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A class of symmetric difference-closed sets

related to commuting involutions

John M. Campbell

York University, Canada

Recent research on the combinatorics of finite sets has explored the structure of symmetric difference-closed sets,

and recent research in combinatorial group theory has concerned the enumeration of commuting involutions in Sn

and An. In this article, we consider an interesting combination of these two subjects, by introducing classes of

symmetric difference-closed sets of elements which correspond in a natural way to commuting involutions in Sn and

An. We consider the natural combinatorial problem of enumerating symmetric difference-closed sets consisting of

subsets of a set consisting of pairwise disjoint 2-subsets of [n]. We prove an explicit combinatorial formula for the

number of symmetric difference-closed 4-sets satisfying this property, and we prove an explicit combinatorial formula

for an analogous class of symmetric difference-closed sets consisting of elements which correspond to commuting

involutions in An.

Keywords: symmetric difference-closed set, symmetric group, alternating group

1 Introduction

Combinatorial properties concerning symmetric difference-closed (∆-closed) sets were explored recently

in Gamble and Simpson (2015) and Buck and Godbole (2014). In this article, we consider an interesting

class of ∆-closed sets related to commuting involutions in the symmetric group Sn and the alternating

group An.

A formula for the number of pairs of commuting involutions (up to isomorphism) in Sn and An was

proven in Kiefer and Leemans (2013). Combinatorial properties associated with pairs of commuting

involutions in Sn and An is an interesting subject in part because this area is related to the classifications

of abstract regular polytopes for fixed automorphism groups Kiefer and Leemans (2013).

Inspired in part by Kiefer and Leemans (2013), Buck and Godbole (2014), and Gamble and Simpson

(2015), we introduce new classes of ∆-closed sets consisting of elements which correspond in a natural

way to commuting involutions in Sn and An, and we prove new combinatorial formulas for these classes

of ∆-closed sets.

1.1 An enumerative problem concerning symmetric difference-closed sets

Suppose that n people arrive at a meeting, and suppose that the n people arrange themselves into pairs

(except for a loner if n is odd) and that the pairs then form various organizations. What is the total number,

taken over all possible pairings, of possible collections C of three distinct organizations such that given
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two organizations in C, if a pair P of people belongs to only one of these two organizations, then P must

be a member of the remaining (third) organization?

The number of possible collections C as given above is also equal to the number of ∆-closed 4-subsets

S ⊆ 22
[n]

such that there exists a set T consisting of pairwise disjoint 2-subsets of [n] such that S ⊆ 2T .

A set S of this form endowed with the ∆ operation forms a group which is isomorphic to the Klein four-

group C2×C2, and the elements consisting of pairwise disjoint 2-sets in S may be regarded in an obvious

way as commuting involutions in Sn. We thus have that the total number of collections C as given above

is also equal the number of subgroupsG of the symmetric group Sn such that G is isomorphic to the Klein

four-group, and there exists a set T ⊆ Sn of pairwise disjoint transpositions such that each element in G

is a product of elements in T . Note that this is not the same as the number of Klein four-subgroups of Sn:

for example, the permutation subgroup

{id, (12)(34), (13)(24), (14)(23)}

forms a Klein four-subgroup of S4, but the 2-sets {3, 4} and {1, 3} are not pairwise disjoint.

The sequence labeled A267840 which we contributed to the On-Line Encyclopedia of Integer Se-

quences (OEIS) OEIS Foundation Inc. (2011) enumerates ∆-closed sets of this form. Accordingly, let

A267840n denote the number of ∆-closed subsets S ⊆ 22
[n]

satisfying the above property. In the OEIS

sequence labeled A267840, we provided the following intricate and exotic triple sum for A267840n for

n ∈ N (letting δ denote the Kronecker delta function):

n!

⌊n

2 ⌋
∑

i=1

i
∑

j=1

min(j,⌊ 1
4 (2i+2j−1)⌋)
∑

k=max(⌈ i

2⌉,i+j−⌊ n

2 ⌋)

2k−i−j

k!(i − k)!(j − k)!(n− 2i− 2j + 2k)!(δi,j + δi,2k + 1)!
. (1)

In this article, we offer an elegant proof of the formula indicated above. Amazingly, the integer se-

quence (A267840n)n∈N seems to have a surprisingly simple exponential generating function, in stark

contrast to the intricacy of the above triple summation. In 2016, Václav Kotěšovec conjectured that the

e.g.f. for (A267840n)n∈N is equal to the following expression OEIS Foundation Inc. (2011).

ex

3
− e

x(x+2)
2

2
+

e
x(3x+2)

2

6
. (2)

Václav Kotěšovec also provided a conjectural polynomial recurrence formula for (A267840n)n∈N, and

also provided a conjectural asymptotic formula for this integer sequence OEIS Foundation Inc. (2011), as

we discuss in Section 3.

1.2 A class of symmetric difference-closed sets related to commuting even
involutions

Since the number of pairs of commuting involutions in the alternating group An up to isomorphism is also

considered in Kiefer and Leemans (2013), it is also natural to consider analogues of the results given in

Section 1.1 for even products of transpositions.

The sequence labeled A266503 which we contributed to OEIS Foundation Inc. (2011) enumerates

subgroups G of the alternating group An such that G is isomorphic to the Klein four-subgroup C2 ×
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C2, and each element in G is the product of the elements in a subset of a fixed set of pairwise disjoint

transpositions in An. It is important to note that this is not equal to the number of Klein four-subgroups

of An, as is easily verified. Letting A266503n denote the nth term in the OEIS sequence A266503,

A266503n is also equal to the number of ∆-closed subsets S ⊆ 22
[n]

such that there exists a set T

consisting of pairwise disjoint 2-subsets of [n] such that S ⊆ 2T , and each element in S is of even order.

In the OEIS sequence labeled A266503, we provided the following beautiful expression for A266503n
for n ∈ N.

n!

⌊n

4 ⌋
∑

i=1

i
∑

j=1

min(2j,⌊ 1
4 (4i+4j−1)⌋)
∑

k=max(i,2i+2j−⌊ n

2 ⌋)

2k−2i−2j

k!(2i− k)!(2j − k)!(n− 4i− 4j + 2k)!(δi,j + δi,k + 1)!
.

The integer sequence (A266503n)n∈N also seems to have a surprisingly simple exponential generating

function. Václav Kotěšovec conjectured that the e.g.f. for (A267840n)n∈N is equal to the following

expression OEIS Foundation Inc. (2011).

ex

3
− e

−x(x−2)
2

8
− e

x(x+2)
2

4
+

e
x(3x+2)

2

24
.

Václav Kotěšovec also provided a conjectural polynomial recurrence formula for (A267840n)n∈N, and

also provided a conjectural asymptotic formula for this integer sequence OEIS Foundation Inc. (2011).

We also discuss these conjectural formulas in Section 3.

2 Main results

Let n ≥ 4. Then ∆-closed 4-sets consisting of the empty set together with subsets of a set consisting of

pairwise disjoint 2-subsets of {1, 2, . . . , n} either: (1) are of the form

{∅, {t1, t2, . . . , ti}, {ti+1, ti+2, . . . , tj}, {t1, t2, . . . , ti, ti+1, ti+2, . . . , tj}}

where {t1, t2, . . . , tj} is a set consisting of j distinct pairwise disjoint 2-sets in {1, 2, . . . , n}, or (2)

consist of non-empty elements of the following form, letting {t1, t2, . . . , tk} be a set consisting of k

distinct pairwise disjoint 2-sets in {1, 2, . . . , n}:

{t1, t2, . . . , ti, ti+1, ti+2, . . . , tj},
{ti+1, ti+2, . . . , tj , tj+1, tj+2, . . . , tk},
{t1, t2, . . . , ti, tj+1, tj+2, . . . , tk}.

Given an arbitrary ∆-closed 4-set S consisting of subsets of a set consisting of pairwise disjoint 2-subsets

of [n], we define the partition type type(S) of S as the unique partition λ = type(S) of length 3 such that

a largest set of 2-sets in S consists of λ1

2 (pairwise disjoint) 2-sets consisting of a total of λ1 elements, a

second-largest set of 2-sets in S consists of λ2

2 2-sets, and a third-largest set of 2-sets in S consists of λ3

3
2-sets. For example,

type ({{{1, 3}, {2, 4}}, {{1, 3}}, {{2, 4}},∅}) = (4, 2, 2) ⊢ 8,



4 John M. Campbell

type ({{{1, 3}, {2, 4}}, {{2, 4}, {5, 6}}, {{1, 3}, {5, 6}},∅}) = (4, 4, 4) ⊢ 12,

type ({{{1, 3}, {2, 4}, {5, 6}}, {{1, 3}, {5, 6}}, {2, 4},∅}) = (6, 4, 2) ⊢ 12.

We define a Klein partition for n ∈ N as a partition λ such that λ = type(S) for some set S of the form

described above.

Lemma 2.1. A partition λ is a Klein partition for n ∈ N if and only if

(a) The length ℓ(λ) of λ is 3;

(b) Each entry of λ is even;

(c) The first entry λ1 of λ satisfies λ1 ≤ 2⌊n
2 ⌋; and

(d) There exists an index i in
[

0, λ2

2

]

such that λ1 + λ2 − 4i = λ3 and λ1 + λ2 − 2i ≤ n.

Proof: (=⇒) Suppose that λ is a Klein partition for n ∈ N. We thus have that λ = type(S) for some

∆-closed 4-set S consisting of ∅ together with subsets of a set consisting of pairwise disjoint 2-subsets

of {1, 2, . . . , n}. By definition of the partition type of a set of this form, we have that λ = type(S) must

be of length 3 and must have even entries. The first entry λ1 of λ is equal to the total number of elements

among all 2-sets in a largest set of 2-sets in S. If n is even, then the maximal total number of elements

among all 2-sets in a largest set of 2-sets in S is n, and otherwise, λ1 is at most n− 1. We thus have that

λ1 ≤ 2
⌊

n
2

⌋

. Let p1, p2, and p3 be (pairwise) distinct nontrivial sets of 2-sets such that p1 is a largest set

of 2-sets in S, p2 is a second-largest set of 2-sets in S, and p3 is a smallest set of 2-sets in S. Note that

it is possible that p1, p2, and p3 are all sets of equal cardinality. Also observe that p1∆p2 = p3 ∈ S.

Suppose that p1 and p2 share exactly j ∈ N0 2-sets in common. It is easily seen that j > 0 since S

forms a group under the binary operation ∆: S × S → S, and since the number of 2-sets of p1 is greater

than or equal to the number of 2-sets of p2 and greater than or equal to the number of 2-sets of p3. Since

λ2 ≤ λ1 it is thus clear that j ∈
[

0, λ2

2

]

. Since p1 and p2 share exactly j 2-sets, we thus have that total

number λ3 of elements among all 2-sets in p3 is (λ1 − 2j) + (λ2 − 2j) . Now consider the total number

of elements among the 2-sets in either p1 or p2. Since p1 and p2 share exactly j 2-sets, by the principle

of inclusion-exclusion, we have that the total number of elements among the 2-sets in either p1 or p2 is

equal to λ1 + λ2 − 2j. We thus have that λ1 + λ2 − 2j ≤ n, and we thus have that there exists an index i

in
[

0, λ2

2

]

such that

λ1 + λ2 − 4i = λ3, λ1 + λ2 − 2i ≤ n

as desired.

(⇐=) Conversely, suppose that λ is a partition such that (a) The length of λ is 3; (b) Each entry of λ is

even; (c) The first entry λ1 of λ satisfies λ1 ≤ 2⌊n
2 ⌋; and (d) There exists an index i in

[

0, λ2

2

]

such that

λ1 + λ2 − 4i = λ3, λ1 + λ2 − 2i ≤ n. Let p1 denote the following set of (pairwise disjoint) 2-sets:

p1 = {{1, 2}, {3, 4}, . . . , {λ1 − 1, λ1}}.

Since λ1 is even (since each entry of λ is even), our above definition of p1 is well-defined. Since λ1 ≤
2
⌊

n
2

⌋

, we thus have that p1 is a set consisting of pairwise disjoint 2-subsets of {1, 2, . . . , n}. Since there

exists an integer i in the interval
[

0, λ2

2

]

such that

λ1 + λ2 − 4i = λ3, λ1 + λ2 − 2i ≤ n
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by assumption, let j ∈
[

0, λ2

2

]

denote a fixed integer satisfying λ1+λ2− 4j = λ3 and λ1+λ2− 2j ≤ n.

Now let p2 denote the following set of (pairwise disjoint) 2-sets:

p2 =
{

{λ1 − 2j + 1, λ1 − 2j + 2} , {λ1 − 2j + 3, λ1 − 2j + 4} , . . . ,

{λ1 − 2j + λ2 − 1, λ1 − 2j + λ2}
}

.

The total number of elements among the distinct 2-sets in p2 is thus

(λ1 − 2j + λ2)− (λ1 − 2j + 1) + 1 = λ2

and since λ1 and λ2 are both even, the above definition of p2 is thus well-defined. Furthermore, since

λ1 + λ2 − 2j ≤ n, we thus have that p2 is a set consisting of pairwise disjoint 2-subsets of {1, 2, . . . , n} .

Now consider the expression p1∆p2 ∈ S. The total number of elements among the 2-sets in the expression

p1∆p2 is equal to

(λ1 − 2j) + (−2j + λ2) = λ1 + λ2 − 4j

and thus since λ1 + λ2 − 4j = λ3 we have that the expression p1∆p2 ∈ S consists of λ3

2 (pairwise

disjoint) 2-cycles consisting of a total of λ3 entries. Now consider the expression type(S). The set p1
consists of λ1

2 2-sets, the set p2 consists of λ2

2 2-sets, and the set p3 consists of λ3

2 2-sets, with

λ1

2
≥ λ2

2
≥ λ3

2

since λ = (λ1, λ2, λ3) is a partition. We thus have that type(S) = λ, thus proving that λ is a Klein

partition for n ∈ N.

Lemma 2.2. For n ∈ N, the Klein partitions for n are precisely tuples of the form

(2a, 2b, 2a+ 2b− 4i)

such that:

1. 1 ≤ a ≤
⌊

n
2

⌋

;

2. 1 ≤ b ≤ a; and

3. max
(

a+ b−
⌊

n
2

⌋

,
⌈

a
2

⌉)

≤ i ≤ min
(

b,
⌊

2a+2b−1
4

⌋)

.

Proof: Let n ∈ N. Let λ = (2a, 2b, 2a+ 2b− 4i) be a tuple satisfying the conditions (1), (2), and (3)

given above. We have that 1 ≤ λ2 ≤ λ1 from condition (2). We have that 2a + 2b − 4i ≤ 2b since
a
2 ≤ i since

⌈

a
2

⌉

≤ i from condition (3), and we thus have that λ3 ≤ λ2 ≤ λ1 as desired. We have that

1 ≤ 2a+ 2b− 4i since i ≤ 2a+2b−1
4 since i ≤

⌊

2a+2b−1
4

⌋

from condition (3), and we thus have that

1 ≤ λ3 ≤ λ2 ≤ λ1

thus proving that that the tuple

λ = (2a, 2b, 2a+ 2b− 4i)
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is in fact an integer partition. We will now make use of Lemma 2.1. Certainly, λ is of length 3, and each

entry of λ is even. The first entry λ1 = 2a of λ satisfies λ1 = 2a ≤ 2
⌊

n
2

⌋

since a ≤
⌊

n
2

⌋

from condition

(1). Certainly, λ1 + λ2 − 4i = λ3 = 2a + 2b − 4i. Furthermore, we have that λ1 + λ2 − 2i ≤ n since

a+ b− n
2 ≤ i since a+ b−

⌊

n
2

⌋

≤ i from condition (3). By Lemma 2.1, we thus have that the partition

λ is a Klein partition for n ∈ N.

Conversely, let λ be a Klein partition for n. By Lemma 2.1, we thus have that:

(a) The length ℓ(λ) of λ is 3;

(b) Each entry of λ is even;

(c) The first entry λ1 of λ satisfies λ1 ≤ 2⌊n
2 ⌋; and

(d) There exists an integer i in such that:
[

0,
λ2

2

]

λ1 + λ2 − 4i = λ3, λ1 + λ2 − 2i ≤ n.

Begin by rewriting the entries of λ = (λ1, λ2, λ3) as follows. By condition (b) we may thus write

λ1 = 2a and λ2 = 2b, letting a, b ∈ N. Let i ∈
[

0, λ2

2

]

be as given condition (d) above. We thus have that

λ3 = 2a+ 2b− 4i and we thus have that the integer partition λ = (λ1, λ2, λ3) is a tuple of the following

form:

λ = (2a, 2b, 2a+ 2b− 4i) .

Since λ is an integer partition, we have that 1 ≤ a. Since the first entry λ1 of λ satisfies λ1 ≤ 2
⌊

n
2

⌋

by condition (c) above, we thus have that a ≤
⌊

n
2

⌋

and we thus have that the first condition given in

Lemma 2.2 holds. Since λ is an integer partition, we have that 1 ≤ b ≤ a, and we thus have that the

second condition given in Lemma 2.2 holds.

From condition (d), we have that

λ1 + λ2 − 2i ≤ n

and we thus have that 2a+ 2b− 2i ≤ n and thus i ≥ a+ b− n
2 and we thus have that a+ b−

⌊

n
2

⌋

≤ i.

Since λ is a partition, we have that

2a+ 2b− 4i ≤ 2b

and we thus have that a
2 ≤ i and therefore:

⌈

a
2

⌉

≤ i. From the inequality a+ b −
⌊

n
2

⌋

≤ i together with

the inequality
⌈

a
2

⌉

≤ i we thus have that:

max
(

a+ b−
⌊n

2

⌋

,
⌈a

2

⌉)

≤ i.

Since i ∈
[

0, λ2

2

]

, we thus have that i ≤ b. Since λ is an integer partition, we have that 1 ≤ λ3. Therefore,

1 ≤ 2a + 2b − 4i. We thus have that i ≤ 2a+2b−1
4 , and we thus have that i ≤

⌊

2a+2b−1
4

⌋

. From the

inequality i ≤
⌊

2a+2b−1
4

⌋

together with the inequality i ≤ b, we thus have that

i ≤ min

(

b,

⌊

2a+ 2b− 1

4

⌋)

thus proving that condition (3) given in Lemma 2.2 holds.
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Lemma 2.3. Letting λ be a fixed Klein partition, the number of ∆-closed 4-sets consisting of ∅ together

with subsets of a set consisting of pairwise disjoint 2-subsets of {1, 2, . . . , n} of partition type λ is

1

(repeat(λ))!

∏

λ1
2 −1
j=0

(

n−2j
2

)

(

λ1

2

)

!

( λ1

2
λ1+λ2−λ3

4

)

∏

λ2−λ1+λ3
4 −1

j=0

(

n−λ1−2j
2

)

(

λ2−λ1+λ3

4

)

!

letting repeat(λ) denote the maximum repetition length of λ.

Proof: There are
∏

λ1
2 −1

j=0

(

n−2j
2

)

(

λ1

2

)

!

distinct sets of 2-sets in Sn of length λ1

2 . Let i denote the unique index in
[

0, λ2

2

]

such that λ1+λ2−4i =
λ3 and λ1+λ2−2i ≤ n. We thus have that there are precisely i “overlap” 2-sets shared among the largest

set of sets in a 4-set S of partition type λ and the second-largest set of sets in S. There are

( λ1

2
λ1+λ2−λ3

4

)

choices for i “overlap” 2-sets, and for each such choice there are

∏

λ2−λ1+λ3
4 −1

j=0

(

n−λ1−2j
2

)

(

λ2−λ1+λ3

4

)

!

remaining choices for the remaining 2-sets for the second-largest set in S.

Theorem 2.4. The number of ∆-closed 4-sets S such that there exists a set T consisting of pairwise

disjoint 2-subsets of [n] such that each element in S is contained in T is

n!

⌊n

2 ⌋
∑

i=1

i
∑

j=1

min(j,⌊ 1
4 (2i+2j−1)⌋)
∑

k=max(⌈ i

2⌉,i+j−⌊n

2 ⌋)

2k−i−j

k!(i− k)!(j − k)!(n− 2i− 2j + 2k)!(δi,j + δi,2k + 1)!

for arbitrary n ∈ N.

Proof: From the above lemma, we have that the number of ∆-closed 4-sets consisting of the empty set

together with subsets of a set consisting of pairwise disjoint 2-subsets of {1, 2, . . . , n} is

∑

λ

1

(repeat(λ))!

∏

λ1
2 −1
j=0

(

n−2j
2

)

(

λ1

2

)

!

( λ1

2
λ1+λ2−λ3

4

)

∏

λ2−λ1+λ3
4 −1

j=0

(

n−λ1−2j
2

)

(

λ2−λ1+λ3

4

)

!

where the above sum is over all Klein partitions λ for n. By Lemma 2.2, we thus have that the above

summation may be rewritten as:

⌊n

2 ⌋
∑

a=1

a
∑

b=1

min(b,⌊ 2a+2b−1
4 ⌋)

∑

i=max(a+b−⌊n

2 ⌋,⌈a

2 ⌉)

1

(δ0,a−b + δ0,2i−a + 1)!

∏a−1
j=0

(

n−2j
2

)

a!

(

a

i

)

∏b−i−1
j=0

(

n−2a−2j
2

)

(b− i)!
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Rewriting the above expression by evaluating the products in the summand yields the desired result.

The integer sequence

(0, 0, 0, 3, 15, 105, 525, 3255, 17703, 112455, 669735, 4485195, 29023995, 205768563, . . .)

given by the number of∆-closed 4-sets consisting of the empty set together with subsets of a set consisting

of pairwise disjoint 2-subsets of {1, 2, . . . , n} is given in the On-Line Encyclopedia of Integer Sequences

sequence A267840 which we contributed. For example, there are 15 ∆-closed 4-sets of this form in the

case whereby n = 5:

{∅, {{1, 2}}, {{3, 4}}, {{1, 2}, {3, 4}}} , {∅, {{1, 2}}, {{3, 5}}, {{1, 2}, {3, 5}}} ,
{∅, {{1, 2}}, {{4, 5}}, {{1, 2}, {4, 5}}} , {∅, {{1, 3}}, {{2, 4}}, {{1, 3}, {2, 4}}} ,
{∅, {{1, 3}}, {{2, 5}}, {{1, 3}, {2, 5}}} , {∅, {{1, 3}}, {{4, 5}}, {{1, 3}, {4, 5}}} ,
{∅, {{1, 4}}, {{2, 3}}, {{1, 4}, {2, 3}}} , {∅, {{1, 4}}, {{2, 5}}, {{1, 4}, {2, 5}}} ,
{∅, {{1, 4}}, {{3, 5}}, {{1, 4}, {3, 5}}} , {∅, {{1, 5}}, {{2, 3}}, {{1, 5}, {2, 3}}} ,
{∅, {{1, 5}}, {{2, 4}}, {{1, 5}, {2, 4}}} , {∅, {{1, 5}}, {{3, 4}}, {{1, 5}, {3, 4}}} ,
{∅, {{2, 3}}, {{4, 5}}, {{2, 3}, {4, 5}}} , {∅, {{2, 4}}, {{3, 5}}, {{2, 4}, {3, 5}}} ,

{∅, {{2, 5}}, {{3, 4}}, {{2, 5}, {3, 4}}} .
An illustration of the 105 symmetric difference-closed 4-sets consisting of subsets of a set of pairwise

disjoint 2-subsets of {1, 2, . . . , 6} is given in Section 4.

It it natural to use Lemma 2.2 to determine “even” analogues of the above results.

Lemma 2.5. For n ∈ N, the Klein partitions for n corresponding to 4-sets consisting of ∅ together

with subsets of a set consisting of pairwise disjoint 2-subsets of [n] are precisely tuples of the form

(4d, 4e, 4d+ 4e− 4i) such that:

1. 1 ≤ d ≤
⌊

n
4

⌋

;

2. 1 ≤ e ≤ d; and

3. max
{

2d+ 2e−
⌊

n
2

⌋

, d
}

≤ i ≤ min
{

2e,
⌊

4d+4e−1
4

⌋}

.

Proof: The above lemma follows immediately from Lemma 2.2 by letting a = 2d and b = 2e.

Theorem 2.6. The number of ∆-closed 4-sets consisting of even-order subsets of a set consisting of

pairwise disjoint 2-subsets of {1, 2, . . . , n} is

n!

⌊n

4 ⌋
∑

i=1

i
∑

j=1

min(2j,⌊ 1
4 (4i+4j−1)⌋)
∑

k=max(i,2i+2j−⌊ n

2 ⌋)

2k−2i−2j

k!(2i− k)!(2j − k)!(n− 4i− 4j + 2k)!(δi,j + δi,k + 1)!

for arbitrary n ∈ N.

Proof: The above theorem follows from Lemma 2.3 by analogy with Theorem 2.4.

The corresponding integer sequence is given below, and is given in the sequence A266503 which we

contributed to OEIS Foundation Inc. (2011).

(0, 0, 0, 0, 0, 15, 105, 735, 4095, 26775, 162855, 1105335, 7187895, 51126075, 356831475, . . .) .
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3 Conclusion

The number of Klein partitions for n = 1, 2, . . . is given by the following integer sequence:

(0, 0, 0, 1, 1, 3, 3, 6, 6, 10, 10, 16, 16, 23, 23, 32, 32, 43, 43, 56, 56, 71, 71, 89, . . .) .

We have previously noted that the corresponding integer sequence

(0, 1, 3, 6, 10, 16, 23, 32, 43, 56, 71, 89, 109, 132, 158, . . .)

coincides with the sequence A034198 given by the number of binary codes of a given length with 3 words

OEIS Foundation Inc. (2011). We currently leave it as an open problem to use Lemma 2.2 to prove this. In-

terestingly, there are known connections between the OEIS sequence A034198 and Klein four-subgroups.

In particular, A034198(n) is the number of orbits of Klein subgroups of Cn
2 under automorphisms of Cn

2 ,

and A034198(n) is the number of faithful representations of K4 = C2
2 of dimension n up to equivalence

by automorphisms of C2
2 OEIS Foundation Inc. (2011).

In 2016, Václav Kotěšovec discovered a variety of interesting formulas for the integer sequence

(A267840n : n ∈ N)

enumerating ∆-closed subsets S ⊆ 22
[n]

such that there exists a set T consisting of pairwise disjoint

2-subsets of [n] such that S ⊆ 2T . Kotěšovec discovered the following unexpected linear recurrence with

a polynomial coefficients for this sequence using the Mathematica function plinrec:

(n− 4)(n− 2)A267840n = 3(n2 − 5n+ 5)A267840n−1

+ (n− 1)(4n2 − 27n+ 41)A267840n−2

− (n− 2)(n− 1)(8n− 29)A267840n−3

− (n− 3)(n− 2)(n− 1)(3n− 16)A267840n−4

+ 3(n− 4)(n− 3)(n− 2)(n− 1)A267840n−5.

We currently leave it as an open problem to use Theorem 2.4 to prove the above recurrence. This re-

currence may be used to prove the exponential generating function for the sequence (A267840n)n∈N

discovered by Kotěšovec given in (2). Kotěšovec also discovered the following interesting asymptotic

formula for this sequence:

A267840n ∼ 2−
3
2 3

n

2 −1e
√

n

3 −
n

2 −
1
12n

n

2 . (3)

We leave it as an open problem to use Theorem 2.4 to prove (3), for example through the use of the

Birkhoff-Trjitznisky method. Kotěšovec also discovered the following interesting recursive formula for

the sequence (A266503n)n∈N:

(n− 6)(n− 4)(n− 2)A266503n = (2n− 7)(2n2 − 14n+ 15)A266503n−1

+ 3(n− 7)(n− 1)(n2 − 7n+ 11)A266503n−2

− (n− 2)(n− 1)(9n2 − 85n+ 189)A266503n−3

+ (n− 3)(n− 2)(n− 1)(n2 − n− 22)A266503n−4
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− 2(n− 4)2(n− 3)(n− 2)(n− 1)A266503n−5

− (n− 5)(n− 4)(n− 3)(n− 2)(n− 1)(3n− 19)A266503n−6

+ 3(n− 6)(n− 5)(n− 4)(n− 3)(n− 2)(n− 1)A266503n−7.

Kotěšovec discovered the following exponential generating function for the sequence (A266503n)n∈N:

ex

3
− e−

x(x−2)
2

8
− e

x(x+2)
2

4
+

e
x(3x+2)

2

24
.

Kotěšovec also discovered a similar asymptotic formula for this sequence. We leave it as an open problem

to use Theorem 2.6 to prove these results.
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4 Appendix

Symmetric difference-closed 4-sets S consisting of subsets of a set consisting of pairwise disjoint 2-

subsets of {1, 2, . . . , 6} of partition type (4, 2, 2) are listed below.

{{{1, 2}, {3, 4}}, {{1, 2}}, {{3, 4}},∅} {{{1, 2}, {3, 5}}, {{1, 2}}, {{3, 5}},∅}
{{(1, 2}, {3, 6}}, {{1, 2}}, {{3, 6}},∅} {{{1, 2}, {4, 5}}, {{1, 2}}, {{4, 5}},∅}
{{{1, 2}, {4, 6}}, {{1, 2}}, {{4, 6}},∅} {{{1, 2}, {5, 6}}, {{1, 2}}, {{5, 6}},∅}
{{{1, 3}, {2, 4}}, {{1, 3}}, {{2, 4}},∅} {{{1, 3}, {2, 5}}, {{1, 3}}, {{2, 5}},∅}
{{{1, 3}, {2, 6}}, {{1, 3}}, {{2, 6}},∅} {{{1, 3}, {4, 5}}, {{1, 3}}, {{4, 5}},∅}
{{{1, 3}, {4, 6}}, {{1, 3}}, {{4, 6}},∅} {{{1, 3}, {5, 6}}, {{1, 3}}, {{5, 6}},∅}
{{{1, 4}, {2, 3}}, {{1, 4}}, {{2, 3}},∅} {{{1, 4}, {2, 5}}, {{1, 4}}, {{2, 5}},∅}
{{{1, 4}, {2, 6}}, {{1, 4}}, {{2, 6}},∅} {{{1, 4}, {3, 5}}, {{1, 4}}, {{3, 5}},∅}
{{{1, 4}, {3, 6}}, {{1, 4}}, {{3, 6}},∅} {{{1, 4}, {5, 6}}, {{1, 4}}, {{5, 6}},∅}
{{{1, 5}, {2, 3}}, {{1, 5}}, {{2, 3}},∅} {{{1, 5}, {2, 4}}, {{1, 5}}, {{2, 4}},∅}
{{{1, 5}, {2, 6}}, {{1, 5}}, {{2, 6}},∅} {{{1, 5}, {3, 4}}, {{1, 5}}, {{3, 4}},∅}
{{{1, 5}, {3, 6}}, {{1, 5}}, {{3, 6}},∅} {{{1, 5}, {4, 6}}, {{1, 5}}, {{4, 6}},∅}
{{{1, 6}, {2, 3}}, {{1, 6}}, {{2, 3}},∅} {{{1, 6}, {2, 4}}, {{1, 6}}, {{2, 4}},∅}
{{{1, 6}, {2, 5}}, {{1, 6}}, {{2, 5}},∅} {{{1, 6}, {3, 4}}, {{1, 6}}, {{3, 4}},∅}
{{{1, 6}, {3, 5}}, {{1, 6}}, {{3, 5}},∅} {{{1, 6}, {4, 5}}, {{1, 6}}, {{4, 5}},∅}
{{{2, 3}, {4, 5}}, {{2, 3}}, {{4, 5}},∅} {{{2, 3}, {4, 6}}, {{2, 3}}, {{4, 6}},∅}
{{{2, 3}, {5, 6}}, {{2, 3}}, {{5, 6}},∅} {{{2, 4}, {3, 5}}, {{2, 4}}, {{3, 5}},∅}
{{{2, 4}, {3, 6}}, {{2, 4}}, {{3, 6}},∅} {{{2, 4}, {5, 6}}, {{2, 4}}, {{5, 6}},∅}
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{{{2, 5}, {3, 4}}, {{2, 5}}, {{3, 4}},∅} {{{2, 5}, {3, 6}}, {{2, 5}}, {{3, 6}},∅}
{{{2, 5}, {4, 6}}, {{2, 5}}, {{4, 6}},∅} {{{2, 6}, {3, 4}}, {{2, 6}}, {{3, 4}},∅}
{{{2, 6}, {3, 5}}, {{2, 6}}, {{3, 5}},∅} {{{2, 6}, {4, 5}}, {{2, 6}}, {{4, 5}},∅}
{{{3, 4}, {5, 6}}, {{3, 4}}, {{5, 6}},∅} {{{3, 5}, {4, 6}}, {{3, 5}}, {{4, 6}},∅}
{{{3, 6}, {4, 5}}, {{3, 6}}, {{4, 5}},∅}

Symmetric difference-closed 4-sets S consisting of subsets of a set consisting of pairwise disjoint 2-

subsets of {1, 2, . . . , 6} of partition type (4, 4, 4) are listed below.

{{{1, 2}, {3, 4}}, {{3, 4}, {5, 6}}, {{1, 2}, {5, 6}},∅}
{{{1, 2}, {3, 5}}, {{3, 5}, {4, 6}}, {{1, 2}, {4, 6}},∅}
{{{1, 2}, {3, 6}}, {{3, 6}, {4, 5}}, {{1, 2}, {4, 5}},∅}
{{{1, 3}, {2, 4}}, {{2, 4}, {5, 6}}, {{1, 3}, {5, 6}},∅}
{{{1, 3}, {2, 5}}, {{2, 5}, {4, 6}}, {{1, 3}, {4, 6}},∅}
{{{1, 3}, {2, 6}}, {{2, 6}, {4, 5}}, {{1, 3}, {4, 5}},∅}
{{{1, 4}, {2, 3}}, {{2, 3}, {5, 6}}, {{1, 4}, {5, 6}},∅}
{{{1, 4}, {2, 5}}, {{2, 5}, {3, 6}}, {{1, 4}, {3, 6}},∅}
{{{1, 4}, {2, 6}}, {{2, 6}, {3, 5}}, {{1, 4}, {3, 5}},∅}
{{{1, 5}, {2, 3}}, {{2, 3}, {4, 6}}, {{1, 5}, {4, 6}},∅}
{{{1, 5}, {2, 4}}, {{2, 4}, {3, 6}}, {{1, 5}, {3, 6}},∅}
{{{1, 5}, {2, 6}}, {{2, 6}, {3, 4}}, {{1, 5}, {3, 4}},∅}
{{{1, 6}, {2, 3}}, {{2, 3}, {4, 5}}, {{1, 6}, {4, 5}},∅}
{{{1, 6}, {2, 4}}, {{2, 4}, {3, 5}}, {{1, 6}, {3, 5}},∅}
{{{1, 6}, {2, 5}}, {{2, 5}, {3, 4}}, {{1, 6}, {3, 4}},∅}

Symmetric difference-closed 4-sets S consisting of subsets of a set consisting of pairwise disjoint 2-

subsets of {1, 2, . . . , 6} of partition type (6, 4, 2) are listed below.

{{{1, 2}, {3, 4}, {5, 6}}, {{3, 4}, {5, 6}}, {{1, 2}},∅}
{{{1, 2}, {3, 4}, {5, 6}}, {{1, 2}, {5, 6}}, {{3, 4}},∅}
{{{1, 2}, {3, 4}, {5, 6}}, {{1, 2}, {3, 4}}, {{5, 6}},∅}
{{{1, 2}, {3, 5}, {4, 6}}, {{3, 5}, {4, 6}}, {{1, 2}},∅}
{{{1, 2}, {3, 5}, {4, 6}}, {{1, 2}, {4, 6}}, {{3, 5}},∅}
{{{1, 2}, {3, 5}, {4, 6}}, {{1, 2}, {3, 5}}, {{4, 6}},∅}
{{{1, 2}, {3, 6}, {4, 5}}, {{3, 6}, {4, 5}}, {{1, 2}},∅}
{{{1, 2}, {3, 6}, {4, 5}}, {{1, 2}, {4, 5}}, {{3, 6}},∅}
{{{1, 2}, {3, 6}, {4, 5}}, {{1, 2}, {3, 6}}, {{4, 5}},∅}
{{{1, 3}, {2, 4}, {5, 6}}, {{2, 4}, {5, 6}}, {{1, 3}},∅}
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{{{1, 3}, {2, 4}, {5, 6}}, {{1, 3}, {5, 6}}, {{2, 4}},∅}
{{{1, 3}, {2, 4}, {5, 6}}, {{1, 3}, {2, 4}}, {{5, 6}},∅}
{{{1, 3}, {2, 5}, {4, 6}}, {{2, 5}, {4, 6}}, {{1, 3}},∅}
{{{1, 3}, {2, 5}, {4, 6}}, {{1, 3}, {4, 6}}, {{2, 5}},∅}
{{{1, 3}, {2, 5}, {4, 6}}, {{1, 3}, {2, 5}}, {{4, 6}},∅}
{{{1, 3}, {2, 6}, {4, 5}}, {{2, 6}, {4, 5}}, {{1, 3}},∅}
{{{1, 3}, {2, 6}, {4, 5}}, {{1, 3}, {4, 5}}, {{2, 6}},∅}
{{{1, 3}, {2, 6}, {4, 5}}, {{1, 3}, {2, 6}}, {{4, 5}},∅}
{{{1, 4}, {2, 3}, {5, 6}}, {{2, 3}, {5, 6}}, {{1, 4}},∅}
{{{1, 4}, {2, 3}, {5, 6}}, {{1, 4}, {5, 6}}, {{2, 3}},∅}
{{{1, 4}, {2, 3}, {5, 6}}, {{1, 4}, {2, 3}}, {{5, 6}},∅}
{{{1, 4}, {2, 5}, {3, 6}}, {{2, 5}, {3, 6}}, {{1, 4}},∅}
{{{1, 4}, {2, 5}, {3, 6}}, {{1, 4}, {3, 6}}, {{2, 5}},∅}
{{{1, 4}, {2, 5}, {3, 6}}, {{1, 4}, {2, 5}}, {{3, 6}},∅}
{{{1, 4}, {2, 6}, {3, 5}}, {{2, 6}, {3, 5}}, {{1, 4}},∅}
{{{1, 4}, {2, 6}, {3, 5}}, {{1, 4}, {3, 5}}, {{2, 6}},∅}
{{{1, 4}, {2, 6}, {3, 5}}, {{1, 4}, {2, 6}}, {{3, 5}},∅}
{{{1, 5}, {2, 3}, {4, 6}}, {{2, 3}, {4, 6}}, {{1, 5}},∅}
{{{1, 5}, {2, 3}, {4, 6}}, {{1, 5}, {4, 6}}, {{2, 3}},∅}
{{{1, 5}, {2, 3}, {4, 6}}, {{1, 5}, {2, 3}}, {{4, 6}},∅}
{{{1, 5}, {2, 4}, {3, 6}}, {{2, 4}, {3, 6}}, {{1, 5}},∅}
{{{1, 5}, {2, 4}, {3, 6}}, {{1, 5}, {3, 6}}, {{2, 4}},∅}
{{{1, 5}, {2, 4}, {3, 6}}, {{1, 5}, {2, 4}}, {{3, 6}},∅}
{{{1, 5}, {2, 6}, {3, 4}}, {{2, 6}, {3, 4}}, {{1, 5}},∅}
{{{1, 5}, {2, 6}, {3, 4}}, {{1, 5}, {3, 4}}, {{2, 6}},∅}
{{{1, 5}, {2, 6}, {3, 4}}, {{1, 5}, {2, 6}}, {{3, 4}},∅}
{{{1, 6}, {2, 3}, {4, 5}}, {{2, 3}, {4, 5}}, {{1, 6}},∅}
{{{1, 6}, {2, 3}, {4, 5}}, {{1, 6}, {4, 5}}, {{2, 3}},∅}
{{{1, 6}, {2, 3}, {4, 5}}, {{1, 6}, {2, 3}}, {{4, 5}},∅}
{{{1, 6}, {2, 4}, {3, 5}}, {{2, 4}, {3, 5}}, {{1, 6}},∅}
{{{1, 6}, {2, 4}, {3, 5}}, {{1, 6}, {3, 5}}, {{2, 4}},∅}
{{{1, 6}, {2, 4}, {3, 5}}, {{1, 6}, {2, 4}}, {{3, 5}},∅}
{{{1, 6}, {2, 5}, {3, 4}}, {{2, 5}, {3, 4}}, {{1, 6}},∅}
{{{1, 6}, {2, 5}, {3, 4}}, {{1, 6}, {3, 4}}, {{2, 5}},∅}
{{{1, 6}, {2, 5}, {3, 4}}, {{1, 6}, {2, 5}}, {{3, 4}},∅}
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