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Abstract—Redundant data travsmissions are HRely to happen
repeatediy in Wireless Sensor Networks {WSNs). According to the
literature survey, encrgy-efficiency predominately relies on data
aggregation rather than routing or dufy-cycling approaches. As
data redundancy dominates the power usage in commmication
costs, in order to identify and reduce the redundant data
transmissions by individual nodes, we propose a hybrid data ag-
gregative window function (DAWF) algorithm for exploiting both
spatial and temporal data redundancies in WSNs, Furthermore,
the proposed novel approach aims fo process the hybrid filtration
using both compressive and prediction-based techniques in sensor
nodes (SN} as well as in cluster-head (CH) nodes. En this regard,
the experimental study cuse of this work show that the DAWF
mechanism can suppress 8 huge amount of femporal redundant
data tramsmissions in sensor nodes while providing reliable data
messages towards the base station {BS). Moreover, DAWF CH
can also suppress a larpe amount of spafial redundancies by
utilizing the optinium DAWF parameters of the CH node.

Reywords—Predictive modeling, Data aggregation, Sensor net-
works, Data window, Spatio-temporal, Correlations, Energy-
saving,

1. INTRODUCTIHIN

In Wircless Sensor Networks (WSNs). if sensor nodes are
used to have similar application tasks to monitor a set of physi-
cal quantities compared to the individual tasks. then the nodes
may generate a large amount of redundant samples in both
time and space. This is also observed in the analysis of real
datasets from [1, 2] in both indoor and outdoor deployments.
In [3], the authors are constructed the data models and reported
parameters instead of mw sample values.

The cnergy-efficiency issuc in WSNx can also be achieved
by exploiting the both irherent temporal and spatial redun-
dancics {SRsy in data, such as temperature, humidity, Hght
and pressure exhibit the shight vanations stowly over the
period of time [4]. Morcover, this prospect may also help o
balance the usage of node computational capabilities, which
profitably exiracts the spatio-temporal models for avoiding
the unnccessary sensing. The distributed nature of data-driven
approaches has been well-studied in the Hiterature [5-9]. Since,
it s mecessary to use an effective data redundancy or simple
prediction methods, in order to avoid the redundant data values
to ensure the reliability in periodic or delay-tolerant network
applications [5,6].
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The main idea of this work consists in exploiting temporal
redundancies {TRs} in every node and their spatial redundan-
cies or correlations in cluster-head (CH) nodes. This prospect
emphasizes the spatio-temporal redundancies of measured
physical quantities in order to compute the given spatio-
temporal models, which then consecutively reduces the overalt
amount of required transmissions. The follow up of our
A-DAWF protocol in [10]. which is framed by exploiting
the temporal redundancics in every node using simple and
inexpensive window aggregative models based on Intel lab
datasets. In order to explore the in depth research work for
exploiting the spatio-temporal correlations in various physical
quantitics of the nodes. We then present the data-aggregative
window function (DAWF) mechanism by exploiting spatial
redundancies of the nodes in CHs, which we present as a
preliminary study cases of the CHs model behaviors. Our
proposition has been tested on real datasets oblained from
one of pur collaborative fab as LCIS, DREAL project data
sets. and the data collected from both indoor and outdoor
environments of the thermal renovations of housing estates.
DAWF mechanism improves the energy efficiency in sensor
nodes by showing that the overall required sensor readings can
be reduced as well as their redundant data transmissions. The
organization of this paper is as follows, section 2 describes the
Hiterature survey of several energy-efficient data collection and
gathering protocols. System models and implementations of
our work have been presented in section 3. Section 4 validates
the simulation results to demonstrate that the sensor nodes ean
generate a huge amount of temporal redundancies (TRs) ofien.
Final section concludes the DAWF mechanism performances
through various considered metric analysix in both tink and
space.

II. RELATED WORK

Energy consumption in WENs is a widely siudied issue.
and a taxonomy of various categories of WSNs presented in
[6.11]. and data-dniven approaches are refated to this work
among all the categories.

The prior data collection works have suggested several data-
aggregation methods under data-driven approaches, which are
categorized as in-network aggregation. compression-bused and
prediction-based data aggregations. TiNA [12] used a clse
condition for specifying the differed ranges. if the differed



runge is greater than the specificd mange between any two
values, then the differed result can be reported. otherwise
ignored. TiNA is more related to our work, as we also used the
RV function to find TDRs between every two window stored
phenomena among the individual nodes, which is presented in
one of our recent rescarch works [10]. CAG [13] proposed a
cluster-based technique which reports only spatial correlations
of eluster nodes by a CH to the BS, and ignores the individual
nodes temporal data. The authors of [14] proposed a another
cluster-hased method like CAG to build a predictive model
on CH nodes instead of individual sensor nodes and kot the
complete computational burden on header nodes itself.

in [15] the authors present a method to build predictive
maodels for exploiting the sensed data comrelations by a pair of
nodes. An auto-regressive {AR) model is presented in [3]. In
this regard. nodes can compute a model for the sensed data
uniil a buffer s filled and transmits only the model parameters
to the BS. Tan ct al from [16]. investigates the unnecessary
data reduction impact of data fusion on the coverage and
detection delay in WSNs.

Distributed Source Coding Using Syndromes (DISCUS;} [7]
used a framework for distributed data compression by using
joint source and channel coding. This method reduces the
inter-node communication cost for using a both quantized
source and corrclated side nformation from every individual
node. In [8], the authors proposed a predictive temporal
redundant model in data collection. and used it for real-time
error correction. And. a souree correlated model s suggested
in [17] under lossy wircless sensor network with multiple
sinks.

Unlike previous works, our proposal aveids the consider-
ation of rich spatio-temporal computatonally resource con-
strained models or predictive models. and designed a simple
data redundancy algorithm based on DREAL real data-sets.
In our considerations. normal nodes sense the environmental
phenomena and filler through DAWF mechanism for ex-
ploiting TRs and as well as minimizing the redundant data
transmissions. Furthermore. DAWF in CH nodes works with
better computational memeries, since CHs are assumed as
super nodes for reducing the spatial redundancies {SRsy among
the nodes.

I1I. PRELIMINARIES

We consider a cluster-based sensor network with » normal
SKs. which continuously forward the uncorrelated set of data
attributes to the CH, X{t) = (X1 Xo. ... X,,) genenates
the sensed physical phenomena at different time instances {,
and s number of CHs as super nodes, which receive the data
messages of SNs, Y{t) = (¥7, Y5, ..., Y, ) during SNx window
time intervals » and their own sensor readings X () at different
time instances of 7. The attribute detection of environmental
phenomena X,,,. may be the attributes being sensed by nodes
as temperature or humidity or may be the result of any
application phenomena. If the scnsor monitoring attributes
are either periodic or continuous, it then consider the DAWF
mechanism to monitor redundant physical phenomena. This

work primarily focuses on the reduction of data redundancies
at individual sensor nodes. '

A, Svstem Model

This paper considers that the network model is a single-hop
cluster-based and distributed, as showin in the figure 1. The
nodes can compute and process the obtained environmental
data at { time instances through the DAWF mechanism. Since
computation is the second highest energy consumer after the
communication. even though for computing the algorithms
does not require much energy compared to the communication.
The preliminary use case for exploiting temporal redundancies
in sensor nodes and its experimental study case are presented
in [10]. Furthermore, the following implementations have
been developed for reducing the spatial redundancies and
correlations among the nodes.
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Fig. 1: A cluster-star topology, show the nature of communi-
cation between sensor nodes and CH.

In this scepario. vy keeps the record of nodes received data
during the observed time interval B and cleared the data on
the hasis of FIFO approach after every successful data window
transmission to the sink node or BS.

Furthermore, we implement the DAWF mechanism in CHs
for finding both SRs and TRs, since CHs reccive the data
messages Y (f) from member nodes as well as their own sensor
readings and node physical quantitics X{#). We assume that
the minimum window 1w size of the CH is 50, which ean
also be varied based on CH node computational constraints
for monitoring podes data spatially and their own readings
for exploiting the TRs. In this case, if sensor nodes have the
same application monitoring tasks at different periods. then
there will be several SRs over nodes. Hence, for reducing the
SRs among nodes. CH keeps the data records of all sensor
nodes duning every round tme interval of I at CH windows.
In order to find SRs, the following expressions Eg.{1} and (2}
must be satisfied in CH nodes.

oy o i‘fi}.) ~£’:~ - > Th, §:>uh‘1i!: & (] )
Sepunt = E
o otficrwise, Sl
b3 AR, T
, e Lriwml R % "
REK = S 2

According to the relative variation {RV) of Eg.(1} and Eg.
{3}, where S represents the spatial count of RV and
Tqune states the emporal count of RV. If 8§, is greater
than the threshold T then the Se,u.e will be egual to 0
otherwise count will be reported as 1. In this scenario, we
sct the optimum threshold T/ as 0.0% and it can also be



varied as per the physical phenomena or different application
physical activitics. And. it can be evaluated by Eq.(2) where
jiye 15 the mean value of window at /' times which starts
from zero. And j is an index of sensor nodes delivered data
property at given time instances f, and / is the round time
interval of wg. And, € is a window size that can either be
fixed or vary based on the nodes computational resources or
flash memory. During every wg of CH node. it can compare
its member node value Y., with the previous member node
vilue of Y through the window stored readings by Eq.(1).
Moreover, during every window round time interval of 8 after
the data check based on Eq.{1), the previous sensor readings in
DAWF can be flushed itself based on First-In-First-Out (FIFQ)
queuc method. In order to exploit the temporal redundancies in
both sensor nodes and CHs, and the parameters and variable
constderations of TRs have the similar features as like SR
expressions. But, the threshold parameters may vary since CHs
has two window constraints one window function for nodes
received data and another one for CH nodes sensed physical
properties, as like regular sensor nodes. In this scenario, the
following constraints should be satisfied in both sensor nodes
and CH for exploiting the temporal redundancies, and the
given expressions can be defined as

if R e T L0 -
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In general applications, most of the obtained environmental
data are cither redundant or correlated. We assume that the
observed nodes data messages are highly redundant.

B. Adaptive Compression and Prediction-Based Mechanism

The iterative Algorithm 1 starts by initializing all the
variables and their parameters. The core of this algorithm,
consists of a data redundancy loop that predicts the node
redundant or comrelated data with the previous data values.
If the current readings differ from the previous readings then
only node can forward the data to clusterhead, otherwise the
data can be flushed itself.

The entire algorithm fteratively stored the received data of
nodes in an attribute window function, computed and updated
in CH node. In this regard. DAWF mechanism has two time
intervals; one as nodes received data time intervals 4 and
another one as window time intervals K. Using RV function
{Algorithm 1, ine 4) DAWF mechanism examines the window
stored data of nodes, whether they are redundant or comrelated,
if RV is greater than the threshold then it counts and forwards
the non-correfated data towards the BS. If the window contains
the redundant information then {Algorithm, line 8) DAWF uses
the mean averaging function to send one appropriate data value
rather than all window readings.

On the other hand, DAWF also delivers the non-comrelated
window data as a single packet, the authors of [18] presented
that increasing a payload size (from | bytes to 90 bytes) o

Algorithm I Cluster area nodes received data (¥;(en

procedure : Joatintize(s, T, v}
Parameters: T e CH  time
Sewunt + Spatial correlations count
Tepunt + Temporal correlations cound

rterval s,

v Rowd time interval of the sensor nodes window
R+ Round time tnterval of CH window

if Y;(t) then
Store into the Window buffer wy;
it Lt =N) T then
Count Spatial comrclations
i Seoune mod 50 == then
Send mean averaging data of py
else
Count Non-comrelated Data
Send as a single data packet
end if
end if
end if
end procedure

some extent does not add the additional communication costs
over the nodes.

IV, EXPERIMENTAL STUDY CASE AND RESULTS

In order to validate our models as described in the ear
lier section, this paper camied out a sct of experiments by
using real data sets. which were collected by OSAmI-FR
Wired/Wireless Sensor Network (WSN) nodes. contained and
supported by DREAL, LCIS research lab from [1].

Simulation results are captured among the test area of sensor
nodes with the help of real sensor network data sets. According
to this fab repository, the data values are caplured al every
one hour, and the readings (ambient temperature, relative
humidity, solar temperature, light and (%) are collected
from the indoor network deployment of several sensor nodes,
between January 1 and December 30, 2011, Morcover, the
sensors appear to be placed randomly in different floors in the
housing project. In this experimental study case, we considerad
two sorts of physical phenomena as solar temperature, and
humidity. However, we used in total a vear measures of 6
sensor nodes with a considered CH node.

The primary study case of the simulations are presented
in MATLAB. We have been further developing our proposi-
tions in COQJIA/Contiki emulator for measuring the several
melric analysis such as message cost and energy costs. since
COOJA emulator uses its own developed software’s and can
be uploaded direetly on any COOJA recommended real motes,
for instance in our case we consider Tmote-sky for COOJA
simulations and TelosB deviees for network deployment.

A. Temporal Pexformance Analvsis
This paper presents two sarts of experimental analysis. First
one deseribes the exploitation of data redundancies over the



collected data of nodes. And, second one focuses on the
proposed metric of transmission cost evaluation over both time
and space. Since some of the collected data dates and timings
differently formatted in the data sets, thus we decided to use
11 months of data for this experimental study to validate the
metric of transmission (TX) costs.

In this section, the approach in section 3, and the cluster-
tree topology that we assume superimposed on the considered
amount of sensor nodes. Thus allow us to investigate the
outcome of the proposed algorithm in terms of suppressing
required number of transmissions as well as energy saving.
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Fig. 2: DAWF different parameter performances with various
thresholds T'hs over different ayy sizes of temporal data

Figure 2 illustrates the spatio-temporal DAWF mechanism
of considered physical quantities by computing through var-
tous thresholds » of (L0001 to 0.1 with a fixed window size
of 10, and at a different window sizes of 10 to 100 with an
optimum threshold of (.05, which was demonstrated in below
subsections. In this scenario, DAWF presents a comparative
analysis between nodes threshold parameters and their window
constraints to validate that increasing a window size according
to the nodes computational constraints would be always ben-
eficial. Figure 2 clearly shows that node window constraints
indeed plays a significant roke to reduce the data bandwidth
without losing any significant data. However. this ix the case
for temporal exploitation in nodes. But, in spatial correlations
exploiting of the nodes in CH. threshold parameters are
playing the major role for delivering finest data performances
compared to the window sizes.

Figure 3 exploits the various window performances together
with different threshold variations in time. In this scenario, we
show how the window performances gradually increases while
tuning the 4 and w sy parameters combinedly compared to the
individual variations as shown in the figure 3. Which then
proved that window performances of the temporal nodes are
directly proportional to the optimum thresholds of the sensor
nodes or their dynamicity based on the different phenomena.

Figure 4 and 5 shows the tansmission (77 X) cost metrie
performances over the considered network area. The reliability
of the proposed aggregative models has been assessed by
computing the transmission (77X} cost. The proposed metric of
T X s 1s given by Eq.(5) to calculate the total amount of {per-
centage) of saved transmissions per node while exploiting the
temporal data redundancies. As shown in figure 4, and figure 5.
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Fig. 3: CH DAWF performances of solar temperature over
various window sizes

which also explored the different phenomena performances of
nodes through the 77X, metric. In figure 4, node can reduce
a minimum of 88.62% TX,,. in humidity by computing
through the DAWF algorithm, and the maximum of 99.62%
with the comsideration of higher window interval as 100 and
with an optimum threshold parameter of 0.05. According to
the various threshold pammeters. where DAWF reduced a
minimum of 3).76% redundant transmissions by a minimum
window size and threshold of 10, 0.001, respectively. Thus, the
maximum of 83.89% redundant transmissions was suppressed
by a maximum threshold parameter of .1 at a constant
optimum window size of 1. However, when it comes io
solar temporal phenomena in figure 5, the DAWF algorithm
of various window sizes shown less impuact, a8 a minimum
window size of 10 reduced 63.70% and the window size of
100 reduced 66.19% only by a constant threshold of 0.05.
{On the other hand, threshold parameters of solar temperatures
showed better results compared to the various window sizes.
With the minimum constant window size of 10 by a minimum
threshold of 0.001, reduced 3.22%., and a maximum threshold
parameter of .1 suppressed 79.94 of T X ,..¢. In this scenario,
we noticed that the performances of varous window sizes
shown more or less like same results compared to the threshold
parameters, because the nodes have less correlated data of
solar temperature. since the monitored dats were obtained by
outdoor sensors.  Therefore, the following metric is being
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Fig. 4: CH DAWF temporal data relative humidity TX cost
metric performances over various thresholds and the various
window sizes.
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Fig. 5: Nodes TX cost metric performances Solar Temperature.

used, in order to present the nodes T X, performances after
suppressing the redundant data transmissions by the window
mechanism, and the T'X,,,., metric can be derived as:

Total windoe sendt messages .
al window sen mmsrzgrs,} % 100 (5)

TX axt T (] = 7
o Total window vead messages

B. Spatial Ferformance Analwsis

In order to suppress the redundant data and the required
amount of transmissions spatially. we use the CH node o
find the correlations among the considered sensor nodes sent
data. Since we used different physical sensor quantities in
nodes, in order to find and evaluate their spatial data by
using pre-filtration technigues in CH node as like temporal
analysis. which were also collected by both indoor and outdoor
deployments.

Figure 6 exploits the nodes spatial phenomena over various
window sizes and at different threshold parameters. Figure 6
is shown that the threshold parameters only delivered a varied
spatial performances among different spatial phenomena of
the nodes. However, in figures 6 and figure 7 window size
g ey
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Fig. 6: CH DAWF spatial relative humidity performances over
vartous thresholds through the window sizes.

constraints did not show any greater impacets spatially while
compared to the threshold parameters in CH, like nodes.
as they performed well in exploiting temporal redundancies.
In this case, whatever the window size & maximized then
the delivered data are showing slight variations in window
performances, but many remain constant, as shown in 6(b.
Because, CH coliected data from the nodes are not either
highly redundant nor correlated. In this scenario, we presented
the window varying performances with two fixed optimum

thresholds of 0.05 and {1.1. Figure 8(a) and &(b) exploits the
spatial T X, of different nodes received phenomena in CH.
In this metric analysis is given by Eq.(3) we carried out
the performances as threshold over window size variations.
In Figure 8(a} and 8(bj, where CH suppressed the amount
of 5.19%, and 2.90%, respectively by computing through a
minimum threshold of .01, and the maximum threshold of
0.5 shown the performances as 95.25%. and 78.65%, respee-
tively. On the other hand. DAWF window sizes delivered the
performances, as a mintmum amount of reduced transmissions
are 22.95% and 10.75% by an optimum threshold of (.05, and
with the maximum window constraints of 300 delivered the
performances as 26.34% and 13.15% among the nodes. Which
is clearly demonsirated that the threshold parameters always
have a high impact compared to the window sizes, when
it comes to spatial phenomena for delivering outperforming
results.  For instance, according to the data sets, nodes
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Fig. 7: CH DAWF spatial performances of solar over various
thresholds through the window sizes.

follow the periodic transmission system as every hour, then
it transmits total considered nodes measures of their sensed
phenomena at given scheduled intervals. In the contrast. using
DAWF mechanism at a minimum window size of 50 through
CH where it reduces 22.95% and 10.75% amount of redundant
messages out of total different received data nodes phenomena
by computing through the constant threshold parameter of
0.056. Which is clearly proven by Eq.(5) that CH DAWF is
necessary to have in head nodes, and it can still suppress the
data correlations among the nodes spatial data,

Furthermore, temporal redundancies in CH node at various
thresholds with different window sizes of w,, also performed
same 83 sensor nodes, which presented and explained in
the section 4.1. Which is also clearly stated that temporal
redundancies clearly depends upon the window sizes rather
than threshold values. Where it suppresses upto 90% temporal
redundancies in CH received data of nodes by computing
through the optimal thresholds and maximum window sizes
of the CHs. Which is obvious. if the window sizes are
bigger then the stored data and comparison between every two
window stored readings can be drastically increased. In order
to show the performance analysis of the proposed approach
in terms of energy saving. as briefly illustrated in the above
results, The DAWF can efficiently suppress required number
of transmissions with respect to the periodic or defay-olerant
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Fig. 8: {a) CH DAWF TX cost metrk: pefformances of humid-
ity over various thresholds through the window sizes & (b CH
DAWF TX cost metric performances of solar temperature over
vartous thresholds through the window sizes.

approach where each node forwards its obtained data whenever
it detects to the collecting node or BS.

Y. CONCLUSHIN AND FUTURE WORKS

This paper presented a fully distributed spatio-temporal
novel approach in sensor nodes. which aimed to keep the
Wireless Semsor Network as energy efficient as possible.
The use of preiltration data techniques for exploiting the
physical quantities allowed to reduce the communication costs
over nodes, and thus maximizes the sensor nodes lifetime,
by adaptively tuning their data rate. The use of simple
pre-filtration techniques rather than complex computationatly
expensive models was the basic idea to design a window
technigue, which adapts the dynamicity regardless of any
particutarly monitored data. The experiments carded out on
real data sets shown better performances, in particular when
the threshold set to 5%, the overall amount of energy saving in
CH node among the received nodes data phenomena are 22.9%
and 10.76%, respectively. And thus, reducing the temporal
redundancies in nodes, it saves upto 90% of redundant data
transmissions. Furthermore, our approach requires to make a
comparison between a mueh lower sampling mate than what
chosen for the original configuration, in terms of measuring
reliability.

The on-going work still need to make further improvements,
in order to make the approach to have complete adaptivity, by
which a node can tune the threshold parameters or window
constraints based on monitored data atributes. In particular,
the algorithm refinement is required. especially when the data

patterns are irregularly incremented, but correlation between
near by the data values. In this case, therefore non-correlated
data counter should be effective in DAWF to list the all non-
correlated data as single packet. Further experiments are also
being examined, in order 10 present the comparative analysis
with different metric considerations o measure the system
performances, especially in terms of quality of data, Iatency,
message costs in CH nodes if the window constraints are high,

and energy cost in overall network.
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