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Abstract: In the present paper, we deal with a stationary random field X : Rd → R and we
assume it is partially observed through some level functionals. We aim at providing a method-
ology for a test of Gaussianity based on this information. More precisely, the level functionals
are given by the Euler characteristic of the excursion sets above some levels. On the one hand,
we study the properties of these level functionals under the hypothesis that the random field
X is Gaussian. In particular, we focus on the mapping that associates to any u the expected
Euler characteristic of the excursion set above level u. On the other hand, we study the same
level functionals under alternative distributions of X, such as chi-square, harmonic oscillator and
shot-noise. In order to validate our methodology, a part of the work consists in numerical ex-
perimentations. We generate Monte-Carlo samples of Gaussian and non-Gaussian random fields
and compare, from a statistical point of view, their level functionals. Simulations are performed
both in one dimensional case (d = 1) and in two dimensional case (d = 2), using R.

MSC 2010 subject classifications: Primary 62G10 ; secondary 60G10, 60G15, 60G60.
Keywords and phrases: Test of Gaussianity, Gaussian fields, Excursion sets, Euler character-
istic, Crossings.

Introduction

The problem of determining whether an i.i.d random sample comes from a Gaussian distribution has
been studied extensively. In the case where the mean and the variance of the random variable are
known, one can use a classical goodness of fit test. However, if these parameters need to be estimated
the test of Lillifors and a variant of the Cramer-Von Mises test, with estimated parameters, are well
adapted. These tests are no more distribution-free and depend on the true value of the parameters.
The p-values must be obtained by simulations.
The situation becomes more complicated when the sample comes from a stationary stochastic process
satisfying some mixing conditions. For this type of problem, some tests have been designed to determine
whether the one dimensional marginals are Gaussian. We can cite, by way of illustration: the Eps test
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[9] based on the empirical characteristic function; the test built by Lobato and Velasco [14] that uses
a test of symmetry and kurtosis; the test of Subba and Gabr [20] where the bi-spectral density is the
basis for the test. A remarkable exception is the test built in Cuesta-Albertos et al.[7]. There, the
method for constructing the test uses a one dimensional random projection, after which the projected
sample is subjected to a test that infers whether the one dimensional marginal is Gaussian. Actually,
the random projection procedure allows one to test whether the whole distribution of the process is
Gaussian and is not limited to marginal distributions.
In the present article, we deal with a real valued stationary random field -or a multivariate process-
and we use the information given by level functionals of the process to build a test of Gaussianity. The
level functionals are the Euler characteristic (EC) of the excursion sets above some levels. Our first
motivation comes from the article [1] Section 7 (Model identification). In the aforementioned paper,
Adler suggests to use the EC of the excursion sets as a way to determine what is the actual distribution
of the observed process. His words can describe better than ours the main goal “Suppose that we are
given a real valued random field f on R3, which we observe on the unit cube [0, 1]3. Our problem is that
we are not certain what the distribution of the field is. For simplicity, we shall assume that the choices
are Gaussian and χ2, where both are assumed to be stationary and isotropic. Then one way to choose
between the two is to calculate, from the data, an empirical Euler characteristic curve, .....” c.f. [1]. If
the data is Gaussian, then the theoretical curve is a very precise one, depending on the second spectral
moment of the process and some other invariant quantities. Otherwise, if it is a χ2-process, or whatever
any other model, a completely different curve appears. In what follows, we offer a methodology that
tries to implement these ideas.
The idea of observing level functionals of a random field in order to infer some information on the
distribution of the field is not new. In [13], Lindgren offers estimators for the second spectral moment
of an univariate Gaussian process that are based on the number of upcrossings at various levels. In [6],
Cabaña builds a test of isotropy, for a two dimensional random field, that is based on the perimeter
and the area of excursion sets. In [21], the covariance function of a bivariate Gaussian field is inferred
from the excursion sets Euler characteristic. The same idea has inspired many precursors working
in materials science, see for instance [18], [15]. In those papers, the modelling of images or slices of
a two-phases materials (even more complicated) is achieved by using a two dimensional stationary
Gaussian field that has been thresholded at a certain level. The observed data are the lengths of the
respective two phases along any line extracted from the image. The aim of these studies is to identify
the Gaussian covariance function. Let us also mention [2] where the authors start from the observation
of a neurological space-time signal at some moderate levels and deduce some parameters that help
in estimating the probability of exceeding very high values. Not far from this thema, one can find
the question of exceedances or the study of extreme values, when considering high levels. We will not
go further in that direction and, at the opposite, stay with the observation of moderate levels. In all
the mentioned papers, the field that is under study is assumed to be Gaussian. On the contrary, in
the present paper, Gaussianity is not assumed but has to be inferred without knowing the spatial
correlation.
To be more precise, we aim at proving that the function that associates u to the mean excursions
EC at level u provides a signature of the distribution of the random field under study. Although a
so complex information as the knowledge of the whole distribution cannot be summarize in a single
function, our guess is that the shape of its graph could be enough to discriminate between Gaussianity
and non Gaussianity. Our main tool will be a Central Limit Theorem for the EC of an excursion set of
an isotropic Gaussian random field. This asymptotic normality takes place when the domain grows to
Rd. The result is proved in [10] with the help of a Breuer-Major theorem [16]. We will also need some
generalisations, extensions and explicit computations of this result. In order to keep the methodological
spirit of the present paper, we will give precise statements but we will refer to the companion paper
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[8] for the proofs.

Outline of the paper. Section 1 contains the general setting and the definition of the observa-
tion tool, namely the Euler characteristic of excursion sets. In Section 2, we focus on the Gaussian
hypothesis. Assuming that the field under study X is a stationnary Gaussian field, we give explicit
formulas for the first two moments of the excursions EC (the first moment formula is well known, the
second moment formula is new, see Proposition 1 and Proposition 2). We also recall the Central Limit
Theorem satisfied by the excursions EC when the domain tends to Rd (see [10]) and give an extension
for the joint excursions EC concerned with different levels and disjoint domains, see Proposition 3. It
allows us to describe the situation in term of a statistical model with observations whose distribution
is known under the null hypothesis H0. Section 3 is concerned with the study of three alternative
distributions of the observed random field: χ2, Kramer oscillator and shot noise. In all cases, we give
an explicit formula for the mean EC of excursion sets. Section 4 is devoted to numerical illustrations
for univariate processes. We generate trajectory samples of stationary processes, Gaussian and non
Gaussian, and compare the theoretical mean function of the excursions EC and the empirical one.
We also build some chi-square statistics in order to quantify the deviation between Gaussian and non
Gaussian case and to illustrate the Central Limit Theorem presented above. At last, in Section 5, we
go further in the numerical study by considering two dimensional random fields. We generate Gaussian
and χ2 samples and compare with the theoretical situation. All the random generations and numerical
computations are performed with R.

1. Setting

All over the paper, we consider a real valued random field X defined on Rd that satisfies the following
assumption.

Assumption (A): The random field X is stationary, isotropic, E(X(0)) = 0, Var(X(0)) = 1 and
almost all realisations belong to C3(Rd). Let ∇2X(t) stand for the 1

2d(d+ 1) random vector that con-
tains the upper coefficients of the symmetric Hessian matrix X ′′(t) and X(t) for the d+ 1

2d(d+ 1) + 1
random vector (X ′(t),∇2X(t), X(t)). For any fixed t in Rd,

the covariance matrix of the random vector (X(0),X(t)) has full rank.

We denote by r the covariance function of X, r(t) = Cov(X(0), X(t)) , t ∈ Rd, which belongs to
C6(Rd). The isotropy assumption implies that the Hessian matrix r′′(0) is equal to −λ Id for some
λ > 0, usually named as second spectral moment. At last, r is such that,

ψ(t)→ 0 when ‖t‖ → +∞ and ψ ∈ L1(Rd) ,

where ψ(t) = max
(∣∣∣∂kr

∂tk
(t)
∣∣∣ ; k = (k1, . . . , kd) ∈ Nd, k1 + . . .+ kd ≤ 4

)
.

Notations.
• for any u ∈ R and any compact T ⊂ Rd, we call “excursion set of X above the level u within the
domain T” the following set {t ∈ T : X(t) ≥ u},
• pZ(.) denotes the probability density function of any random vector Z (assuming it exists),
• |.| denotes without any ambiguity, either the absolute value, or the d-dimensional Lebesgue measure.

Euler characteristic.
The Euler characteristic of a compact domain K in Rd can be heuristically defined in the case d = 1 as
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the number of connected components of K, or in the case d = 2 as the number of connected components
minus the number of holes in K. In the case where K is an excursion set {t ∈ T : X(t) ≥ u},
with T a rectangle in Rd and u a real number, there exists a rather tractable formula that uses the
theory of Morse functions, see [3] Chapter 9 for instance. It states that the Euler characteristic of
{t ∈ T : X(t) ≥ u} is equal to a sum of two terms. The first one only depends on the restriction of X
to the interior of T , it is given by the quantity ϕ(X,T, u) defined in Equation (1) below. The second
one exclusively depends on the behaviour of X on the l-dimensional faces of T , with 0 ≤ l < d. From
now on, we focus on the term ϕ(X,T, u), named as “modified Euler characteristic” in [10], and we still
call it Euler characteristic (EC). It is defined by the following,

ϕ(X,T, u) =

d∑
k=0

(−1)kµk(T, u), where (1)

µk(T, u) = #{t ∈ T̊ : X(t) ≥ u, X ′(t) = 0, index (X ′′(t)) = d− k},

and the “index” stands for the number of negative eigenvalues.

Special case 1: dimension one. When d = 1, writing [0, T ] instead of T for a while, Equation
(1) becomes

ϕ(X, [0, T ], u) = #{local maxima of X above u in (0, T )} (2)

−#{local minima of X above u in (0, T )}.

Morse’s theorem says that this quantity is linked with the number of up-crossings,

U(X, [0, T ], u) = #{t ∈ [0, T ] : X(t) = u, X ′(t) ≥ 0} ,

by the relation

ϕ(X, [0, T ], u) + 1{X(0)>u,X′(0)<0} + 1{X(T )>u,X′(T )>0} = U(X, [0, T ], u) + 1{X(0)>u}.

Taking expectation in both expressions and using stationarity yield the next formula that we will use
in Sections 3 and 4,

E[ϕ(X, [0, T ], u)] = E[U(X, [0, T ], u)]. (3)

Special case 2: dimension two. When d = 2, Equation (1) can be rewritten in the following way.
With the notations introduced within this equation, µ0(T, u) denotes the number of local maxima
above u, µ2(T, u) denotes the number of local minima above u and µ1(T, u) the number of local saddle
points above u. Hence,

ϕ(X,T, u) = #{local extrema of X above u in T̊} (4)

− #{local saddle points of X above u in T̊}.

2. Under Gaussian hypothesis

In this section, we assume that X is Gaussian and satisfies all the assumptions described in Section 1.
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2.1. First two moments of the Euler characteristic of an excursion set

Let T be a cube in Rd. This section is devoted to explicit formulas for the first two moments of
ϕ(X,T, u). They are based on the decomposition (1) and on Rice formulas for the factorial moments
of µk(T, u) (see for instance [3] Chapter 11 or [4] Chapter 6).

In particular, using the stationarity of X, the expectation can be computed as follows

E[ϕ(X,T, u)] = (−1)d
∫
T

E[1[u,∞)(X(t)) det(X ′′(t)) |X ′(t) = 0] pX′(t)(0) dt

= (−1)d |T | (2πλ)−d/2 E[1[u,∞)(X(0)) det(X ′′(0))] .

Moreover, it is proved in [3] Lemma 11.7.1, through a regression and thanks to Wick’s formula, that

E[1[u,∞)(X(0)) det(X ′′(0))] = (−1)d (2π)−1/2 λdHd−1(u) e−u
2/2 ,

where Hk stands for the Hermite polynomial of order k. Hence, the next formula holds

E[ϕ(X,T, u)] = |T | (2π)−(d+1)/2 λd/2Hd−1(u) e−u
2/2 . (5)

In what follows, we will be particularly interested in the next function

C(u) = (2π)−(d+1)/2 λd/2Hd−1(u) e−u
2/2 , (6)

that yields E[ϕ(X,T, u)] = |T |C(u). Equation (6) shows that C(u) implicitly depends on X through
its dimension parameter d and its second spectral moment λ. Whenever necessary in the next sections,
we will emphasize this dependence by writing C(u) = C(u, λ).

For the second moment, a so nice formula as (5) seems to be out of reach. Nevertheless, in the next
proposition, we provide the second moment as an integral that can be numerically evaluated (see also
[22] for another formula, which is valid under restrictive assumptions on X).
We will use the following functions, defined for u ∈ R and t ∈ Rd,

g(u) = E[ 1[u,∞)(X(0)) |det(X ′′(0))| ]
D(t) = (2π)2d det(λ2Id − r′′(t)2)

G(u, t) = E[1[u,∞)(X(0)) 1[u,∞)(X(t)) det(X ′′(0)) det(X ′′(t)) |X ′(0) = X ′(t) = 0]

 (7)

Proposition 1. Assume that X is Gaussian and satisfies Assumption (A).
Then, for any u ∈ R, the map t 7→ G(u, t)D(t)−1/2 is integrable on any compact set in Rd and

E[ϕ(X,T, u)2] =

∫
Rd

|T ∩ (T − t)|G(u, t)D(t)−1/2 dt+ |T | (2πλ)−d/2 g(u) .

Proof. We give here a sketch of the proof. For more details, see [8].
Integrability comes from [10] Proposition 1.1 since X ∈ C3. Equation (1) yields

ϕ(X,T, u)2 =
∑

0≤k≤d

µk(T, u) +
∑

0≤k≤d

µk(T, u)(µk(T, u)− 1)

+
∑

0≤k 6=l≤d

(−1)k+lµk(T, u)µl(T, u).
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The expectation of the first term is evaluated thanks to Rice formula,

E[
∑

0≤k≤d

µk(T, u)] = |T | g(u) pX′(0)(0) .

For the second and third terms, we use again a Rice formula, adapted from the second factorial moment
formula, to get

E[ϕ(X,T, u)2] =

∫
Rd

|T ∩ (T − t)|G(u, t) pX′(0),X′(t)(0, 0) dt+ |T | g(u) pX′(0)(0).

It remains to compute the probability density function of (X ′(0), X ′(t)). The covariance matrix of this

vector is equal to

(
λId −r′′(t)
−r′′(t) λId

)
and so pX′(0),X′(t)(0, 0) = D(t)−1/2. �

2.2. Asymptotic variance

In the next proposition, we let the cube T grow to Rd and we give a closed formula for the asymptotic
variance of ϕ(X,T, u). Actually, we consider

T (N) = {Nt : t ∈ T}

the image of a fixed cube T by the dilation t 7→ Nt and we let N grow to +∞.

Proposition 2. Assume that X is Gaussian and satisfies Assumption (A) and let T be a cube in Rd.
Then for any u in R,

lim
N→+∞

Var[|T (N)|−1/2 ϕ(X,T (N), u)] = V (u) < +∞

with

V (u) =

∫
Rd

(G(u, t)D(t)−1/2 − C(u)2) dt+ (2πλ)−d/2 g(u) , (8)

where C(u), g(u), G(u, t), D(t) have been defined in (6) and (7).

Note that a more explicit formula for (8) can be performed by using Gaussian regressions for the
computation of the expectation functions G(u, t) and g(u) (see [8] in the one dimensional case).

Proof. From Proposition 1, for a fixed cube T ,

Var[|T |−1/2ϕ(X,T, u)]

=

∫
Rd

|T ∩ (T − t)|
|T |

G(u, t)D(t)−1/2 dt+ (2πλ)−d/2 g(u)− |T |−1 (Eϕ(X,T, u))2

=

∫
Rd

|T ∩ (T − t)|
|T |

(G(u, t)D(t)−1/2 − C(u)2) dt+ (2πλ)−d/2 g(u) ,

where we have used the relation |T |2 =
∫
Rd |T ∩ (T − t)| dt to get the last line. Hence, the asymptotic

formula can easily be derived using Lebesgue dominated convergence Theorem conditionaly to the fact
that t 7→ G(u, t) D(t)−1/2 − C(u)2 belongs to L1(Rd). This point is proved in [8] Lemma 3. �

Beyond the existence of a finite asymptotic variance as stated in the previous proposition, ϕ(X,T (N), u)
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satifies a central limit theorem. Actually, Theorem 2.6 of [10] states that the next convergence holds
in distribution

|T (N)|−1/2 (ϕ(X,T (N), u)− E[ϕ(X,T (N), u)])
distr−→
N→∞

N (0, V (u)) , (9)

where N (0, V (u)) stands for the centered Gaussian distribution with variance V (u).

2.3. Disjoint domains and various levels

We now consider two domains T1 and T2 that are disjoint and two levels u1 and u2 that can be equal
or not.

Proposition 3. Assume that X is Gaussian and satisfies Assumption (A).
(a) Let T1 and T2 be two cubes in Rd such that |T1| = |T2| and dist(T1, T2) > 0 and let u1 and u2

belong to R. For any integer N > 0, we introduce

Z
(N)
i = |T (N)

i |−1/2 (ϕ(X,T
(N)
i , ui)− E[ϕ(X,T

(N)
i , ui)]) for i = 1, 2.

As N → +∞,
(
Z

(N)
1 , Z

(N)
2

)
converges in distribution to a centered Gaussian vector with diagonal

covariance matrix

(
V (u1) 0

0 V (u2)

)
where V (ui) is prescribed by (8).

(b) Let T be a cube in Rd and let u1 and u2 belong to R. For any integer N > 0, we introduce

ζ
(N)
i = |T (N)|−1/2 (ϕ(X,T (N), ui)− E[ϕ(X,T (N), ui)]) for i = 1, 2.

As N → +∞,
(
ζ

(N)
1 , ζ

(N)
2

)
converges in distribution to a centered Gaussian vector with covariance

matrix

(
V (u1) V (u1, u2)

V (u1, u2) V (u2)

)
.

Proof. We give here a sketch of proof of point (a). For more details, see Proposition 4 in [8].

As the distance between T
(N)
1 and T

(N)
2 goes to infinity, the random variables Z

(N)
1 and Z

(N)
2 are

asymptotically independent in such a way that Cov(Z
(N)
1 , Z

(N)
2 ) goes to 0. Together with the con-

vergence result in (9), it implies that the covariance matrix of the random vector (Z
(N)
1 , Z

(N)
2 ) tends

to

(
V (u1) 0

0 V (u2)

)
. Hence, using the same arguments, it is not difficult to establish that any linear

combination xZ
(N)
1 + yZ

(N)
2 has a Gaussian limit in distribution.

Point (b) is proved in [10] Theorem 2.5. There, the covariance V (uk, ul) is prescribed by a series. Let
us mention that, although convergent, the series expansion is so awkward that it cannot be used in
practise to evaluate V (uk, ul). �

2.4. Statistical model

We are now able to built a test for the hypothesis H0: “the random field X is Gaussian”.
Actually, we assume that X is observed through the family (Y ik )1≤i≤m;1≤k≤p where

Y ik =
ϕ(X,Ti, uk)

|Ti|
, i = 1, . . . ,m ; k = 1, . . . , p ,
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for disjoint domains T1, . . . , Tm that have the same large volume and are at large distance one from
the others, and various levels u1 ≤ . . . ≤ up.

Thanks to Proposition 3 and Equation (5), one can write the following approximation valid under
H0,

Y ik = C(uk, λ) + εik , i = 1, . . . ,m ; k = 1, . . . , p , (10)

where (εik)i,k is a mp-dimensional centered Gaussian vector with covariance

Cov(εik, ε
j
l ) = Cov(Y ik , Y

j
l ) = δij V (uk, ul)/|Ti| . (11)

The deterministic value C(uk, λ) is given by Equation (6). It depends on the level uk and on the field
X only through its second spectral moment λ. For k = l, V (uk, ul) = V (uk) is given by (8), and for
k 6= l, since no explicit formula is available for V (uk, ul) in practise, it has to be estimated.

Using the statistical model (10)-(11), we will focus on two particular cases.

(a) Diagonal case. We take m disjoint domains T1, . . . , Tm and m levels u1, . . . , um, such that each
level uk is associated to a single domain Tk. In this setting we have m observations Y 1

1 , . . . , Y
m
m

and a diagonal covariance matrix equal to diag(V (u1)/|T1|, . . . , V (um)/|Tm|).
(b) Crossed case. We take m disjoint domains T1, . . . , Tm and p levels u1, . . . , up, such that different

levels uk are associated to the same domain Ti. In this setting we have mp observations (Y ik )i,k
and their covariance matrix is given by (11).

3. Under alternative hypothesis

3.1. χ2 hypothesis

In this section, we deal with χ2 distributions instead of Gaussian ones. Let us fix s, a non negative
integer, as the degrees of freedom.
We start with {Xi(.)}si=1, an independent sample of centered stationary Gaussian fields on Rd that
satisfy Assumption (A) of Section 1. We denote by rX their covariance function and recall that
rX(0) = 1. Consider now the following stationary fields

χ2
s(·) =

s∑
i=1

(Xi(·))2 and Z(s)(.) =
1√
2s

(

s∑
i=1

(Xi(·))2 − s) .

Note that for any t ∈ Rd, χ2
s(t) is a Chi-square random variable with s degrees of freedom. One get

readily that
E[Z(s)(0)] = 0, Var[Z(s)(0)] = 1, E[Z(s)(t)Z(s)(0)] = rX(t)2.

Therefore, Z(s) also satisfies Assumption (A). Moreover, its second spectral moment is equal to λ with
λ = −((rX)2)′′(0) = −2r′′X(0).

We are now interested in the expectation of the Euler characteristic of

{t ∈ T : Z(s)(t) ≥ u} = {t ∈ T : χ2
s(t) ≥ s+ u

√
2s} ,

for a fixed cube T ⊂ Rd and a fixed level u in R. A formula for the mean EC of excursion sets of χ2

fields is given in [23], Theorem 3.5 (see also Theorem 15.10.1 in [3]). We can then establish that

E[ϕ(Z(s), T, u)] (12)

= |T |
(
λ

π

)d/2
e−(s+u

√
2s)/2 (s+ u

√
2s)(s−d)/2

2(s−2+2d)/2Γ(s/2)
Pd,s(s+ u

√
2s) 1[0,∞)(s+ u

√
2s) ,



Di Bernardino, Estrade, León/A test of Gaussianity 9

where Pd,s(.) is a polynomial of degree d − 1 with integer coefficients. In particular, P1,s(u) = 1 and
P2,s(u) = u− s+ 1. Let us quote that we have to handle carefully with the second spectral moment of
the Xi’s , which is equal to λ/2 in our context.

Let us recall that, in dimension one, the mean Euler characteristic of the excursion above the level
u is equal to the mean number of upcrossings at level u (see Equation (3)). With this point of view,
Formula (12) can also be found in [19] for instance. Keeping with dimension one, it is proved in [8]
(see Proposition 6) that there exists a finite asymptotic variance vs(u) such that

lim
N→+∞

Var
(
|T (N)|−1/2 ϕ(Z(s), T (N), u)

)
= vs(u) . (13)

3.2. Kramer oscillator hypothesis

We work in dimension d = 1. Let us consider the following system of stochastic differential equations,
well known as Kramer oscillator system,

dQ(t) = P (t)dt,

dP (t) = σdW (t)− (cP (t) + V ′(Q(t))dt,

}
(14)

where V (q) = a0q
4− a1q

2 for positive constants a0 and a1, σ and c are also positive constants, and W
is a Brownian motion. The asymptotic properties of such a system have been studied for instance in
[25]. Besides, it is well known that the Markov process (Q,P ) has an invariant measure µ that can be
written (up to a numerical constant factor) as

dµ(p, q) = exp

(
− 2c

σ2
(
p2

2
+ V (q))

)
dpdq.

From now on, we assume that (Q(0), P (0))’s distribution is proportional to µ, so that (Q,P ) is station-
ary. Here, we are interested in the process Q. It is stationary, centered, but certainly not Gaussian since
its distribution is proportional to exp

(
− 2c

σ2V (q)
)
dq. Nevertheless, the distribution of its derivative

process, Q′ = P , is actually Gaussian with zero mean and variance equal to σ2

2c . An application of Rice
formula gives the mean number of upcrossings of Q in [0, T ] at any level u and hence, using (3), we
get

E[ϕ(Q, [0, T ], u)] = E[U(Q, [0, T ], u)]

= T

(
1√

2π(σ2/2c)

∫ ∞
0

p exp−(
c

σ2
p2)dp

)
pQ(u)

=
T σ

2
√
πc

pQ(u) with pQ(u) =
exp(− 2c

σ2V (u))∫
R exp(− 2c

σ2V (q))dq
(15)

Moreover, let us remark that a suitable choice of the parameters σ, c, a0, a1 allows us to get Var(Q(0)) =
1 and Var(Q′(0)) = λ, so that Q satisfies the same moments constraints as the generic process X in

Section 1. Actually, it is sufficient to prescribe σ2

2c = λ and to solve the following non linear equation∫
R

exp
(
− 2c

σ2
(a0q

4 − a1q
2)
)
dq =

∫
R
q2 exp

(
− (

2c

σ2
(a0q

4 − a1q
2)
)
dq. (16)
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3.3. Shot noise hypothesis

Let us consider a last alternative hypothesis. We work in dimension d = 1 and we introduce the
following shot noise process S,

S(t) =

∑
ξ∈Φ

1[0,a](t− ξ)

− λa , t ∈ R , (17)

where a > 0 and Φ is a homogeneous Poisson point process on R with intensity λ > 0. The process S
is clearly stationary with zero mean and variance equal to λa.

Moreover, its values almost surely belong to the discrete set {k − λa, k ∈ N}. If a whole trajectory
of S could be observed, its discrete shape would clearly indicate the right choice between Gaussian and
Poissonian hypothesis. If only excursion sets of S above a few levels are observed, the choice remains
as clear when considering the mean number of “upcrossings”. Note that the notion of upcrossings has
to be properly defined in this context, since S is not continuous. Actually, it is proved in [5] (see also
[11] for a different approach) that for any level u ∈ R \ {k − λa, k ∈ N} and any interval T ,

E[U(S, T, u)] = |T |λe−λa
∑
k≥0

(λa)k

k!
1{k<u+λa<k+1} . (18)

This formula, which obviously differs from (5), is an indicator that enables to discrimate between a
Gaussian or a Poissonian model. Once again, let us emphasize that the EC of excursion sets really
contains information about the process under study. See Section 4.6 for a numerical illustration.

4. Univariate numerical illustrations

In this section, we focus on the one dimensional case and hence only deal with univariate processes.

4.1. First and second moments: E[ϕ(X, T, u)] and V (u)

We rewrite formulas (5) and (8) of Section 2 in the case d = 1 under H0 hypothesis, i.e. when X
is a stationary centered Gaussian process with variance 1, covariance function r and second spectral
moment λ = −r′′(0):

E[ϕ(X,T, u)] = |T |C(u, λ) with C(u, λ) = (2π)−1 λ1/2 e−u
2/2 , (19)

and Var[ϕ(X,T, u)] ∼ |T |V (u) as |T | → +∞, with

V (u) =

∫
R

(G(u, t)D(t)−1/2 − C(u, λ)2) dt+ (2πλ)−1/2 g(u) , (20)

with D(t) = (2π)2 (λ2− r′′(t)2) and g(u), G(u, t) are given by (7). In [8] Proposition 8, we give explicit
formulas for these functions in the case d = 1. They are used in the following to give a numerical
evaluation of V (u) for various values of u.

In order to illustrate (19) and (20), we generate a 300 Monte-Carlo sample of a stationary centered

Gaussian process with covariance function r(t) = e−t
2

. Note that it implies the second spectral moment
λ = 2. In order to evaluate ϕ(X,T, u) on each realization of X, we use Equation (2) for various values
of u. Comparison between theoretical formulas and empirical counterparts are shown in Figure 1.

Furthermore, as shown in Figure 1, Equation (19) can be used to understand the behaviour of the
rate of exceedances above high thresholds u. This aspect can be very useful in many applications as
described in the seminal work of Rice [17] or in [24].
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Fig 1. Left: Theoretical u 7→ E[ϕ(X,T, u)] from Equation (19) for |T | = 200 (full line). We also display, for different

levels u, the empirical counterpart Ê[ϕ(X,T, u)] (red dots) based on 300 Monte Carlo simulations. The map u 7→
|T |C(u, λ̂) from Equation (19), by using the estimated spectral moment λ̂ as in Section 4.2, is represented in dashed
line. Right: Theoretical u 7→ V (u) from Equation (20) for various values of u (black triangles) and empirical variance
of |T |−1/2 ϕ(X,T, u) (red dots) based on 300 Monte Carlo simulations with |T | = 200 and the same values of u. X(·)
is a Gaussian univariate process (d = 1) with E(X(0)) = 0, Var(X(0)) = 1 and covariance function r(t) = e−t2 . In this
case λ = 2.

4.2. Estimation of the second spectral moment

It has been already quoted that the second spectral moment of X, denoted by λ, plays an important
role in Equation (19). Actually, all the influence of X in E[ϕ(X,T, u)] is summarised through this
parameter. From our statistical point of view, since we aim at inferring the distribution of X from
observations of the excursions of X, parameter λ is unknown a priori. It has to be estimated from the
observed level functionals X.

We estimate γ = λ1/2 by using an unbiased estimator introduced by Lingren [13] for stationary,
zero-mean, Gaussian processes. It is based on p different levels u1 < u2 < . . . < up by the following
prescription,

γ̂ =

p∑
k=1

ckγ̂uk
with γ̂uk

= 2π T−1 eu
2
k/2 ϕ(X, [0, T ], uk) . (21)

Actually, in the paper of Lingren, the number of up-crossings of level uk in the interval [0, T ], namely
U(X, [0, T ], uk), is used instead of ϕ(X, [0, T ], uk) (recall the analogy described in Section 1). As a
general rule, considering

p = 3 , (u1, u2, u3) = (−u, 0, u) with u =
2

3

√
V ar(X(t)) , c1 = c2 = c3 =

1

3

seems to be an acceptable choice (see discussion in [13]). In this case λ̂1/2 = γ̂ = 1
3 (γ̂−u + γ̂0 + γ̂−u).

An illustration is given in Figure 2. This estimation of λ1/2 is also used in Figure 1 (left), dashed line.

4.3. Chi-square statistics

In the following we will consider particular sub-cases of the two cases presented in Section 2.4, diagonal
case (a) and crossed case (b). In particular, we focus on the four next models.
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Fig 2. Boxplot, based on 300 Monte Carlo simulations, of the ratio between theoretical value λ1/2 and estimated value γ̂
given by (21). X(·) is a Gaussian univariate process (d = 1) with E(X(0)) = 0, Var(X(0)) = 1 and covariance function

r(t) = e−t2 . In this case λ = 2. We choose p = 3, ci = 1/3 and u = (−2/3, 0, 2/3).

(a) Diagonal case. Each level uk is associated to a single domain Tk. We have m observations
Y 1

1 , . . . , Y
m
m in the statistical model (10).

(a.1) Case with same level u, i.e. u1 = . . . = um = u, and m disjoint domains T1, . . . , Tm.

(a.2) Case with different levels u1 < . . . < um and m disjoint domains T1, . . . , Tm.

(b) Crossed case. Different levels uk can be associated to the same domain Ti. We have mp obser-
vations (Y ik )1≤i≤m,1≤k≤p in (10).

(b.1) Case with one single domain T (m = 1) and p different levels u1 < . . . < up.

(b.2) Case with m disjoint domains T1, . . . , Tm and p different levels u1 < . . . < up.

We will now associate Chi-square statistics with each of the four aforementioned models. For the
diagonal case (a.1), we consider

Fa1 :=

m∑
i=1

(
ϕ(X,Ti, u)− E[ϕ(X,Ti, u)]√

|Ti|V (u)

)2

F̃a1 :=

m∑
i=1

ϕ(X,Ti, u)− Ê[ϕ(X,Ti, u)]√
V̂ ar(ϕ(X,Ti, u))

2

where E[ϕ(X,Ti, u)] = |Ti|C(u, λ) is given by (19) and V (u) is given by (20). Furthermore, Ê and

V̂ ar in F̃a1 are respectively the empirical mean and the empirical variance on considered Monte-Carlo
sample generations.

Under H0 hypothesis, a consequence of (10)-(11) is that both random variables Fa1 and F̃a1 are
approximately χ2

m distributed, i.e. central Chi-square with m degrees of freedom. We evaluate Fa1

and F̃a1 on 300 Monte Carlo simulations. We choose m = 3 and u = 1.2. The QQplot comparison
between the obtained empirical quantiles with the theoretical quantiles of a centered χ2

m distribution
is gathered in Figure 3 (first and second panels).

Consider now the diagonal case (a.2). Let

Fa2 :=

m∑
i=1

(
ϕ(X,Ti, ui)− E[ϕ(X,Ti, ui)]√

|Ti|V (ui)

)2

F̃a2 :=

m∑
i=1

ϕ(X,Ti, ui)− Ê[ϕ(X,Ti, ui)]√
V̂ ar(ϕ(X,Ti, ui))

2
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Fig 3. First and second panels. QQplot based on 300 Monte Carlo simulations: quantiles of Fa1, F̃a1 versus quantiles
of the χ2

m distribution for m = 3 disjoint domains T1, T2, T3 with |Ti| = 200 and a single level u = 1.2. Third and fourth

panels. QQplot based on 300 Monte Carlo simulations: quantiles of Fa2, F̃a2 versus quantiles of the χ2
m distribution for

m = 3 disjoint domains T1, T2, T3 with |Ti| = 200 and different levels u1 = −1.2, u2 = 0, u3 = 1.2. X(·) is a Gaussian

univariate process (d = 1) with E(X(0)) = 0, Var(X(0)) = 1 and covariance function r(t) = e−t2 with λ = 2.

where Ê and V̂ ar are respectively the empirical mean and the empirical variance on considered Monte
Carlo sample generations. By using again the statistical model in (10)-(11), both Fa2 and F̃a2 are
approximately χ2

m distributed. An illustration is presented in Figure 3 (third and fourth panels), by
choosing 300 Monte Carlo simulations, m = 3, |Ti| = 200 and different levels u1 = −1.2, u2 = 0, u3 =
1.2.

For the crossed case (b.1), let us now consider different levels u1 < . . . < up and one single
domain T , i.e. m = 1. Let us define

Fb1 := ||Λ−1(Z− E[Z])||2, F̃b1 := ||Λ̂−1(Z− Ê[Z])||2,

where Z is the p-dimensional Gaussian vector given by

Z =

(
ϕ(X,T, uk)

|T |1/2

)
1≤k≤p

,

Ê is the empirical mean on the Monte-Carlo simulations and the matrices Λ and Λ̂ are defined below.
Let Γ = (V (uk, ul))1≤kl,≤p be the (theoretical) covariance matrix of Z and let Λ stand for any square

root of Γ. Similarly, let Γ̂ be the empirical covariance matrix of Z evaluated on the Monte-Carlo sample
generations, and let Λ̂ be any of its square root matrix. Hence, Fb1 and F̃b1 are both approximately χ2

p

distributed. An illustration of the behaviour of F̃b1 is presented in Figure 4 (first panel), by choosing
300 Monte-Carlo simulations, m = 1, |T | = 200 and p = 3 different levels u1 = −1.5, u2 = 0, u3 = 1.5.

Consider now the crossed case (b.2). In this setting we have m disjoint domains T1, . . . , Tm and
p different levels u1 < . . . < up. Let

Fb2 :=

m∑
i=1

||Λ−1(Zi − E[Zi])||2, F̃b2 :=

m∑
i=1

||Λ̂(i)
−1(Zi − Ê[Zi])||2,
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where for any i ∈ {1, . . . ,m}, Zi is the p-dimensional Gaussian vector given by

Zi =

(
ϕ(X,Ti, uk)

|Ti|1/2

)
1≤k≤p

and Ê is the empirical mean on the Monte-Carlo simulations. Let Γ = (V (uk, ul))1≤kl,≤p be the (theo-

retical) covariance matrix of Zi. Let Λ stand for any square root of Γ. Similarly, let Γ̂(i) be the empirical

covariance matrix of Zi evaluated on the Monte-Carlo sample generations, and let Λ̂(i) be any of its

square root matrix. Hence, ||Λ−1(Zi−E[Zi])||2 and ||Λ̂(i)
−1(Zi− Ê[Zi])||2 are both approximately χ2

p

distributed.
Moreover, since for 1 ≤ i 6= j ≤ m, the Gaussian vectors Zi and Zj are independent, Fb2 and F̃b2 are
still centered χ2 distributed with now mp degrees of freedom.

An illustration of the behaviour of F̃b2 is presented in Figure 4 (second panel), by choosing 300
Monte Carlo simulations, m = 3 disjoint domains T1, T2, T3 with |Ti| = 200 and p = 3 different levels
u1 = −1.5, u2 = 0, u3 = 1.5.
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Fig 4. First panel. QQplot based on 300 Monte Carlo simulations: quantiles of F̃b1 versus quantiles of the χ2
mp

distribution for m = 1, with |T | = 200 and p = 3 different levels u1 = −1.5, u2 = 0, u3 = 1.5. Second panel. QQplot

based on 300 Monte Carlo simulations: quantiles of F̃b2 versus quantiles of the χ2
mp distribution for m = 3 disjoint

domains T1, T2, T3 with |Ti| = 200 and p = 3 different levels u1 = −1.5, u2 = 0, u3 = 1.5. X(·) is a Gaussian univariate

process (d = 1) with E(X(0)) = 0, Var(X(0)) = 1 and covariance function r(t) = e−t2 with λ = 2.

4.4. First alternative: χ2 process

In conformity with Section 3.1, we consider

Z(s)(·) =
1√
2s

(χ2
s(·))− s) with χ2

s(·) =
∑

1≤i≤s

Xi(·)2 ,

where the Xi’s are independent copies of a centered stationary Gaussian process with covariance
function r(t) = e−t

2/2. Hence, we get λ = −2r′′(0) = 2 and then the obtained process Z(s) has the
same variance and the same second spectral moment λ as the previous Gaussian one presented in
Section 4.1.
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In the first and third panels of Figure 5, we display the boxplot for the ratio between the empirical
mean of 300 Monte Carlo values of ϕ(Z(s), T, u) and the theoretical mean given by (12) in the case
d = 1,

E[ϕ(Z(s), T, u)] = |T |
(
λ

π

)1/2
(s+ u

√
2s)(s−1)/2

2s/2Γ(s/2)
e−(s+u

√
2s)/2 1[0,∞)(s+ u

√
2s). (22)

This expectation has to be compared with the expectation given by (19) when X is a stationary
centered Gaussian process with variance equal to 1 and second spectral moment λ = 2. Therefore, in
the second and fourth panels of Figure 5, we display the boxplot for the ratio between the empirical
300 Monte Carlo mean value of ϕ(Z(s), T, u) and the Gaussian theoretical expectation given in (19).
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Fig 5. First and third panels: Boxplot for the ratio between the empirical 300 Monte Carlo values of ϕ(Z(s), T, u)
and the theoretical mean given by Equation (22). Second and fourth panels: Boxplot for the ratio between the same
empirical values and the theoretical mean in the Gaussian case given by Equation (19). In both cases λ = 2. The degrees
of freedom s is chosen equal to 2 and 10 respectively.

Remark. When the degrees of freedom s tend to infinity, the CLT implies that Z(s) tends in distri-
bution to a stationary centered Gaussian process with covariance function equal to t 7→ r(t)2, which
implies a variance equal to 1 and a second spectral moment equal to 2 (exactly as the Gaussian process
X in Section 4.1). On the other hand, using Stirling approximation for the Γ function, one can prove
that the right-hand side of (22) tends to the right-hand side of (19), i.e.,

E[ϕ(Z(s), T, u)]→ |T |λ1/2 (2π)−1 e−u
2/2 when s→∞.

See also formula (3.4) in [19] for the same remark. The comparison between the second and fourth
panels in Figure 5, as well as Figure 6, illustrate this convergence.

Similarly to Section 4.3, we now consider chi-square statistics. We focus on the diagonal case (a.1)
with a unique level u and m disjoint domains T1, . . . , Tm, and we introduce

F :=

m∑
i=1

(
ϕ(Z(s), Ti, u)− E[ϕ(Z(s), Ti, u)]

|Ti|1/2

)2

F̃ :=

m∑
i=1

(
ϕ(Z(s), Ti, u)− Ê[ϕ(Z(s),Ti, u)]

|Ti|1/2

)2

(23)

where E[ϕ(Z(s), Ti, u)] is given by (22) and Ê[ϕ(Z(s), Ti, u)] is the empirical mean based on the Monte-
Carlo sample generations. Unlike the situation described in Section 4.3, hypothesis H0 is not assumed
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Fig 6. Boxplots of the empirical 300 Monte Carlo values of ϕ(Z(s), T, u) for the considered chi-square process Z(s) and
different values of u. Red points represent the theoretical means given by Equation (22) for the same values of u; blue
ones are the Gaussian means given by Equation (19). In this case λ = 2, |T | = 200, s = 2 (left panel) and s = 10 (right
panel).

to be valid and the distributions of F and F̃ are not known to be χ2
m. However, in Figure 7, we display

the quantiles of F (for s = 2 in the first panel, and for s = 10 in the fourth panel) and of F̃ (Panel 3
for s = 2 and Panel 6 for s = 10) versus the quantiles of χ2

m. The pretty good alignment of the QQplot
suggests that a Central Limit Theorem should be valid as in the Gaussian case under H0. Note that
the finiteness of the asymptotic variance in (13) is a first step in that direction. Remark also that the
QQplot lines do not coincide with the bisectors of the orthant, conformly to (13).

In Figure 7 -second and fifth panels-, we also show the QQplot of the statistics F , where the
theoretical mean of ϕ(Z(s), Ti, u) has been replaced by the theoretical mean of ϕ(X,Ti, u) with X a
Gaussian process as in Section 4.1, versus the quantiles of χ2

m. Since the considered χ2 process Z(s) is
not Gaussian, a deviation can be observed.

4.5. Second alternative: Kramer oscillator process

In this section we generate a 300 Monte-Carlo sample of a Kramer oscillator process as defined in
Section 3.2. In order to obtain a process Q with zero mean, unit variance and second spectral moment
equal to 2, we solve Equation (16) and choose

σ = 2 , c = 1 , a0 = 1 , a1 = 2.3373 , C = 4.886.

The generation procedure is the following. We define a discretized schema to simulate the solution
(Q(t), P (t)) of the stochastic differential system in (14). Actually, we use the Metropolization of the
Euler-Verlet schema with a sufficient small discretization step. The interested reader is referred to
Algorithm 2.11 (Generalized Hybrid Monte-Carlo) in [12].

The comparison between the (theoretical) expectation given by (15) and the empirical one is shown
in Figure 8 below.

As we did in previous Sections 4.3 and 4.4, we now consider some chi-square statistics. Precisely,
we introduce F and F̃ , defined in a similar way as in (23), but for the harmonic oscillator process Q



Di Bernardino, Estrade, León/A test of Gaussianity 17

0 5 10 15 20 25 30

0
.0

0
.5

1
.0

1
.5

2
.0

QQplot F versus χ
2(6)

m= 6, u= 1.2, s= 2

using Chi−square Expectation

0 5 10 15 20 25 30

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

QQplot F versus χ
2(6)

m= 6, u= 1.2, s= 2

usign Gaussian Expectation

0 5 10 15 20 25 30

0
.0

0
.5

1
.0

1
.5

2
.0

QQplot F
~

 versus χ
2(6)

m= 6, u= 1.2, s= 2

using Empirical Expectation

0 5 10 15 20 25 30

0
.0

0
.5

1
.0

1
.5

2
.0

QQplot F versus χ
2(6)

m= 6, u= 1.2, s= 10

using Chi−square Expectation

0 5 10 15 20 25 30

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

QQplot F versus χ
2(6)

m= 6, u= 1.2, s= 10

usign Gaussian Expectation

0 5 10 15 20 25 30

0
.0

0
.5

1
.0

1
.5

2
.0

QQplot F
~

 versus χ
2(6)

m= 6, u= 1.2, s= 10

using Empirical Expectation

Fig 7. QQplot: quantiles of F and F̃ versus quantiles of the χ2
m distribution for fixed level u = 1.2 and m = 6 disjoint

domains. Here |Ti| = 200 for i ∈ {1, . . . ,m}. We take 300 Monte Carlo simulations. The considered process Z(s)(·) is a
chi-square univariate process (d = 1) with s = 2 (first, second and third panels), s = 10 (fourth, fifth and sixth panels),
E(Z(s)(0)) = 0, Var(Z(s)(0)) = 1 and λ = 2.
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Fig 8. Left: Theoretical u 7→ E[ϕ(Q,T, u)] from Equation (15) for |T | = 200 (full line). We also display, for different

levels of u, the empirical counterpart Ê[ϕ(Q,T, u)] (red dots), with associated empirical intervals, based on 300 Monte
Carlo simulations. Q(·) is a Kramer oscillator process as defined in Section 3.2 with E(Q(0)) = 0, Var(Q(0)) = 1 and
second spectral moment λ = 2.

instead of the process Z(s). In this case, the expectation E[ϕ(Q,T, u)] is given by Equation (15) and

Ê[ϕ(Q,T, u)] is the empirical mean evaluated on the Monte Carlo sample. The QQplot of F and F̃
versus χ2

m distribution are shown in the first and third panels of Figure 9 respectively. The second
panel shows the QQplot of F versus χ2

m distribution, when the expectation is comptuted following
(19) as if hypothesis H0 was true (i.e., Gaussian case). Since the considered process Q is not Gaussian,
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a deviation is observed. Besides, let us remark that the almost linear graphs observed in Panels 1 and
3 allow us to believe that ϕ(Q,T, u) satisfies a Central Limit Theorem when T grows to R.
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Fig 9. QQplot: quantiles of F and F̃ versus quantiles of the χ2
m distribution for fixed level u = 1.2 and m = 6 disjoint

domains. Here |Ti| = 200 for i ∈ {1, . . . ,m}. We take 300 Monte Carlo simulations. The considered process Q(·) is a
Kramer oscillator process as defined in Section 3.2 with E(Q(0)) = 0, Var(Q(0)) = 1 and second spectral moment λ = 2.

4.6. Third alternative: shot noise process

We consider a shot noise process as introduced in Equation (17) with a = λ = 1, i.e.,

S(t) =

∑
ξ∈Φ

1[0,1](t− ξ)

− 1 , t ∈ R ,

and generate 300 trajectories of such a process on a fixed interval T . Since aλ = 1, then Var(S(0)) = 1.
Moreover, Equation (18) becomes

E[U(S, T, u)] = |T | e−1
∑
k≥0

1

k!
1{k−1<u<k} . (24)

A comparison between this theoretical expectation and the Monte-Carlo empirical mean is presented
in Figure 10.

5. Bivariate numerical illustration

5.1. Under H0 hypothesis

We consider a stationary centered Gaussian random field X = {X(t) : t ∈ R2}. Its restriction to a finite
regular grid included can be seen as a model for a grey level image. The modified Euler characteristic
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Fig 10. Theoretical u 7→ E[U(S, T, u)] from Equation (24) for |T | = 200 (full line). We also display, for different

levels u, the empirical counterpart Ê[U(S, T, u)] (red dots) with associated empirical intervals based on 300 Monte Carlo
simulations. S(·) is a shot noise univariate process (d = 1) as defined in Section 3.3 with E(S(0)) = 0, Var(S(0)) = 1.

of an excursion set in the rectangle domain T above level u is given by Equation (4). On the other
hand, Equation (5) in dimension d = 2 gives its expectation,

E[ϕ(X,T, u)] = |T |C2(u, λ) with C2(u, λ) = (2π)−3/2 λu e−u
2/2. (25)

In what follows, we generate a 300 Monte-Carlo sample of a bivariate stationary centered Gaussian
random field X with covariance function r(t) = e−||t||

2

, t ∈ R2. In that case, E(X(0)) = 0, Var(X(0)) =
1 and the second spectral moment λ is equal to 2. We use (4) in order to compute ϕ(X,T, u) for a
fixed cube T and various values of u. The local extremum points of X are given by the R function
extrema2dC in the EMD package. To identify the saddle points, we find all the stationary points of X
in the considered domain T and we exclude the points previously identified as local extremum points.
In Figure 11, the comparison between the theoretical mean given by (25) and the empirical mean based
on the simulations is illustrated.

In Figure 12, we consider the chi-square statistics F and F̃ introduced in (23) for a unique level u
and m disjoint domains T1, . . . , Tm. The considered process is now the Gaussian bivariate process X.
For F (see left panel), the expectation is given by (25) and for F̃ (see right panel), Ê is the empirical
mean on the Monte Carlo sample generations.

5.2. Alternative: χ2 field

As an alternative to hypothesis H0, let us consider

Z(s)(·) =
1√
2s

(χ2
s(·))− s) with χ2

s(·) =
∑

1≤i≤s

Xi(·)2 ,
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Fig 11. Theoretical u 7→ E[ϕ(X,T, u)] from Equation (25) for |T | = 196 (full line). We also display, for different levels

u, the empirical counterpart Ê[ϕ(X,T, u)] (red dots), with associated empirical intervals, based on 300 Monte Carlo

simulations. X(·) is a Gaussian bivariate process (d = 2) with covariance function r(t) = e−||t||
2
, t ∈ R2. In this case

E(X(0)) = 1, Var(X(0)) = 1 and λ = 2.
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Fig 12. QQplot: quantiles of F and F̃ versus quantiles of χ2
m distribution for fixed level u = 1.2 and m = 3 disjoint

domains. Here |Ti|2 = 196 for i ∈ {1, . . . ,m}. We take 300 Monte Carlo simulations. X(·) is a Gaussian bivariate
process (d = 2) with covariance function r(t) = exp(−||t||2). In this case λ = 2.

where the Xi’s are independent copies of a centered stationary Gaussian two dimensional field with
covariance function r(t) = e−||t||

2/2. As described in Section 3.1, for any fixed t ∈ R2, χ2
s(t) has a

central χ2 distribution with s degrees of freedom. Furthermore, the field Z(s) is centered, stationary
and its covariance function is given by r(t) = e−||t||

2

. Hence its variance is equal to 1 and its second
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spectral moment is equal to λ = −2r′′(0) = 2. The expectation of ϕ(Z(s), T, u) is given by (12) with
d = 2.

We generate a sample of 300 realizations of the bivariate process Z(s) for s = 2 on a fixed cube T .
We use Equation (4) to compute ϕ(Z(2), T, u) for various values of u. On the other hand, Equation
(12) yields the following in the case d = s = 2,

E[ϕ(Z(2), T, u)] = |T |
(
λ

4π

)
(2u+ 1) e−(u+1) 1[0,∞)(u+ 1). (26)

In Figure 13, we compare Equation (26) and its empirical counterpart based on the Monte Carlo
simulations.
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Fig 13. Theoretical u 7→ E[ϕ(Z(2), T, u)] from Equation (26) for |T | = 196 (full line). We also display, for different

levels u, the empirical counterpart Ê[ϕ(Z(2), T, u)] (red dots), with associated empirical intervals, based on 300 Monte

Carlo simulations. Z(2)(·) is a χ2 bivariate process (d = 2) with covariance function r(t) = e−||t||
2

. In this case
E(Z(2))(0) = 1, Var(Z(2)(0)) = 1 and λ = 2.
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