistic D.
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m= 3, u= 1.2

Fig 9. Left: Theoretical u 7→ E[φ(X,T, u)] from Equation (22) for |T | = 196 (full line). We also display, for different

levels u, the empirical counterpart Ê[φ(X,T, u)] (red dots), with associated empirical intervals, based on 300 Monte
Carlo simulations. Right: QQ-plot: quantiles of D versus quantiles of the χ2

m distribution for fixed level u = 1.2 and
m = 3 disjoint domains. Here |Ti| = 196 for i ∈ {1, . . . ,m}. We take 300 Monte Carlo simulations. X(·) is a Gaussian

bivariate process (d = 2) with covariance function r(t) = e−||t||2 , t ∈ R2. In this case E(X(0)) = 1, Var(X(0)) = 1
and λ = 2. See associated goodness-of-fit test p−value in Table 5.

GOF test p−values for χ2
m Cramér-von Mises test Anderson-Darling test

D 0.8879 0.8685

Table 5
Goodness-of-fit test p−value associated to test statistic D in Figure 9 (right) versus a χ2

m distribution with m = 3.
The considered process X(·) is a Gaussian bivariate process (d = 2) with covariance function r(t) = exp(−||t||2).

In this case λ = 2.
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5.2. Alternative: χ2 bivariate process

As an alternative to hypothesis H0, let us consider

Z(s)(·) = 1√
2s

(χ2
s(·))− s) with χ2

s(·) =
∑

1≤i≤s

Xi(·)2 ,

where the Xi’s are independent copies of a centered stationary Gaussian two dimensional field with
covariance function r(t) = e−||t||2/2. As described in Section 3.1, for any fixed t ∈ R2, χ2

s(t) has a
central χ2 distribution with s degrees of freedom. Furthermore, the field Z(s) is centered, stationary
and its covariance function is given by r(t) = e−||t||2 . Hence its variance is equal to 1 and its second
spectral moment is equal to λ = −2r′′(0) = 2. The expectation of φ(Z(s), T, u) is given by (13) with
d = 2.

We generate a sample of 300 realisations of the bivariate process Z(s) for s = 2 on a fixed cube T .
We use Equation (5) to empirically compute φ(Z(2), T, u) for various values of u. On the other hand,
Equation (13) yields the following in the case d = s = 2,

E[φ(Z(2), T, u)] = |T |
(
λ

4π

)
(2u+ 1) e−(u+1) 1[0,∞)(u+ 1). (23)

In the left panel of Figure 10, we compare Equation (23) and its empirical counterpart based on the
Monte Carlo simulations of Z(2). In the right panel, we show the QQ-plot of the test statistic D versus
the χ2

m distribution, where D is computed with the realisations of Z(2). Since the considered chi-square
process Z(2) is not Gaussian, a large deviation can be observed. Associated generated p−value for the
goodness-of-fit test of D is given in Table 6. This quantifies how we are really able to reject the null
hypothesis H0 under the alternative.

GOF test p−values for χ2
m Cramér-von Mises test Anderson-Darling test

D 9.4e-05 3e-06

Table 6
Goodness-of-fit test p−value associated to test statistic D in Figure 10 (right) versus a χ2

m distribution with m = 3.

The considered processZ(2)(·) is a chi-square bivariate process (d = 2) with covariance function r(t) = e−||t||2 . In
this case E(Z(2))(0) = 1, Var(Z(2)(0)) = 1 and λ = 2.

6. Non smooth processes: a case study

In this section, we sketch a preliminary study concerning non smooth processes. For this purpose, the
shot noise process is a convenient toy model. We will only consider the one dimensional case pointing
out two recent references that deal with dimension two, [7] and [18].
Let d = 1 and let us introduce the following shot noise process S,

S(t) =

∑
ξ∈Ψ

1[0,a](t− ξ)

− νa , t ∈ R , (24)

where a > 0 and Ψ is a homogeneous Poisson point process on R with intensity ν > 0. The process
S is clearly stationary with zero mean and variance equal to νa. Moreover, its values almost surely
belong to the discrete set {k − νa, k ∈ N}.
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Fig 10. Left: Theoretical u 7→ E[φ(Z(2), T, u)] from Equation (23) for |T | = 196 (full line). We also display, for different

levels u, the empirical counterpart Ê[φ(Z(2), T, u)] (red dots), with associated empirical intervals, based on 300 Monte
Carlo simulations. Right: QQ-plot: quantiles of D versus quantiles of the χ2

m distribution for fixed level u = 3 and m = 3
disjoint domains. Here |Ti| = 196 for i ∈ {1, . . . ,m}. We take 300 Monte Carlo simulations. Z(2)(·) is a chi-square

bivariate process (d = 2) with covariance function r(t) = e−||t||2 . In this case E(Z(2))(0) = 1, Var(Z(2)(0)) = 1 and
λ = 2. See associated goodness-of-fit test p−value in Table 6.

In what follows, we still aim at testing the Gaussianity hypothesis. If a whole trajectory of S could
be observed, its discrete shape would clearly indicate the right choice between Gaussian and shot
noise. We now assume that only excursion sets of S above a few levels are observed and we consider
the number of “upcrossings”. Note that the notion of upcrossings has to be properly defined in this
context, since S is not continuous. Actually, it is proved in [6] (see also [16] for a different approach)
that for any level u ∈ R \ {k − νa, k ∈ N} and any interval T ,

E[U(S, T, u)] = |T | ν e−νa
∑
k≥0

(νa)k

k!
1{k<u+νa<k+1} . (25)

This formula, which obviously differs from (6), is an indicator that could enable to discriminate between
a Gaussian or a shot noise model.

In the following, we generate 300 trajectories of such a process on a fixed interval T with a = ν = 1.
Since aν = 1, then Var(S(0)) = 1. A comparison between the theoretical expectation and the Monte-
Carlo empirical mean is presented in Figure 11. One can observe the evident different shape of the
mean EC curve compared to the Gaussian case (see Figure 1, left).
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Fig 11. Theoretical u 7→ E[U(S, T, u)] from Equation (25) for |T | = 200 (full line). We also display, for different

levels u, the empirical counterpart Ê[U(S, T, u)] (red dots) with associated empirical intervals based on 300 Monte Carlo
simulations. S(·) is a shot noise univariate process (d = 1) defined by Equation (24) with a = ν = 1.

7. Conclusion

In the present paper, we have proposed a methodology to test whether a random field defined on Rd

is Gaussian. The test statistics are computed from the observation of a single realisation, precisely
the Euler characteristic of excursion sets at moderate levels is concerned. Our approach requires two
theoretical ingredients that have to be valid under the Gaussian hypothesis: a Central Limit Theo-
rem satisfied by the Euler characteristic of excursion sets when the domain tends to Rd, and a closed
formula that gives the mean Euler characteristic of the excursion sets. We have established both of
them. We consider this methodological work as a first step, there are many open questions and possible
future researches extending and going further this work.

There are two major domains where the Gaussianity hypothesis is really relevant and where our results
could certainly be applied: neurology and cosmology. The neurological signals that are collected when
studying brain activity are commonly observed through their level sets (see [35] and [21]). A natural
question concerns the type of the signal distribution: Gaussian or Poisson? Gaussian or Oscillator?
The test that we have built, together with the alternatives that we have considered, could be an ap-
propriate tool for studying this problem. On the other hand, in the analysis of the Cosmic Microwave
Background (CMB) radiation, the question of Gaussianity has been tackled in a huge amount of publi-
cations (see [26] for a recent overview). In that context, the random field under study is defined on the
two dimensional celestial sphere. Hence, in order to be applied, our methodology should be extended
beyond the Euclidean case. Let us mention that recent studies, like [10],[23],[9] for instance, contain
theoretical results on high energy behavior of spherical random fields that could provide the required
background for a test of Gaussianity in the same spirit as the one presented here.

Furthermore, it is not difficult to imagine that the same question of Gaussianity is actually asked in
other real-life situations, and that the potential alternatives take various shapes, like a chi-square when
the process under study is always positive, or an oscillator when the process under study presents an
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almost periodic structure (sea waves) or a shot noise process when sudden peaks are observed. Our
methodology could also serve as a goodness-of-fit test in the opposite way. For instance, in the area
of geostatistics, the authors of [14] observe the Euler characteristic of excursion sets to detect abrupt
changes on soil data sets. They use as an a priori model for the data a chi-square random field. A
natural extension to this study could be a test of chi-square distribution versus not chi-square.

In order to go further in this direction, it would be necessary to establish Central Limit Theorems
for the Euler characteristic of excursion sets for new classes of processes or random fields. Beside the
present work, we implemented simulations that lead us to postulate that such a Central Limit Theorem
could exist, in particular for the two alternative processes that we have considered.

At last, another appealing question concerns the hypothesis that the process under study is expected
to satisfy, such as smoothness of the realisations and fast decay of the covariance function. As already
mentioned at the beginning of the paper, Assumption (A) seems to strong at least in the one dimen-
sional case. Indeed, let us remark that in that case, two important results of Section 2 remain valid
under weaker assumptions. Actually, on the one hand, the Rice formula gives the mean number of
upcrossings under the only assumption of a finite second spectral moment. On the other hand, it is
well known that a sufficient condition for the number of upcrossings to have a finite second moment
is the so-called Geman condition, which only requires that r′′, the second derivative of the covariance
function of X, exists and satisfies some integrability condition near 0. Such considerations allows us to
believe that the theoretical results that we have presented deserve to be studied under weaker assump-
tions, even in dimension greater than one. Another extension could concern non continuous random
fields, like the shot noise processes.

Appendix: Proofs

A.1. Proof of Lemma 3.

The level u is fixed, so we do not refer to it in the following lines. For t ∈ Rd \ {0}, we define
h(t) = G(u, t)D(t)−1/2 − C(u)2. We have to establish that h is integrable on Rd. We already know
that h is integrable on any compact set of Rd, so it remains to study the behavior of h(t) for large ∥t∥.
We write K = 1

2d(d+ 1) + 1 and we introduce the function

(z, x) ∈ RK = R
1
2d(d+1) × R 7→ f(z, x) = d̃et(z)1[u,∞)(x) ,

where d̃et(z) stands for the determinant of the d × d symmetric matrix whose upper coefficient are
given by the 1

2d(d+ 1) dimensional vector z.
Recall that we denote by X(.) the stationary and isotropic random vector field (X ′(t),∇2X(t), X(t)),
which has dimension D = d+ 1

2d(d+ 1) + 1 = d+K. We have

h(t) =

∫
R2K

f(ẍ1, x1)f(ẍ2, x2)(
pX(0),X(t)(0, ẍ1, x1, 0, ẍ2, x2)− pX(0)(0, ẍ1, x1)pX(t)(0, ẍ2, x2)

)
dx1dẍ1dx2dẍ2.

Let Σ be the covariance matrix of X(0) and, for any t ∈ Rd, let ΓX(t) be the covariance matrix of
(X(0),X(t)). The latter can be written by blocks, each of one having dimension D ×D, as follows

ΓX(t) =

(
Σ Γ12(t)

Γ12(t)
T Σ

)
.



Di Bernardino, Estrade, León/A test of Gaussianity 28

Moreover we know that all the terms of matrix ΓX(t) are uniformly bounded in absolute value by ψ(t).
Using Theorem 3.1 of [33] we get, for any z1, z2 in RD,

pX(0),X(t)(z1, z2)− pX(0)(z1)pX(t)(z2)

= pX(0)(z1)pX(0)(z2)

 ∑
J∈ND×D,|J|>0

HAJ
(z1,Σ)HBJ

(z2,Σ)
Γ12(t)

J

J!

 ,

where

• the sum runs over all D × D matrices J = (Jjk)1≤j,k≤D with non negative integer entries and
|J| =

∑
1≤j,k≤D Jjk > 0,

• AJ and BJ are D-dimensional indices defined by (AJ)j =
∑

1≤k≤D Jjk and (BJ)k =
∑

1≤j≤D Jjk,

• Hk(z,Σ) = ϕΣ(z)
−1(− ∂

∂z )
kϕΣ(z) for any D-dimensional index k and any z ∈ RD, with ϕΣ the

probability density function of any D-dimensional Gaussian vector N (0,Σ),
• MJ =

∏
1≤j,k≤D(Mjk)

Jjk for any matrix M = (Mjk)1≤j,k≤D,
• and J! =

∏
1≤j,k≤D(Jjk)!.

Thus

h(t) =

∫
R2K

f(x1) f(x2) pX(0)(0,x1) pX(0)(0,x2) ∑
J,|J|>0

HAJ
((0,x1),Σ)HBJ

((0,x2),Σ)
Γ12(t)

J

J!

 dx1dx2.

We can bound |h(t)| in the following form

|h(t)| ≤
∑

J,|J|>0

ψ(t)|J|

J!
D(AJ)D(BJ), (26)

where

D(AJ) =

∫
RK

|f(x1)HAJ
((0,x1),Σ)| pX(0)(0,x1) dx1

≤ E
(
|d̃et(∇2X(0))HAJ

((0,∇2X(0), X(0)),Σ)|
)

≤ E(d̃et(∇2X(0)2)1/2 E
(
HAJ

((0,∇2X(0), X(0)),Σ)2
)1/2

≤ ψ(0)d E
(
HAJ

((0,∇2X(0), X(0)),Σ)2
)1/2

, (27)

where the last inequality is a consequence of expanding d̃et(∇2X(0)) as a multivariate polynomial
function of degree d evaluated at the coordinates of the matrix X ′′(0).
We now concentrate on HAJ

((0,∇2X(0), X(0)),Σ). Following [33], we have

HAJ
((0,x),Σ) = E

[(
Σ−1((0,x) + iZ)

)AJ
]
,

where Z is any D-dimensional centered Gaussian random vector with covariance matrix Σ. Remember
that Σ is the covariance matrix of X(0) = (X ′(0),∇2X(0), X(0)), so it can be factorized as Σ =(
λId 0
0 Σ1

)
where Σ1 has size K × K. Hence Σ−1 =

(
λ−1Id 0

0 Σ−1
1

)
and Z can be expanded as
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Z = (Z0, Z1) where Z0 is a d-dimensional centered Gaussian vector with covariance matrix λId and Z1

is a K-dimensional centered Gaussian vector with covariance matrix Σ1, Z0 and Z1 being independent.
Then

Σ−1((0,x) + iZ) =
(
iλ−1Z0,Σ

−1
1 (x+ iZ1)

)
,

where the two blocks of coordinates are independent. So

HAJ
((0,x),Σ) = H

A
(0)
J

(0, λId)HA
(1)
J

(x,Σ1),

where the D-dimensional vector AJ is equal to (A
(0)
J , A

(1)
J ) with blocks of respective size d and K.

For the first term, we note that H
A

(0)
J

(0, λId) = λ−
1
2 |A

(0)
J |H

A
(0)
J

(0) where Hk(.) is the usual multidi-

mensional Hermite polynomial of multi-order k.

Concerning the second term, we compute E
(
H

A
(1)
J

((∇2X(0), X(0)),Σ1)
2
)

thanks to a formula for

multivariate Gaussian integrals that can be found in [17] for instance (see equation (35) in this refer-
ence),

E
(
H

A
(1)
J

((∇2X(0), X(0)),Σ1)
2
)

=

∫
RK

H
A

(1)
J

(x,Σ1)
2 p∇2X(0),X(0)(x) dx

= 2|A
(1)
J |−D (A

(1)
J )! diag(Σ−1

1 )A
(1)
J

where diag(B) denotes the vector containing the diagonal coefficients of any square matrix B.

Finally, since H
A

(0)
J

(0)2 ≤ (A
(0)
J )!,

E
(
HAJ

((0,∇2X(0), X(0)),Σ)2
)
≤ (2∥Σ−1∥)|J| (AJ)!

where we have used that |A(0)
J |+ |A(1)

J | = |J| and (A
(0)
J )! (A

(1)
J )! = (AJ)!.

Note that for any D-dimensional index k = (k1, . . . , kD), we have |k|! ≤ D|k|(k)! (actually, |k|!
(k)! is a

multinomial coefficient). Hence (AJ)j ! ≤ D
∑

1≤k≤D Jjk
∏

1≤k≤D Jjk! and so

(AJ)! =
∏

1≤j≤D

(AJ)j ! ≤ D|J| J!

Coming back to inequality (27) yields

D(AJ) ≤ ψ(0)d (2D∥Σ−1∥)|J|/2
√
J! .

The same inequality can be established for D(BJ). Hence, from (26) we get

|h(t)| ≤ ψ(0)2d ψ(t)
∑

J,|J|>0

(2D∥Σ−1∥ψ(t))|J|−1 .

The series in the right hand is convergent for ∥t∥ large enough. Indeed we can choose A such that for
∥t∥ > A, we have 2D∥Σ−1∥ψ(t) ≤ η < 1 and so the series is bounded by (1− η)−1.
The result follows since on the other hand, by assumption (A),

∫
∥t∥>A

ψ(t)dt < +∞. �

A.2. Proof of Lemma 6.

Without loss of generality, we can assume that |T1| = |T2| = 1 and that there exists a and b in Rd

such that T1 = a + [0, 1)d and T2 = b + [0, 1)d. Moreover, since the distance between T1 and T2 is
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non negative, we have ∥b − a∥∞ > 1. In the following lines, we denote δ = ∥b − a∥∞ − 1. We use the

additivity of the Euler characteristic to expand Z
(N)
1 as

Z
(N)
1 = N−d/2

∑
s∈IN

φ̃(θNa+sX, [0, 1)
d, u1) ,

where
φ̃(X,T, u) = φ(X,T, u)− E[φ(X,T, u)],

θs stands for the shift operator and IN for the set of integer valued indices [[0, N − 1]]d. The same

holds for Z
(N)
2 . Hence, by stationarity

|Cov(Z(N)
1 , Z

(N)
2 )| = N−d |

∑
s,s′∈IN

E
(
φ̃(X, [0, 1)d, u1) φ̃(θN(b−a)+s′−sX, [0, 1)

d, u2)
)
|

≤
∑
s∈JN

|E
(
φ̃(X, [0, 1)d, u1) φ̃(θN(b−a)+sX, [0, 1)

d, u2)
)
| ,

with JN = [[−N + 1, N − 1]]d.
It is proved in [13] Proposition 1.3 that, for a cube T in Rd and a level u in R, the following expansion
holds both a.s. and in L2(Ω).

φ̃(X,T, u) = (−1)d
∞∑
q=1

∑
n∈ND;|n|=q

a(n, u)

∫
T

Hn(Y (t)) dt (28)

where D = d+ 1
2d(d+1)+1, Hn denotes the D dimensional Hermite coefficient of multi-order n ∈ ND

and Y (t) = Λ−1X(t) with Λ any square root of the covariance matrix of X(0). Moreover the Hermite
coefficients a(n, u) are such that for any q ≥ 1,∑

n∈ND;|n|=q

a(n, u)2 n! ≤ C qd (29)

where C is some positive constant that only depends on d,Λ and u.
Hence, thanks to (28) and to the orthogonality of Hermite polynomials, we have for any τ ∈ Rd,

E
(
φ̃(X, [0, 1)d, u1) φ̃(θτX, [0, 1)

d, u2)
)

=
∞∑
q=1

∫
[0,1]d

∫
[0,1]d

E (Fq(Y (t1), u1)Fq(Y (τ + t2), u2)) dt1dt2,

where Fq(y, u) =
∑

n∈ND;|n|=q

a(n, u)Hn(y) , y ∈ RD. One can adapt Arcones inequality, for instance fol-

lowing the proof of [4] Lemma 1 step by step, to establish that there exists a constant κ > 0 depending
on the covariance function of X such that

|E (Fq(Y (t1), u1)Fq(Y (τ + t2), u2))|

≤ κq ψ(τ + t2 − t1)
q

∑
n∈ND; |n|=q

1

2
(a(n, u1)

2 + a(n, u2)
2)n!.
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Let now η > 0 be fixed. Thanks to Assumption (A), we can choose N large enough such that κψ(τ) ≤
1/2 as soon as ∥τ∥ ≥ Nδ,

∫
∥t∥≥N

ψ(t) dt < η and Nδ > 2. Hence, using (29), we deduce that for

∥τ∥ ≥ Nδ,∣∣E (φ̃(X, [0, 1)d, u1) φ̃(θτX, [0, 1)d, u2))∣∣ ≤ C

∞∑
q=1

qd κq
∫
[0,1]d

∫
[0,1]d

ψ(τ + t2 − t1)
q dt1dt2

≤ C

( ∞∑
q=1

qd (1/2)q−1

) ∫
[−1,1]d

ψ(τ + t) dt .

Note that C stands here for a positive constant that may change from a line to another. Coming back

to the covariance of Z
(N)
1 and Z

(N)
2 yields

|Cov(Z(N)
1 , Z

(N)
2 )| ≤ C

∑
s∈JN

∫
[−1,1]d

ψ(N(b− a) + s+ t) dt

≤ 2C

∫
∥t∥≥N

ψ(t) dt ≤ 2C η.

Thus, Lemma 6 is proved. �

A.3. Proof of Proposition 7.

Firstly, let us remark that, since Z(s)(.) = 1√
2s
(χ2

s(.) − s), it is sufficient to prove the statement of

Proposition 7 for the process χ2
s instead of Z(s). Secondly, let us recall the relation (4), so that we can

replace φ(Z(s), [0, T ], u) by U(χ2
s, [0, T ], u) in the proposition.

The finiteness of
Vs(T, u) := E[U(χ2

s, [0, T ], u)(U(χ2
s, [0, T ], u)− 1)]

is proved in [29] under the following conditions,

rX(t) = 1− λ2
t2

2
+ λ4

t4

4
+ o(t4) as t→ 0 and rX(t) = o(t−α) as t→ ∞ (30)

for some positive finite constants λ2, λ4, α (see (4.1) and (4.2) in the cited paper). They are clearly
satisfied in our case since Assumption (A) is in force. This establishes that U(χ2

s, [0, T ], u) admits a
finite variance.

We now focus on the asymptotic variance as T goes to infinity. We will actually prove that

lim
T→+∞

1

T

(
Vs(T, u)− (E[U(χ2

s, [0, T ], u)])
2
)
< +∞.

First, in a similar way as (13), let us remark that the expectation of U(χ2
s, [0, T ], u) is proportional to

T ,

Ks(u) :=
1

T
E[U(χ2

s, [0, T ], u)] =

(
λ

π

)1/2
e−u/2 u(s−1)/2

2s/2Γ(s/2)
. (31)

On the other hand, introducing the function G(x) = x1[0,∞)(x), Rice formula for the above factorial
moment gives

Vs(T, u) = 2

∫ T

0

(T − t) I(t) dt,
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where
I(t) = E[G((χ2

s)
′(0))G((χ2

s)
′(t)) |χ2

s(0) = χ2
s(t) = u] pχ2

s(0),χ
2
s(t)

(u, u).

For computing this conditional expectation, we begin with the following one that is easier to handle
with. Let us define X⃗(t) = (X1(t), . . . , Xs(t)) and, for z = (z1, · · · , zs) and w = (w1, · · · , ws) in Rs,

J(t, z,w) := E[G((χ2
s)

′(0))G((χ2
s)

′(t)) | X⃗(0) = z, X⃗(t) = w, χ2
s(0) = χ2

s(t) = u].

Let us fix z and w such that ||z||2 = ||w||2 = u. In that case, we have

J(t, z,w) = 4E[G(
s∑

j=1

Xj(0)X
′
j(0))G(

s∑
j=1

Xj(t)X
′
j(t)) | X⃗(0) = z, X⃗(t) = w].

We will use, as is classical, the following regression model. For each j ∈ {1, . . . , s}, we write

X ′
j(0) = α1(t)Xj(0) + β1(t)Xj(t) + ε1j(t)

X ′
j(t) = α2(t)Xj(0) + β2(t)Xj(t) + ε2j(t).

It is important to point out that, because of the independence, the coefficients above do not depend
on j. We readily obtain that

α1(t) =
r′X(t)rX(t)

1− r2X(t)
, β1(t) =

−r′X(t)

1− r2X(t)
, β2(t) = −α1(t), α2(t) = −β1(t).

Thus

J(t, z,w) = 4E[G(
s∑

j=1

zj(α1(t)zj + β1(t)wj + ε1j(t)))G(
s∑

j=1

wj(β1(t)zj + α1(t)wj + ε2j(t)))]

= 4E[G(α1(t)u+ β1(t)⟨w, z⟩+
√
uσεW (t))G(α1(t)u+ β1(t)⟨w, z⟩+

√
uσεZ(t))]

= 4E[G(du(t) +
√
uσε(t)W (t))G(du(t) +

√
uσε(t)Z(t))],

where
σ2
ε(t) = −r′′X(0)− (α2

1(t) + β2
1(t) + 2α1(t)β1(t)rX(t))

is the variance of each ε1,j(t) or ε2,j(t),

W (t) =
1√

uσε(t)

s∑
i=1

wjε1,j(t) and Z(t) =
1√

uσε(t)

s∑
i=1

zjε2,j(t)

are independent N(0, 1) random variables, and du(t) = α1(t)u+ β1(t)⟨w, z⟩.
In particular, the latter shows that J(t, z,w) only depends on w and z through their scalar product.
So, from now on, for ease of notation, we will write J(t, ⟨z,w⟩).
We have β1(t) → ∞ when t → 0 and du(t) = (α1(t) + β1(t))u − β1(t)u(1 − 1

u ⟨w, z⟩) →
t→0

−∞, for all

w ̸= z. The latter convergence is equivalent to −1
t .

Moreover, du(t) → 0 whenever t→ ∞, because of Assumption (A).
Then we can write

J(t, ⟨z,w⟩) = 4uσ2
ε(t)E[G(

du(t)√
uσε(t)

+W (t))G( du(t)√
uσε(t)

+ Z(t))]

= 4uσ2
ε(t)

∞∑
k=0

d2uk(t)k!
(
Corr(W (t), Z(t)))k, (32)



Di Bernardino, Estrade, León/A test of Gaussianity 33

where the last equality is a consequence of Mehler’s formula. The coefficients duk(t) are given by

duk(t) =
1

k!

∫
R
G( du(t)√

uσε(t)
+ y)Hk(y)ϕ(y)dy

=
1

k!

∫ ∞

− du(t)√
uσε(t)

(
du(t)√
uσε(t)

+ y)Hk(y)ϕ(y)dy,

with ϕ the standard Gaussian density, and

Corr(W (t), Z(t)) =
⟨z,w⟩
uσ2

ε(t)
(−r′′X(t)− 2α1(t)β1(t)− (α2

1 + β2
1(t))rX(t)).

Let us continue our study with the behaviour of J(t, ⟨z,w⟩) for t close to 0. Let us start with the
series. It holds

∞∑
k=0

d2uk(t)k! =

∫ ∞

− du(t)√
uσε(t)

(
du(t)√
uσε(t)

+ y)2ϕ(y)dy,

≤ 2((
du(t)√
uσε(t)

)2
∫ ∞

− du(t)√
uσε(t)

ϕ(y)dy +

∫ ∞

− du(t)√
uσε(t)

y2ϕ(y)dy).

For the last integral, we use the upper bound∫ ∞

a

y2ϕ(y)dy ≤ aϕ(a) +
1

a
ϕ(a),

that yields, as t→ 0,

∞∑
k=0

d2uk(t)k! ≤ 2(2(− du(t)√
uσε(t)

)ϕ(
du(t)√
uσε(t)

) + (−
√
uσε(t)

du(t)
)ϕ(

du(t)√
uσε(t)

)) = O(1). (33)

Thus, for 0 < t < δ, we have J(t, ⟨z,w⟩) ≤ Cuσ2
ε(t). Moreover, as this bound only depends on u, it

yields immediately that,
I(t) ≤ Cuσ2

ε(t) , for 0 < t < δ.

We now focus on the behaviour of I(t) for t close to +∞. We have

I(t) =

∫
Rs×Rs

J(t, ⟨z,w⟩) pX⃗(0),X⃗(t),χ2
s(0),χ

2
s(t)

(z,w, u, u) dz dw

=
us−2

(2π)s(1− r2X(t))s/2

∫
Ss−1×Ss−1

J(t, u⟨τ1, τ2⟩) e
−u(

1−rX (t)⟨τ1,τ2⟩
1−r2

X
(t)

)
dσs−1(τ1)dσs−1(τ2),

where σs−1 stands for the surface Lebesgue measure on Ss−1. A consequence of Funk-Hecke formula
says that, for any reasonable function F ,∫

Ss−1×Ss−1

F (⟨τ1, τ2⟩)dσs−1(τ1)dσs−1(τ2) =
σs−1(Ss−1)2

2Ws−2

∫ π

0

F (cosψ) sins−2 ψ dψ,

with Ws the Wallis integral, i.e. Ws =
∫ π/2

0
sins(ψ)dψ. It implies

I(t) =
4us−2

(2π)s(1− r2X(t))s/2
σs−1(Ss−1)2

2Ws−2

∫ π

0

J(t, u cosψ) e
−u(

1−rX (t) cosψ

1−r2
X

(t)
)
sins−2 ψ dψ.
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Following (32), we now expand J(t, x) as J(t, x) := 4uσ2
ε(t)

∑∞
k=0Qk(t, x), so that

1

T
Vs(u, T ) = 2

∫ T

0

(1− t

T
) I(t) dt

=

∫ T

0

(1− t

T
)

4us−1σ2
ε(t)

(2π)s(1− r2X(t))s/2
σs−1(Ss−1)2

Ws−2

×
∫ π

0

∞∑
k=0

Qk(t, u cosψ1)e
−u(

1−rX (t) cosψ

1−r2
X

(t)
)
sins−2 ψ dψ dt.

In first place, let us study the limit when t → ∞ of the (k = 0)-term in the integrand. We introduce
the following notation,

I0(t) =
4us−1σ2

ε(t)

(2π)s(1− r2X(t))s/2
σs−1(Ss−1)2

Ws−2

∫ π

0

Q0(t, u cosψ1)e
−u(

1−rX (t) cosψ

1−r2
X

(t)
)
sins−2 ψ dψ.

We have

I0(t) →
t→∞

4us−1(−r′′X(0))

(2π)s+1
e−uσs−1(Ss−1)2 = Ks(u)

2,

given that d2u0(t) →
t→∞

1

2π
, σs−1(Ss−1) =

2π
s
2

Γ( s2 )
and using (31). Therefore, recalling the identity

2

∫ T

0

(1− t

T
)dt = T , the first term of the asymptotic variance is

lim
T→∞

2

∫ T

0

(1− t

T
)I0(t)dt−

1

T
(E[U(χ2

s, T, u)])
2

= lim
T→∞

2

∫ T

0

(1− t

T
)I0(t)dt− T Ks(u)

2

= 2

∫ ∞

0

(I0(t)−Ks(u)
2) dt. (34)

This last equality holds true if we show that the difference appearing into the integrand is bounded by
an L1(R) function, outside of a compact interval.

Actually, under (A), it is easy to prove that for t large enough, |I0(t)−Ks(u)
2| ≤ C| du(t)√

uσε(t)
| ≤ Cψ(t).

Hence, the limit (34) is established.

In the sequel we are going to study the asymptotic behaviour of the remaining terms. Let us introduce

R(t) :=
4us−1σ2

ε(t)

(2π)s(1− r2(t))s/2
σs−1(Ss−1)2

2Ws−2

×
∫ π

0

∞∑
k=1

Qk(t, u cosψ1)e
−u(

1−rX (t) cosψ

1−r2
X

(t)
)
sins−2 ψ dψ.

So, by using (33), we obtain that for t large enough,

|
∞∑
k=1

Qk(t, u cosψ1)| ≤ |
(
Corr(W (t), Z(t))

)
|

∞∑
k=1

d2uk(t)k! ≤ Cψ(t).
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This bound and Assumption (A) entail

lim
T→∞

2

∫ T

0

(1− t

T
)R(t)dt = 2

∫ ∞

0

R(t)dt. (35)

Summing up (13), (34) and (35) yield

lim
T→∞

1

T

(
Vs(T, u)− (E[U(χ2

s, [0, T ], u)])
2
)
= 2

∫ ∞

0

(I0(t)−Ks(u)
2)dt+ 2

∫ ∞

0

R(t)dt <∞.

�

A.4. Proof of Proposition 8.

1. Computation of g(u). By Equation (8), we have

g(u) = E[1[u,∞)(X(0)) |X ′′(0)| ]

=
1

2π(γ − λ2)1/2

∫ ∞

u

∫
R
|ẍ|e−

1
2(γ−λ2)

(γx2+2λxẍ+ẍ2)
dẍdx

=
1

2π(γ − λ2)1/2

∫ ∞

u

e−
1
2x

2

dx

∫
R
|ẍ|e−

1
2(γ−λ2)

(ẍ+λx)2

dẍ

Let us split the inner integral into ẍ > 0 and ẍ < 0, i.e.

1√
2π(γ − λ2)1/2

∫
R
|ẍ|e−

1
2(γ−λ2)

(ẍ+λx)2

dẍ := I1(x, λ, γ) + I2(x, λ, γ),

where

I1(x, λ, γ) =
1√

2π(γ − λ2)1/2

∫ ∞

0

ẍe
− 1

2(γ−λ2)
(ẍ+λx)2

dẍ

I2(x, λ, γ) =
1√

2π(γ − λ2)1/2

∫ ∞

0

ẍe
− 1

2(γ−λ2)
(ẍ−λx)2

dẍ = I1(x,−λ, γ).

We make the following change of variable, ẍ+λx
(γ−λ2)1/2

= y, to get

I1(x, λ, γ) =
1√
2π

∫ ∞

λx

(γ−λ2)1/2

((γ − λ2)1/2y − λx)e−
1
2y

2

dy

= (γ − λ2)1/2ϕ(
λx

(γ − λ2)1/2
)− λxΦ(

λx

(γ − λ2)1/2
)

I2(x, λ, γ) = (γ − λ2)1/2ϕ(
λx

(γ − λ2)1/2
) + λxΦ(− λx

(γ − λ2)1/2
).

But it holds that Φ(x) = Φ(−x). Thus

I1(x, λ, γ) + I2(x, λ, γ) = 2(γ − λ2)1/2ϕ(
λx

(γ − λ2)1/2
) + λx (2Φ(

λx

(γ − λ2)1/2
)− 1).

Summing up, we have

g(u) =
1√
2π

∫ ∞

u

e−
1
2x

2[
2(γ − λ2)1/2ϕ(

λx

(γ − λ2)1/2
) + λx (2Φ(

λx

(γ − λ2)1/2
)− 1)

]
dx.
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Integrating by parts the second integral, we get that it is equal to

λϕ(u)(2Φ(
λu

(γ − λ2)1/2
)− 1) +

2λ2√
2π(γ − λ2)1/2

∫ ∞

u

e−
1
2x

2

ϕ(
λx

(γ − λ2)1/2
)dx,

yielding

g(u) = λϕ(u)(2Φ(
λu

(γ − λ2)1/2
)− 1) +

2γ√
2π(γ − λ2)1/2

∫ ∞

u

e−
1
2x

2

ϕ(
λx

(γ − λ2)1/2
)dx.

The second term is equal to

2γ

2π(γ − λ2)1/2

∫ ∞

u

e−
1
2x

2

e
− λ2x2

2(γ−λ2) dx =
γ

π(γ − λ2)1/2

∫ ∞

u

e
− γx2

2(γ−λ2) dx

= (
2γ

π
)1/2Φ((

γ

(γ − λ2)
)1/2u).

Finally,

g(u) = λϕ(u)(2Φ(
λu

(γ − λ2)1/2
)− 1) + (

2γ

π
)1/2Φ((

γ

(γ − λ2)
)1/2u).

2. Computation of G(u, t). Since Γ(t) is the covariance matrix of (X(0), X(t), X”(0), X”(t)) conditioned
to (X ′(0) = X ′(t) = 0), one can write

G(u, t) = E(1Z1>u1Z2>uZ3Z4) where Z = (Z1, Z2, Z3, Z4)
L
= N(0,Γ(t)). (36)

From now on, we remove the dependence on t. We begin by writing Z = LY, where L is a lower
triangular matrix such that LLT = Γ(t). Denoting by lij for i ≥ j the elements of L, we have

Z1 = l11Y1 Z2 = l21Y1 + l22Y2 Z3 =
3∑

i=1

l3iYi Z4 =
4∑

i=1

l4iYi,

and the expectation (36) can be written as

G(u, t) =

∫
R4

1{l11y1>u}1{l21y1+l22y2>u}(

3∑
i=1

l3iyi)(

4∑
i=1

l4iyi)ϕ(y)dy.

By expanding the second sum, the integral can be written as the sum of the following terms (starting
with index i = 4 term)

I4 = l44

∫
R4

1{l11y1>u}1{l21y1+l22y2>u}(
3∑

i=1

l3iyi)y4ϕ(y)dy = 0,

I3 = l43

∫
R4

1{l11y1>u}1{l21y1+l22y2>u}(
3∑

i=1

l3iyi)y3ϕ(y)dy

= l43l33

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}ϕ(y1)ϕ(y2)dy1dy2

(∫
R
y23ϕ(y3)dy3

)
= l43l33Q

(0)(
u

l11
,− l21

l22
,
u

l22
)
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I2 = l42

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}(l31y1y2 + l32[(y
2
2 − 1) + 1])ϕ(y1)ϕ(y2)dy1dy2

= l42l32Q
(0)(

u

l11
,− l21

l22
,
u

l22
) + l42l32

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}ϕ(y1)ϕ
′′(y2)dy1dy2

+l42l31

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}ϕ
′(y1)ϕ

′(y2)dy1dy2

= l42l32Q
(0)(

u

l11
,− l21

l22
,
u

l22
)− l42l32

∫ ∞

u
l11

ϕ′(
u

l22
− l21
l22
y1)ϕ(y1)dy1

−l42l31
∫ ∞

u
l11

ϕ(
u

l22
− l21
l22
y1)ϕ

′(y1)dy1

= l42l32(Q
(0)(

u

l11
,− l21

l22
,
u

l22
) +Q(2)(

u

l11
,− l21

l22
,
u

l22
)) + l42l31Q

(1)(
u

l11
,− l21

l22
,
u

l22
)

I1 = l41

∫
R4

1{l11y1>u}1{l21y1+l22y2>u}(
3∑

i=1

l3iyi)y1ϕ(y)dy

= l41

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}(l31y1 + l32y2)y1ϕ(y1)ϕ(y2)dy1dy2

= l41l32

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}ϕ
′(y1)ϕ

′(y2)dy1dy2 + l41l31Q
(0)(

u

l11
,− l21

l22
,
u

l22
)

+l41l31

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}ϕ
′′(y1)ϕ(y2)dy1dy2

= l41l31(Q
(0)(

u

l11
,− l21

l22
,
u

l22
) +Q(3)(

u

l11
,− l21

l22
,
u

l22
)) + l41l32Q

(1)(
u

l11
,− l21

l22
,
u

l22
).

In this manner, we get the result. �
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