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Introduction

The only purpose of this note is to provide the technical proofs of the results that are presented
in our paper “A test of Gaussianity based on the Euler characteristic of excursion sets”. In order
to make the present note selfcontained, the setting and the main environment of the referred-to
paper has been reproduced here.

Outline of the note. Section 1 contains the general setting, in particular the definition of the
Euler characteristic (EC) of excursion sets. In Section 2, we focus on the Gaussian hypothesis.
Assuming that the field under study is a stationnary Gaussian field, we give explicit formulas
for the first two moments of the excursions EC (the first moment formula is well known, the
second moment formula is new, see Proposition 1 and Proposition 2). We also recall the Central
Limit Theorem satisfied by the excursions EC when the domain tends to Rd (see [4]) and give
an extension for the joint excursions EC concerned with different levels and disjoint domains,
see Proposition 4. Section 3 is concerned with the study of an alternative distribution for the
observed random field, namely χ2. Section 4 is devoted to the explicit computation of the
variance of the excursion EC for an univariate process, i.e. in the one dimensional case.

1 Setting

All over the paper, we consider a real valued random field X defined on Rd that satisfies the
following assumption.

Assumption (A): The random field X is stationary, isotropic, E(X(0)) = 0, Var(X(0)) = 1
and almost all realisations belong to C3(Rd). Let ∇2X(t) stand for the 1

2d(d+1) random vector
that contains the upper coefficients of the symmetric Hessian matrix X ′′(t) and X(t) for the
d+ 1

2d(d+ 1) + 1 random vector (X ′(t),∇2X(t), X(t)). For any fixed t in Rd,

the covariance matrix of the random vector (X(0),X(t)) has full rank.

We denote by r the covariance function of X, r(t) = Cov(X(0), X(t)) , t ∈ Rd, which belongs
to C6(Rd). The isotropy assumption implies that the Hessian matrix r′′(0) is equal to −λ Id for
some λ > 0, usually named as second spectral moment. At last, r is such that,

ψ(t)→ 0 when ‖t‖ → +∞ and ψ ∈ L1(Rd) ,

where ψ(t) = max
(∣∣∣∂kr

∂tk
(t)
∣∣∣ ; k = (k1, . . . , kd) ∈ Nd, k1 + . . .+ kd ≤ 4

)
.

Notations.
• for any u ∈ R and any compact T ⊂ Rd, we call “excursion set of X above the level u within
the domain T” the following set {t ∈ T : X(t) ≥ u},
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• pZ(.) denotes the probability density function of any random vector Z (assuming it exists),
• |.| denotes without any ambiguity, either the absolute value, or the d-dimensional Lebesgue
measure.

Euler characteristic.
The Euler characteristic of a compact domain K in Rd can be heuristically defined in the case
d = 1 as the number of connected components of K, or in the case d = 2 as the number of
connected components minus the number of holes in K. In the case where K is an excursion set
{t ∈ T : X(t) ≥ u}, with T a rectangle in Rd and u a real number, there exists a rather tractable
formula that uses the theory of Morse functions, see [1] Chapter 9 for instance. It states that
the Euler characteristic of {t ∈ T : X(t) ≥ u} is equal to a sum of two terms. The first one
only depends on the restriction of X to the interior of T , it is given by the quantity ϕ(X,T, u)
defined in Equation (1) below. The second one exclusively depends on the behaviour of X on
the l-dimensional faces of T , with 0 ≤ l < d. From now on, we focus on the term ϕ(X,T, u),
named as “modified Euler characteristic” in [4], and we still call it Euler characteristic (EC). It
is defined by the following,

ϕ(X,T, u) =

d∑
k=0

(−1)kµk(T, u), where (1)

µk(T, u) = #{t ∈ T̊ : X(t) ≥ u, X ′(t) = 0, index (X ′′(t)) = d− k}.

Special case 1: dimension one. When d = 1, writing [0, T ] instead of T for a while,
Equation (1) becomes

ϕ(X, [0, T ], u) = #{local maxima of X above u in (0, T )} (2)

−#{local minima of X above u in (0, T )}.

Morse’s theorem says that this quantity is linked with the number of up-crossings,

U(X, [0, T ], u) = #{t ∈ [0, T ] : X(t) = u, X ′(t) ≥ 0} ,

by the following

ϕ(X, [0, T ], u) + 1{X(0)>u,X′(0)<0} + 1{X(T )>u,X′(T )>0} = U(X, [0, T ], u) + 1{X(0)>u}. (3)

Taking expectation in both expressions and using stationarity yield the next formula that we
will use in Sections 3 and 4,

E[ϕ(X, [0, T ], u)] = E[U(X, [0, T ], u)].

Special case 2: dimension two. When d = 2, Equation (1) can be expressed i a more
simple way. Since µ0(T, u) denotes the number of local maxima above u, µ2(T, u) denotes the
number of local minima above u and µ1(T, u) the number of local saddle points above u, we get

ϕ(X,T, u) = #{local extrema of X above u in T̊} (4)

− #{local saddle points of X above u in T̊}.

2 Under Gaussian hypothesis

In this section, we assume that X is Gaussian and satisfies Assumption described in Section 1.
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2.1 First two moments of the Euler characteristic of an excursion set

Let T be a cube in Rd. This section is devoted to explicit formulas for the first two moments
of ϕ(X,T, u). They are based on the decomposition (1) and on Rice formulas for the factorial
moments of µk(T, u) (see for instance [1] Chapter 11 or [3] Chapter 6).

In particular, using the stationarity of X, the expectation can be computed as follows

E[ϕ(X,T, u)] = (−1)d
∫
T

E[1[u,∞)(X(t)) det(X ′′(t)) |X ′(t) = 0] pX′(t)(0) dt

= (−1)d |T | (2πλ)−d/2 E[1[u,∞)(X(0)) det(X ′′(0))] .

Moreover, it is proved in [1] Lemma 11.7.1, through a regression and thanks to Wick’s formula,
that

E[1[u,∞)(X(0)) det(X ′′(0))] = (−1)d (2π)−1/2 λdHd−1(u) e−u
2/2 ,

where Hk stands for the Hermite polynomial of order k. Hence, the next formula holds

E[ϕ(X,T, u)] = |T | (2π)−(d+1)/2 λd/2Hd−1(u) e−u
2/2 . (5)

In what follows, we will be particularly interested in the next function

C(u) = (2π)−(d+1)/2 λd/2Hd−1(u) e−u
2/2 , (6)

that yields E[ϕ(X,T, u)] = |T |C(u). Equation (6) shows that C(u) implicitly depends on X
through its dimension parameter d and its second spectral moment λ. Whenever necessary in
the next sections, we will emphasize this dependence by writing C(u) = C(u, λ).

For the second moment, a so nice formula as (5) seems to be out of reach. Nevertheless, in
the next proposition, we provide the second moment as an integral that can be numerically
evaluated (see also [10] for another formula, which is valid under restrictive assumptions on X).
We will use the following functions, defined for u ∈ R and t ∈ Rd,

g(u) = E[ 1[u,∞)(X(0)) |det(X ′′(0))| ]
D(t) = (2π)2d det(λ2Id − r′′(t)2)

G(u, t) = E[1[u,∞)(X(0)) 1[u,∞)(X(t)) det(X ′′(0)) det(X ′′(t)) |X ′(0) = X ′(t) = 0]

 (7)

Proposition 1. Assume that X is Gaussian and satisfies Assumption (A).
Then, for any u ∈ R, the map t 7→ G(u, t)D(t)−1/2 is integrable on any compact set in Rd and

E[ϕ(X,T, u)2] =

∫
Rd
|T ∩ (T − t)|G(u, t)D(t)−1/2 dt+ |T | (2πλ)−d/2 g(u) .

Proof. Integrability comes from [4] Proposition 1.1 since X ∈ C3. In order to compute the
expectation of ϕ(X,T, u)2, let us start with (1). It yields

ϕ(X,T, u)2 =
∑

0≤k≤d

µk(T, u) +
∑

0≤k≤d

µk(T, u)(µk(T, u)− 1) +
∑

0≤k 6=l≤d

(−1)k+lµk(T, u)µl(T, u).

The expectation of the first term is equal to

E[
∑

0≤k≤d

µk(T, u)] = E[ #{t ∈ T : X(t) ≥ u, X ′(t) = 0} ]

=

∫
T

E[ 1[u,∞)(X(t)) |detX ′′(t)| |X ′(t) = 0] pX′(t)(0) dt

= |T | g(u) pX′(0)(0) ,
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where we have used Rice Formula to get the second line and stationarity as well as the inde-
pendence between X ′(0) and (X(0), X ′′(0)) to get the third one.
For the second and third terms, we introduce, for k, l = 1, . . . , d and s, t ∈ Rd,

F k,lu (s, t) = E[1[u,∞)(X(s)) |detX ′′(s)|1Dk(X ′′(s))

×1[u,∞)(X(t)) |detX ′′(t)|1Dl(X ′′(t)) |X ′(s) = X ′(t) = 0],

where Dk denotes the set of symmetric matrices having index equal to d − k. Hence, Rice
Formula for the second factorial moment allows us to obtain

E[
∑

0≤k≤d

µk(T, u)(µk(T, u)− 1)] =

∫
T×T

(
∑

0≤k≤d

F k,ku (s, t)) pX′(s),X′(t)(0, 0) dsdt.

Given that Dk ∩Dl = ∅ for k 6= l, one can adapt the proof of the second moment Rice formula
to get

E[
∑

0≤k 6=l≤d(−1)k+lµk(T, u)µl(T, u)]

=

∫
T×T

(
∑

0≤k 6=l≤d

(−1)k+lF k,lu (s, t)) pX′(s),X′(t)(0, 0) dsdt.

Let us remark that ∑
0≤k≤d

F k,ku (s, t) +
∑

0≤k 6=l≤d

(−1)k+lF k,lu (s, t) = G(u, t− s) .

It yields

E[ϕ(X,T, u)2] =

∫
Rd
|T ∩ (T − t)|G(u, t) pX′(0),X′(t)(0, 0) dt+ |T | g(u) pX′(0)(0).

It remains to compute the probability density function of (X ′(0), X ′(t)). The covariance matrix

of this vector is equal to

(
λId −r′′(t)
−r′′(t) λId

)
and so pX′(0),X′(t)(0, 0) = D(t)−1/2. The proposi-

tion is proved. 2

Comment concerning the one dimensional case. Let us remark that in the one di-
mensional case, two important results of the present section, namely Formula (5) that gives
the expected value of ϕ(X,T, u) and the fact that ϕ(X,T, u) has a finite second moment, re-
main valid under weaker assumptions. Actually, on the one hand, the Rice formula gives the
mean number of upcrossings under the only assumption of a finite second spectral moment,
and (3) allows us to conclude for E[ϕ(X,T, u)]. On the other hand, it is well known (see for
instance [7]) that a sufficient condition for U(X,u, T ) to have a finite second moment is the
so-called Geman condition. It requires that r, the covariance function of X, is C2 and satisfies∫ δ

0
r′′(t)−r′′(0)

t dt < +∞ for some positive δ.

2.2 Asymptotic variance

In the next proposition, we let the cube T grow to Rd and we give a closed formula for the
asymptotic variance of ϕ(X,T, u). Actually, for any positive integer N , we consider

T (N) = {Nt : t ∈ T}

the image of a fixed cube T by the dilation t 7→ Nt and we let N go to +∞.
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Proposition 2. Assume that X is Gaussian and satisfies Assumption (A) and let T be a cube
in Rd. Then for any u in R,

lim
N→+∞

Var[|T (N)|−1/2 ϕ(X,T (N), u)] = V (u) < +∞

with

V (u) =

∫
Rd

(G(u, t)D(t)−1/2 − C(u)2) dt+ (2πλ)−d/2 g(u) , (8)

where C(u), g(u), G(u, t), D(t) have been defined in (6) and (7).

Note that a one can obtain explicit formulas for functions G(u, t) and g(u) by using Gaussian
regressions. This is actually performed in Section 4 for the one dimensional case (see Proposition
7).

Proof. From Proposition 1, for a fixed cube T ,

Var[|T |−1/2ϕ(X,T, u)]

=

∫
Rd

|T ∩ (T − t)|
|T |

G(u, t)D(t)−1/2 dt+ (2πλ)−d/2 g(u)− |T |−1 (Eϕ(X,T, u))2

=

∫
Rd

|T ∩ (T − t)|
|T |

(G(u, t)D(t)−1/2 − C(u)2) dt+ (2πλ)−d/2 g(u) ,

where we have used the relation |T |2 =
∫
Rd |T ∩ (T − t)| dt to get the last line. Hence, the

asymptotic formula can easily be derived using Lebesgue dominated convergence Theorem con-
ditionaly to the fact that t 7→ G(u, t) D(t)−1/2−C(u)2 belongs to L1(Rd). This point is proved
in the next lemma.

Lemma 3. The map t 7→ G(u, t) D(t)−1/2 − C(u)2 belongs to L1(Rd).

Proof of Lemma 3.
The level u is fixed, so we do not refer to it in the following lines. For t ∈ Rd \ {0}, we define
h(t) = G(u, t)D(t)−1/2 − C(u)2. We have to establish that h is integrable on Rd. We already
know that h is integrable on any compact set of Rd, so it remains to study the behavior of h(t)
for large ‖t‖.
We write K = 1

2d(d+ 1) + 1 and we introduce the function

(z, x) ∈ RK = R
1
2d(d+1) × R 7→ f(z, x) = d̃et(z) 1[u,∞)(x) ,

where d̃et(z) stands for the determinant of the d× d symmetric matrix whose upper coefficient
are given by the 1

2d(d+ 1) dimensional vector z.
Recall that we denote by X(.) the stationnary random vector field (X ′(t),∇2X(t), X(t)), which
has dimension D = d+ 1

2d(d+ 1) + 1 = d+K. We have

h(t) =

∫
R2K

f(ẍ1, x1)f(ẍ2, x2)(
pX(0),X(t)(0, ẍ1, x1, 0, ẍ2, x2)− pX(0)(0, ẍ1, x1)pX(t)(0, ẍ2, x2)

)
dx1dẍ1dx2dẍ2.

Let Σ be the covariance matrix of X(0) and, for any t ∈ Rd, let ΓX(t) be the covariance matrix
of (X(0),X(t)). The latter can be written by blocks, each of one having dimension D ×D, as
follows

ΓX(t) =

(
Σ Γ12(t)

Γ12(t)T Σ

)
.
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Moreover we know that all the terms of matrix ΓX(t) are uniformly bounded in absolute value
by ψ(t). Using Theorem 3.1 of [11] we get, for any z1, z2 in RD,

pX(0),X(t)(z1, z2)− pX(0)(z1)pX(t)(z2)

= pX(0)(z1)pX(0)(z2)

 ∑
J∈ND×D,|J|>0

HAJ
(z1,Σ)HBJ

(z2,Σ)
Γ12(t)J

J!

 ,

where

• the sum runs over all D ×D matrices J = (Jjk)1≤j,k≤D with non negative integer entries
and |J| =

∑
1≤j,k≤D Jjk > 0,

• AJ and BJ are D-dimensional indices defined by (AJ)j =
∑

1≤k≤D Jjk and (BJ)k =∑
1≤j≤D Jjk,

• Hk(z,Σ) = φΣ(z)−1(− ∂
∂z )kφΣ(z) for any D-dimensional index k and any z ∈ RD, with

φΣ the probability density function of any D-dimensional Gaussian vector N (0,Σ),

• MJ =
∏

1≤j,k≤D(Mjk)Jjk for any matrix M = (Mjk)1≤j,k≤D,

• and J! =
∏

1≤j,k≤D(Jjk)!.

Thus

h(t) =

∫
R2K

f(x1) f(x2) pX(0)(0,x1) pX(0)(0,x2) ∑
J,|J|>0

HAJ
((0,x1),Σ)HBJ

((0,x2),Σ)
Γ12(t)J

J!

 dx1dx2.

We can bound |h(t)| in the following form

|h(t)| ≤
∑

J,|J|>0

ψ(t)|J|

J!
D(AJ)D(BJ), (9)

where

D(AJ) =

∫
RK
|f(x1)HAJ

((0,x1),Σ)| pX(0)(0,x1) dx1

≤ E (|det(X ′′(0))HAJ
((0, X ′′(0), X(0)),Σ)|)

≤ E(det(X ′′(0)2)1/2 E
(
HAJ

((0, X ′′(0), X(0)),Σ)2
)1/2

≤ ψ(0)d E
(
HAJ

((0, X ′′(0), X(0)),Σ)2
)1/2

, (10)

where the last inequality is a consequence of expanding det(X ′′(0)) as a multivariate polynomial
function of degree d evaluated at the coordinates of the matrix X ′′(0).
We now concentrate on HAJ

((0,∇2X(0), X(0)),Σ). Following [11], we have

HAJ
((0,x),Σ) = E

[(
Σ−1((0,x) + iZ)

)AJ
]
,

where Z is any D-dimensional centered Gaussian random vector with covariance matrix Σ. Re-
member that Σ is the covariance matrix of X(0) = (X ′(0), X ′′(0), X(0)), so it can be factorized

as Σ =

(
λId 0
0 Σ1

)
where Σ1 has size K × K. Hence Σ−1 =

(
λ−1Id 0

0 Σ−1
1

)
and Z can be

expanded as Z = (Z0, Z1) where Z0 is a d-dimensional centered Gaussian vector with covariance
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matrix λId and Z1 is a K-dimensional centered Gaussian vector with covariance matrix Σ1, Z0

and Z1 being independent. Then

Σ−1((0,x) + iZ) =
(
iλ−1Z0,Σ

−1
1 (x + iZ1)

)
,

where the two blocks of coordinates are independent. So

HAJ
((0,x),Σ) = H

A
(0)
J

(0, λId)HA
(1)
J

(x,Σ1),

where the D-dimensional vector AJ is equal to (A
(0)
J , A

(1)
J ) with blocks of respective size d and

K.
For the first term, we note that H

A
(0)
J

(0, λId) = λ−
1
2 |A

(0)
J |H

A
(0)
J

(0) where Hk(.) is the usual

multidimensional Hermite polynomial of multi-order k.

Concerning the second term, we compute E
(
H
A

(1)
J

((X ′′(0), X(0)),Σ1)2
)

thanks to a formula

for multivariate Gaussian integrals that can be found in [6] for instance (see equation (35) in
this reference),

E
(
H
A

(1)
J

((X ′′(0), X(0)),Σ1)2
)

=

∫
RK

H
A

(1)
J

(x,Σ1)2 pX′′(0),X(0)(x) dx

= 2|A
(1)
J |−D (A

(1)
J )! diag(Σ−1

1 )A
(1)
J

where diag(B) denotes the vector containing the diagonal coefficients of any square matrix B.

Finally, since H
A

(0)
J

(0)2 ≤ (A
(0)
J )!,

E
(
HAJ

((0, X ′′(0), X(0)),Σ)2
)
≤ (2‖Σ−1‖)|J| (AJ)!

where we have used that |A(0)
J |+ |A

(1)
J | = |J| and (A

(0)
J )! (A

(1)
J )! = (AJ)!.

Note that for any D-dimensional index k = (k1, . . . , kD), we have |k|! ≤ D|k|(k)! (actually, |k|!(k)!

is a multinomial coefficient). Hence (AJ)j ! ≤ D
∑

1≤k≤D Jjk
∏

1≤k≤D Jjk! and so

(AJ)! =
∏

1≤j≤D

(AJ)j ! ≤ D|J| J!

Coming back to inequality (10) yields

D(AJ) ≤ ψ(0)d (2D‖Σ−1‖)|J|/2
√

J! .

The same inequality can be established for D(BJ). Hence, from (9) we get

|h(t)| ≤ ψ(0)2d ψ(t)
∑

J,|J|>0

(2D‖Σ−1‖ψ(t))|J|−1 .

The series in the right hand is convergent for ‖t‖ large enough. Indeed we can choose A such
that for ‖t‖ > A, we have 2D‖Σ−1‖ψ(t) ≤ η < 1 and so the series is bounded by (1− η)−1.
The result follows since on the other hand, by assumption (A),

∫
‖t‖>A ψ(t)dt < +∞. Lemma

3, and hence Proposition 2 also, are proved. 2

Beyond the existence of a finite asymptotic variance as established in the previous proposi-
tion, ϕ(X,T (N), u) satifies a central limit theorem. Actually, Theorem 2.6 of [4] states that the
next convergence holds in distribution

|T (N)|−1/2 (ϕ(X,T (N), u)− E[ϕ(X,T (N), u)])
distr−→
N→∞

N (0, V (u)) , (11)

where N (0, V (u)) stands for the centered Gaussian distribution with variance V (u).
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2.3 Disjoint domains and various levels

We now consider domains T1 and T2 that are disjoint and levels u1 and u2 that can be equal or
not.

Proposition 4. Assume that X is Gaussian and satisfies Assumption (A).
(a) Let T1 and T2 be two cubes in Rd such that |T1| = |T2| and dist(T1, T2) > 0 and let u1 and
u2 belong to R. For any integer N > 0, we introduce

Z
(N)
i = |T (N)

i |−1/2 (ϕ(X,T
(N)
i , ui)− E[ϕ(X,T

(N)
i , ui)]) for i = 1, 2.

As N → +∞,
(
Z

(N)
1 , Z

(N)
2

)
converges in distribution to a centered Gaussian vector with diag-

onal covariance matrix

(
V (u1) 0

0 V (u2)

)
where V (ui) is prescribed by (8).

(b) Let T be a cube in Rd and let u1 and u2 belong to R. For any integer N > 0, we introduce

ζ
(N)
i = |T (N)|−1/2 (ϕ(X,T (N), ui)− E[ϕ(X,T (N), ui)]) for i = 1, 2.

As N → +∞,
(
ζ

(N)
1 , ζ

(N)
2

)
converges in distribution to a centered Gaussian vector with covari-

ance matrix

(
V (u1) V (u1, u2)

V (u1, u2) V (u2)

)
.

Proof. Point (a).
It is proved in [4] Proposition 1.3 that, for any cube T in Rd and any level u in R, the following
expansion holds both a.s. and in L2(Ω).

ϕ̃(X,T, u) = (−1)d
∞∑
q=1

∑
n∈ND;|n|=q

a(n, u)

∫
T

Hn(Y (t)) dt (12)

where

ϕ̃(X,T, u) = ϕ(X,T, u)− E[ϕ(X,T, u)],

Hn denotes the D dimensional Hermite coefficient of multi-order n ∈ ND and Y (t) = Λ−1X(t)
with Λ any square root of matrix Σ. Moreover the Hermite coefficients a(n, u) are such that for
any q ≥ 1, ∑

n∈ND;|n|=q

a(n, u)2 n! ≤ C qd (13)

where C is some positive constant that only depends on d,Λ and u.

The latter results will be useful to study the asymptotic covariance of Z
(N)
1 and Z

(N)
2 in the

next lemma.

Lemma 5.

Cov
(
Z

(N)
1 , Z

(N)
2

)
→

N→+∞
0

Proof of Lemma 5. Without loss of generality, we can assume that |T1| = |T2| = 1 and that
there exists a and b in Rd such that T1 = a + [0, 1)d and T2 = b + [0, 1)d. Moreover, since the
distance between T1 and T2 is non negative, we have ‖b − a‖∞ > 1. In the following lines, we

denote δ = ‖b− a‖∞ − 1. We use the additivity of the Euler characteristic to expand Z
(N)
1 as

Z
(N)
1 = N−d/2

∑
s∈IN

ϕ̃(θNa+sX, [0, 1)d, u1) ,

8



where θs stands for the shift operator and IN for the set of integer valued indices [[0, N − 1]]d.

The same holds for Z
(N)
2 . Hence, by stationarity

|Cov(Z
(N)
1 , Z

(N)
2 )| = N−d |

∑
s,s′∈IN

E
(
ϕ̃(X, [0, 1)d, u1) ϕ̃(θN(b−a)+s′−sX, [0, 1)d, u2)

)
|

≤
∑
s∈JN

|E
(
ϕ̃(X, [0, 1)d, u1) ϕ̃(θN(b−a)+sX, [0, 1)d, u2)

)
| ,

where JN = [[−N + 1, N − 1]]d. Besides, thanks to (12) and to the orthogonality of Hermite
polynomials, for any τ ∈ Rd,

E
(
ϕ̃(X, [0, 1)d, u1) ϕ̃(θτX, [0, 1)d, u2)

)
=

∞∑
q=1

∫
[0,1]d

∫
[0,1]d

E (Fq(Y (t1), u1)Fq(Y (τ + t2), u2)) dt1dt2,

where Fq(y, u) =
∑

n∈ND;|n|=q

a(n, u)Hn(y) , y ∈ RD. One can adapt Arcones inequality, for in-

stance following the proof of [2] Lemma 1 step by step, to get

|E (Fq(Y (t1), u1)Fq(Y (τ + t2), u2))|

≤ (DK)q ψ(τ + t2 − t1)q
∑

n∈ND; |n|=q

1

2
(a(n, u1)2 + a(n, u2)2)n!.

Let now η > 0 be fixed. We choose N large enough such that DKψ(τ) ≤ 1/2 as soon as
‖τ‖ ≥ Nδ,

∫
‖t‖≥N ψ(t) dt < η and Nδ > 2. Hence, using (13), we deduce that for ‖τ‖ ≥ Nδ,

∣∣E (ϕ̃(X, [0, 1)d, u1) ϕ̃(θτX, [0, 1)d, u2)
)∣∣ ≤ C

∞∑
q=1

qd (DK)q
∫

[0,1]d

∫
[0,1]d

ψ(τ + t2 − t1)q dt1dt2

≤ C

( ∞∑
q=1

qd (1/2)q−1

) ∫
[−1,1]d

ψ(τ + t) dt .

Coming back to the covariance of Z
(N)
1 and Z

(N)
2 yields

|Cov(Z
(N)
1 , Z

(N)
2 )| ≤ C ′

∑
s∈JN

∫
[−1,1]d

ψ(N(b− a) + s + t) dt

≤ 2C ′
∫
‖t‖≥N

ψ(t) dt ≤ C ′′ η.

Lemma 5 is proved. 2

Thanks to the lemma and the convergence in (11), we know that the covariance matrix of

the random vector (Z
(N)
1 , Z

(N)
2 ) tends to

(
V (u1) 0

0 V (u2)

)
. One can use the same arguments as

those in [4] (which were inspired by [8]) to establish that any linear combination xZ
(N)
1 + yZ

(N)
2

has a Gaussian limit in distribution. Point (a) is now proved.
Point (b) is proved in [4] Theorem 2.5. 2

3 Under χ2 hypothesis

In this section, we deal with χ2 distributions instead of Gaussian ones. Let us fix s, a non
negative integer, as the degrees of freedom.
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We start with {Xi(.)}si=1, an independent sample of centered stationary Gaussian fields on Rd
that satisfy Assumption (A) of Section 1. We denote by rX their covariance function and recall
that rX(0) = 1. Consider now the following stationary fields,

χ2
s(·) =

s∑
i=1

(Xi(·))2 and Z(s)(.) =
1√
2s

(

s∑
i=1

(Xi(·))2 − s) .

Note that for any t ∈ Rd, χ2
s(t) is a Chi-square random variable with s degrees of freedom. One

gets readily that

E[Z(s)(0)] = 0, Var[Z(s)(0)] = 1, E[Z(s)(t)Z(s)(0)] = rX(t)2.

Moreover, the second spectral moment of Z(s) is equal to λ with λ = −((rX)2)′′(0) = −2r′′X(0).

We are first interested in the expectation of the Euler characteristic of

{t ∈ T : Z(s)(t) ≥ u} = {t ∈ T : χ2
s(t) ≥ s+ u

√
2s} ,

for a fixed cube T ⊂ Rd and a fixed level u in R. A formula for the mean EC of excursion sets of
χ2 fields is given in [12], Theorem 3.5 (see also Theorem 15.10.1 in [1]). We can then establish
that

E[ϕ(Z(s), T, u)] (14)

= |T |
(
λ

π

)d/2
e−(s+u

√
2s)/2 (s+ u

√
2s)(s−d)/2

2(s−2+2d)/2Γ(s/2)
Pd,s(s+ u

√
2s) 1[0,∞)(s+ u

√
2s) ,

where Pd,s(.) is a polynomial of degree d− 1 with integer coefficients. In particular, P1,s(u) = 1
and P2,s(u) = u− s+ 1. Let us quote that we have to handle carefully with the second spectral
moment of the Xi’s , which is equal to λ/2 in our context.

Let us recall that, in dimension one, the mean Euler characteristic of the excursion above
the level u is equal to the mean number of upcrossings at level u, see Equation (3). With this
point of view, Formula (14) can also be found in [9] for instance. Next proposition is concerned
with the second moment in dimension one, in the same spirit as Proposition 2.

Proposition 6. Let d = 1. Let us assume that the X ′is are one dimensional i.i.d. Gaussian
processes that satisfy Assumption (A) for i = 1, . . . , s.
Then, for any u in R and T in [0,+∞), ϕ(Z(s), [0, T ], u) admits a finite second moment.
Morever, there exists vs(u) ∈ [0,+∞) such that

lim
T→+∞

1

T
Var[ϕ(Z(s), [0, T ], u)] = vs(u) .

Proof. Firstly, let us remark that, since Z(s)(.) = 1√
2s

(χ2
s(.) − s), it is sufficient to prove the

statement of Proposition 6 for the process χ2
s instead of Z(s). Secondly, let us recall the relation

(3), so that we can replace ϕ(Z(s), [0, T ], u) by U(χ2
s, [0, T ], u) in the proposition.

The finiteness of
Vs(T, u) := E[U(χ2

s, [0, T ], u)(U(χ2
s, [0, T ], u)− 1)]

is proved in [9] under the following conditions,

rX(t) = 1− λ2
t2

2
+ λ4

t4

4
+ o(t4) as t→ 0 and rX(t) = o(t−α) as t→∞ (15)

for some positive finite constants λ2, λ4, α (see (4.1) and (4.2) in the cited paper). They are
clearly satisfied in our case since Assumption (A) is in force. This establishes that U(χ2

s, [0, T ], u)

10



admits a finite variance.

We now focus on the asymptotic variance as T goes to infinity. We will actually prove that

lim
T→+∞

1

T

(
Vs(T, u)− (E[U(χ2

s, [0, T ], u)])2
)
< +∞.

First, in a similar way as (14), let us remark that the expectation of U(χ2
s, [0, T ], u) is propor-

tional to T ,

Ks(u) :=
1

T
E[U(χ2

s, [0, T ], u)] =

(
λ

π

)1/2
e−u/2 u(s−1)/2

2s/2Γ(s/2)
. (16)

On the other hand, introducing the function G(x) = x1[0,∞)(x), Rice formula for the above
factorial moment gives

Vs(T, u) = 2

∫ T

0

(T − t) I(t) dt,

where
I(t) = E[G((χ2

s)
′(0))G((χ2

s)
′(t)) |χ2

s(0) = χ2
s(t) = u] pχ2

s(0),χ2
s(t)

(u, u).

For computing this conditional expectation, we begin with the following one that is easier to
handle with. Let us define ~X(t) = (X1(t), . . . , Xs(t)) and, for z = (z1, · · · , zs) and w =
(w1, · · · , ws) in Rs,

J(t, z,w) := E[G((χ2
s)
′(0))G((χ2

s)
′(t)) | ~X(0) = z, ~X(t) = w, χ2

s(0) = χ2
s(t) = u].

Let us fix z and w such that ||z||2 = ||w||2 = u. In that case, we have

J(t, z,w) = 4E[G(

s∑
j=1

Xj(0)X ′j(0))G(

s∑
j=1

Xj(t)X
′
j(t)) | ~X(0) = z, ~X(t) = w].

We will use, as is classical, the following regression model. For each j ∈ {1, . . . , s}, we write

X ′j(0) = α1(t)Xj(0) + β1(t)Xj(t) + ε1j(t)

X ′j(t) = α2(t)Xj(0) + β2(t)Xj(t) + ε2j(t).

It is important to point out that, because of the independence, the coefficients above do not
depend on j. We readily obtain that

α1(t) =
r′X(t)rX(t)

1− r2
X(t)

, β1(t) =
−r′X(t)

1− r2
X(t)

, β2(t) = −α1(t), α2(t) = −β1(t).

Thus

J(t, z,w) = 4E[G(

s∑
j=1

zj(α1(t)zj + β1(t)wj + ε1j(t)))G(

s∑
j=1

wj(β1(t)zj + α1(t)wj + ε2j(t)))]

= 4E[G(α1(t)u+ β1(t)〈w, z〉+
√
uσεW (t))G(α1(t)u+ β1(t)〈w, z〉+

√
uσεZ(t))]

= 4E[G(du(t) +
√
uσε(t)W (t))G(du(t) +

√
uσε(t)Z(t))],

where
σ2
ε(t) = −r′′X(0)− (α2

1(t) + β2
1(t) + 2α1(t)β1(t)rX(t))

is the variance of each ε1,j(t) or ε2,j(t),

W (t) =
1√

uσε(t)

s∑
i=1

wjε1,j(t) and Z(t) =
1√

uσε(t)

s∑
i=1

zjε2,j(t)
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are independent N(0, 1) random variables, and du(t) = α1(t)u+ β1(t)〈w, z〉.
In particular, the latter shows that J(t, z,w) only depends on w and z through their scalar
product. So, from now on, for ease of notation, we will write J(t, 〈z,w〉).
We have β1(t) → ∞ when t → 0 and du(t) = (α1(t) + β1(t))u − β1(t)u(1 − 1

u 〈w, z〉) →t→0
−∞,

for all w 6= z. The latter convergence is equivalent to − 1
t .

Moreover, du(t)→ 0 whenever t→∞, because of Assumption (A).
Then we can write

J(t, 〈z,w〉) = 4uσ2
ε(t)E[G(

du(t)√
uσε(t)

+W (t))G(
du(t)√
uσε(t)

+ Z(t))]

= 4uσ2
ε(t)

∞∑
k=0

d2
uk(t)k!

(
Corr(W (t), Z(t)))k, (17)

where the last equality is a consequence of Mehler’s formula. The coefficients duk(t) are given
by

duk(t) =
1

k!

∫
R
G(

du(t)√
uσε(t)

+ y)Hk(y)φ(y)dy

=
1

k!

∫ ∞
− du(t)√

uσε(t)

(
du(t)√
uσε(t)

+ y)Hk(y)φ(y)dy,

with φ the standard Gaussian density, and

Corr(W (t), Z(t)) =
〈z,w〉
uσ2

ε(t)
(−r′′X(t)− 2α1(t)β1(t)− (α2

1 + β2
1(t))rX(t)).

Let us continue our study with the behaviour of J(t, 〈z,w〉) for t close to 0. Let us start with
the series. It holds

∞∑
k=0

d2
uk(t)k! =

∫ ∞
− du(t)√

uσε(t)

(
du(t)√
uσε(t)

+ y)2φ(y)dy,

≤ 2((
du(t)√
uσε(t)

)2

∫ ∞
− du(t)√

uσε(t)

φ(y)dy +

∫ ∞
− du(t)√

uσε(t)

y2φ(y)dy).

For the last integral, we use the upper bound∫ ∞
a

y2φ(y)dy ≤ aφ(a) +
1

a
φ(a),

that yields, as t→ 0,

∞∑
k=0

d2
uk(t)k! ≤ 2(2(− du(t)√

uσε(t)
)φ(

du(t)√
uσε(t)

) + (−
√
uσε(t)

du(t)
)φ(

du(t)√
uσε(t)

)) = O(1). (18)

Thus, for 0 < t < δ, we have J(t, 〈z,w〉) ≤ Cuσ2
ε(t). Moreover, as this bound only depends on

u, it yields immediately that,

I(t) ≤ Cuσ2
ε(t) , for 0 < t < δ.

We now focus on the behaviour of I(t) for t close to +∞. We have

I(t) =

∫
Rs×Rs

J(t, 〈z,w〉) p ~X(0), ~X(t),χ2
s(0),χ2

s(t)
(z,w, u, u) dz dw

=
us−2

(2π)s(1− r2
X(t))s/2

∫
Ss−1×Ss−1

J(t, u〈τ1, τ2〉) e
−u(

1−rX (t)〈τ1,τ2〉
1−r2

X
(t)

)
dσs−1(τ1)dσs−1(τ2),
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where σs−1 stands for the surface Lebesgue measure on Ss−1. A consequence of Funk-Hecke
formula says that, for any reasonable function F ,∫

Ss−1×Ss−1

F (〈τ1, τ2〉)dσs−1(τ1)dσs−1(τ2) =
σs−1(Ss−1)2

2Ws−2

∫ π

0

F (cosψ) sins−2 ψ dψ,

with Ws the Wallis integral, i.e. Ws =
∫ π/2

0
sins(ψ)dψ. It implies

I(t) =
4us−2

(2π)s(1− r2
X(t))s/2

σs−1(Ss−1)2

2Ws−2

∫ π

0

J(t, u cosψ) e
−u(

1−rX (t) cosψ

1−r2
X

(t)
)

sins−2 ψ dψ.

Following (17), we now expand J(t, x) as J(t, x) := 4uσ2
ε(t)

∑∞
k=0Qk(t, x), so that

1

T
Vs(u, T ) = 2

∫ T

0

(1− t

T
) I(t) dt

=

∫ T

0

(1− t

T
)

4us−1σ2
ε(t)

(2π)s(1− r2
X(t))s/2

σs−1(Ss−1)2

Ws−2

×
∫ π

0

∞∑
k=0

Qk(t, u cosψ1)e
−u(

1−rX (t) cosψ

1−r2
X

(t)
)
sins−2 ψ dψ dt.

In first place, let us study the limit when t → ∞ of the (k = 0)-term in the integrand. We
introduce the following notation,

I0(t) =
4us−1σ2

ε(t)

(2π)s(1− r2
X(t))s/2

σs−1(Ss−1)2

Ws−2

∫ π

0

Q0(t, u cosψ1)e
−u(

1−rX (t) cosψ

1−r2
X

(t)
)

sins−2 ψ dψ.

We have

I0(t) →
t→∞

4us−1(−r′′X(0))

(2π)s+1
e−uσs−1(Ss−1)2 = Ks(u)2,

given that d2
u0(t) →

t→∞

1

2π
, σs−1(Ss−1) =

2π
s
2

Γ( s2 )
and using (16). Therefore, recalling the identity

2

∫ T

0

(1− t

T
)dt = T , the first term of the asymptotic variance is

lim
T→∞

2

∫ T

0

(1− t

T
)I0(t)dt− 1

T
(E[U(χ2

s, T, u)])2

= lim
T→∞

2

∫ T

0

(1− t

T
)I0(t)dt− T Ks(u)2

= 2

∫ ∞
0

(I0(t)−Ks(u)2) dt. (19)

This last equality holds true if we show that the difference appearing into the integrand is
bounded by an L1(R) function, outside of a compact interval.

Actually, under (A), it is easy to prove that for t large enough, |I0(t)−Ks(u)2| ≤ C| du(t)√
uσε(t)

| ≤
Cψ(t). Hence, the limit (19) is established.

In the sequel we are going to study the asymptotic behaviour of the remaining terms. Let
us introduce

R(t) :=
4us−1σ2

ε(t)

(2π)s(1− r2(t))s/2
σs−1(Ss−1)2

2Ws−2

×
∫ π

0

∞∑
k=1

Qk(t, u cosψ1)e
−u(

1−rX (t) cosψ

1−r2
X

(t)
)

sins−2 ψ dψ.
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So, by using (18), we obtain that for t large enough,

|
∞∑
k=1

Qk(t, u cosψ1)| ≤ |
(
Corr(W (t), Z(t))

)
|
∞∑
k=1

d2
uk(t)k! ≤ Cψ(t).

This bound and Assumption (A) entail

lim
T→∞

2

∫ T

0

(1− t

T
)R(t)dt = 2

∫ ∞
0

R(t)dt. (20)

Summing up (14), (19) and (20) yield

lim
T→∞

1

T

(
Vs(T, u)− (E[U(χ2

s, [0, T ], u)])2
)

= 2

∫ ∞
0

(I0(t)−Ks(u)2)dt+ 2

∫ ∞
0

R(t)dt <∞.

2

Comment concerning Assumption (A). As in the one dimensional Gaussian case, one
can remark that we did not use the full strength of Assumption (A) in the previous proof.
Actually, the result of Proposition 6 still holds under the following assumption: X is almost
surely of class C2, rX satisfies (15) and t 7→ |rX(t)|+ |r′X(t)|+ |r′′X(t)| is integrable and tends to
0 as t tends to ∞.

4 One dimensional case

In this section, we focus on the one dimensional case (d = 1) and we rewrite the formulas of
Section 2 in this case.
Let us consider a stationary centered Gaussian process X with variance 1, covariance function
r and second spectral moment λ = −r′′(0). Equations (5) and (8) become as follows,

E[ϕ(X,T, u)] = |T |C(u, λ) with C(u, λ) = (2π)−1 λ1/2 e−u
2/2 , (21)

and Var[ϕ(X,T, u)] ∼ |T |V (u) as |T | → +∞, with

V (u) =

∫
R

(G(u, t)D(t)−1/2 − C(u, λ)2) dt+ (2πλ)−1/2 g(u) , (22)

with D(t) = (2π)2 (λ2 − r′′(t)2) and g(u), G(u, t) are given by (7) in the case d = 1, i.e.

g(u) = E[ 1[u,∞)(X(0)) |X ′′(0)| ]
G(u, t) = E[1[u,∞)(X(0)) 1[u,∞)(X(t))X ′′(0)X ′′(t) |X ′(0) = X ′(t) = 0].

Next proposition provides a closed formula for the asymptotic variance V (u). It involves Gaus-
sian integrals that can be numerically evaluated.

We need some extra notations.

• γ := r(4)(0) so that the covariance matrix of (X(0), X ′′(0)) is

(
1 −λ
−λ γ

)
,

• φ denotes the standard Gaussian density, Φ the standard Gaussian distribution, and Φ(.) =
1− Φ(.).
• For any (u, α,m) ∈ R3, we introduce

Q(0)(u, α,m) =

∫ ∞
u

Φ(αx+m)φ(x)dx ; Q(1)(u, α,m) = −
∫ ∞
u

φ(αx+m)φ′(x)dx

Q(2)(u, α,m) = −
∫ ∞
u

φ′(αx+m)φ(x)dx ; Q(3)(u, α,m) =

∫ ∞
u

Φ(αx+m)φ′′(x)dx.
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Proposition 7. Let X be a Gaussian process that satisfies Assumption (A).

1. For any u in R,

g(u) = λφ(u)(2Φ(
λu

(γ − λ2)1/2
)− 1) + (

2γ

π
)1/2Φ((

γ

(γ − λ2)
)1/2u).

2. Let u ∈ R and t ∈ R be fixed. Let Γ(t) be the covariance matrix of the conditional
distribution

L(X(0), X(t), X ′′(0), X ′′(t) | X ′(0) = X ′(t) = 0)

and let denote by (lij)1≤i≥j≤4 the coefficients of any lower triangular matrix L such that
LLT = Γ(t). Then

G(u, t) = (l41l31 + l42l32 + l43l33)Q(0)(
u

l11
,− l21

l22
,
u

l22
)

+(l42l31 + l41l32)Q(1)(
u

l11
,− l21

l22
,
u

l22
)

+l42l32Q
(2)(

u

l11
,− l21

l22
,
u

l22
) + l41l31Q

(3)(
u

l11
,− l21

l22
,
u

l22
).

Proof.
1. Computation of g(u). By Equation (7), we have

g(u) = E[ 1[u,∞)(X(0)) |X ′′(0)| ]

=
1

2π(γ − λ2)1/2

∫ ∞
u

∫
R
|ẍ|e−

1
2(γ−λ2)

(γx2+2λxẍ+ẍ2)
dẍdx

=
1

2π(γ − λ2)1/2

∫ ∞
u

e−
1
2x

2

dx

∫
R
|ẍ|e−

1
2(γ−λ2)

(ẍ+λx)2

dẍ

Let us split the inner integral into ẍ > 0 and ẍ < 0, i.e.

1√
2π(γ − λ2)1/2

∫
R
|ẍ|e−

1
2(γ−λ2)

(ẍ+λx)2

dẍ := I1(x, λ, γ) + I2(x, λ, γ),

where

I1(x, λ, γ) =
1√

2π(γ − λ2)1/2

∫ ∞
0

ẍe
− 1

2(γ−λ2)
(ẍ+λx)2

dẍ

I2(x, λ, γ) =
1√

2π(γ − λ2)1/2

∫ ∞
0

ẍe
− 1

2(γ−λ2)
(ẍ−λx)2

dẍ = I1(x,−λ, γ).

We make the following change of variable, ẍ+λx
(γ−λ2)1/2

= y, to get

I1(x, λ, γ) =
1√
2π

∫ ∞
λx

(γ−λ2)1/2

((γ − λ2)1/2y − λx)e−
1
2y

2

dy

= (γ − λ2)1/2φ(
λx

(γ − λ2)1/2
)− λxΦ(

λx

(γ − λ2)1/2
)

I2(x, λ, γ) = (γ − λ2)1/2φ(
λx

(γ − λ2)1/2
) + λxΦ(− λx

(γ − λ2)1/2
).

But it holds that Φ(x) = Φ(−x). Thus

I1(x, λ, γ) + I2(x, λ, γ) = 2(γ − λ2)1/2φ(
λx

(γ − λ2)1/2
) + λx (2Φ(

λx

(γ − λ2)1/2
)− 1).
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Summing up, we have

g(u) =
1√
2π

∫ ∞
u

e−
1
2x

2[
2(γ − λ2)1/2φ(

λx

(γ − λ2)1/2
) + λx (2Φ(

λx

(γ − λ2)1/2
)− 1)

]
dx.

Integrating by parts the second integral, we get that it is equal to

λφ(u)(2Φ(
λu

(γ − λ2)1/2
)− 1) +

2λ2

√
2π(γ − λ2)1/2

∫ ∞
u

e−
1
2x

2

φ(
λx

(γ − λ2)1/2
)dx,

yielding

g(u) = λφ(u)(2Φ(
λu

(γ − λ2)1/2
)− 1) +

2γ√
2π(γ − λ2)1/2

∫ ∞
u

e−
1
2x

2

φ(
λx

(γ − λ2)1/2
)dx.

The second term is equal to

2γ

2π(γ − λ2)1/2

∫ ∞
u

e−
1
2x

2

e
− λ2x2

2(γ−λ2) dx =
γ

π(γ − λ2)1/2

∫ ∞
u

e
− γx2

2(γ−λ2) dx

= (
2γ

π
)1/2Φ((

γ

(γ − λ2)
)1/2u).

Finally,

g(u) = λφ(u)(2Φ(
λu

(γ − λ2)1/2
)− 1) + (

2γ

π
)1/2Φ((

γ

(γ − λ2)
)1/2u).

2. Computation of G(u, t). The conditional distribution

L(X(0), X(t), X ′′(0), X ′′(t) | X ′(0) = X ′(t) = 0)

is a 4-dimensional centered Gaussian distribution with covariance matrix given by

Γ(t) = C11(t)− C12(t)C22(t)−1C12(t)T , (23)

where C11(t) is the covariance matrix of the vector (X(0), X(t), X ′′(0), X ′′(t)), C22(t) is the
covariance matrix of the vector (X ′(0), X ′(t)) and C12(t) is the matrix of the covariances between
those two vectors. Precisely, we have

C11(t) =


1 r(t) −λ r”(t)
r(t) 1 r”(t) −λ
−λ r”(t) γ r(4)(t)
r”(t) −λ r(4)(t) γ

 ,

C22(t) =

(
λ −r”(t)

−r”(t) λ

)
and C12(t) =


0 r′(t)

−r′(t) 0
0 r(3)(t)

−r(3)(t) 0


Then, we can write

G(u, t) = E(1Z1>u1Z2>uZ3Z4) where Z = (Z1, Z2, Z3, Z4)
L
= N(0,Γ(t)). (24)

From now on, we remove the dependence on t. We begin by writing Z = LY, where L is a
lower triangular matrix such that LLT = Γ(t). Denoting by lij for i ≥ j the elements of L, we
have

Z1 = l11Y1 Z2 = l21Y1 + l22Y2 Z3 =

3∑
i=1

l3iYi Z4 =

4∑
i=1

l4iYi,
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and the expectation (24) can be written as

G(u, t) =

∫
R4

1{l11y1>u}1{l21y1+l22y2>u}(

3∑
i=1

l3iyi)(

4∑
i=1

l4iyi)φ(y)dy.

By expanding the second sum, the integral can be written as the sum of the following terms
(starting with index i = 4 term)

I4 = l44

∫
R4

1{l11y1>u}1{l21y1+l22y2>u}(

3∑
i=1

l3iyi)y4φ(y)dy = 0,

I3 = l43

∫
R4

1{l11y1>u}1{l21y1+l22y2>u}(

3∑
i=1

l3iyi)y3φ(y)dy

= l43l33

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}φ(y1)φ(y2)dy1dy2

(∫
R
y2

3φ(y3)dy3

)
= l43l33Q

(0)(
u

l11
,− l21

l22
,
u

l22
)

I2 = l42

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}(l31y1y2 + l32[(y2
2 − 1) + 1])φ(y1)φ(y2)dy1dy2

= l42l32Q
(0)(

u

l11
,− l21

l22
,
u

l22
) + l42l32

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}φ(y1)φ′′(y2)dy1dy2

+l42l31

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}φ
′(y1)φ′(y2)dy1dy2

= l42l32Q
(0)(

u

l11
,− l21

l22
,
u

l22
)− l42l32

∫ ∞
u
l11

φ′(
u

l22
− l21

l22
y1)φ(y1)dy1

−l42l31

∫ ∞
u
l11

φ(
u

l22
− l21

l22
y1)φ′(y1)dy1

= l42l32(Q(0)(
u

l11
,− l21

l22
,
u

l22
) +Q(2)(

u

l11
,− l21

l22
,
u

l22
)) + l42l31Q

(1)(
u

l11
,− l21

l22
,
u

l22
)

I1 = l41

∫
R4

1{l11y1>u}1{l21y1+l22y2>u}(

3∑
i=1

l3iyi)y1φ(y)dy

= l41

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}(l31y1 + l32y2)y1φ(y1)φ(y2)dy1dy2

= l41l32

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}φ
′(y1)φ′(y2)dy1dy2 + l41l31Q

(0)(
u

l11
,− l21

l22
,
u

l22
)

+l41l31

∫
R2

1{l11y1>u}1{l21y1+l22y2>u}φ
′′(y1)φ(y2)dy1dy2

= l41l31(Q(0)(
u

l11
,− l21

l22
,
u

l22
) +Q(3)(

u

l11
,− l21

l22
,
u

l22
)) + l41l32Q

(1)(
u

l11
,− l21

l22
,
u

l22
).

In this manner, we get the result. 2
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