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Abstract—We present an adaptive data aggregative window
function (A-DAWF) for a distributed sensor network model in
which nodes store data in their attribute window functions,
and provide non-correlated data towards the base station (BS).
Unlike previous works, namely data collection or data gathering
management systems, we propose a novel approach that aims
to process temporal redundant techniques in sensor nodes as
well as providing spatial redundant filtration methods in cluster-
head (CH) nodes. In this regard, preliminary results show that
A-DAWF can suppress up to 90% of temporal redundant data
among the considered sensor nodes by an optimal threshold of
the window sizes, and their spatial correlations in CH node by
a maximum error threshold compared to either periodic or a
continuous data transmission system.

I. INTRODUCTION

In WSNs, sensor nodes lifetime always rely on each other.
In most of the application scenarios, sensor nodes (SNs) are
used as battery powered devices which have limited storages
and processing capabilities. Periodically, sensors can spend
a lot of energy to transmit or receive the sensor readings
which shortens their lifetime as well as their network lifetime.
Since data aggregation or data collection has grown as one of
the promising area in energy-efficient WSNs for maximizing
the network lifetime, and several well-known data aggregation
techniques have been studied in the literature [1–8], however
they are limited to their specificity. Especially, earlier literature
works are designed based on the homogeneous application
scenarios than heterogeneous, since many deployment sce-
narios proved that nodes have their own specific application
tasks [9] rather than homogeneous tasks which are rarely used
in practice. Having a better aggregation mechanism not only
reduces redundant transmissions, it also saves a huge amount
of receiver’s energy of all other three modules such as radio
receiving or listening, computation, and processing procedures
of receiver nodes. Hence, it is necessary to use an effective data
redundancy technique or simple prediction methods in order to
avoid the redundant data transmissions to ensure the reliability
in network applications.

In this paper, we primarily designed our proposition based
on the homogeneous application scenarios, and then heteroge-
neous. In this regard, we present two sorts of data filtration, one
performs in sensor nodes for finding temporal data redundan-
cies (TDRs) using both relative variation (RV) and aggregative
window functions, and the another one uses in CH nodes for
exploiting spatial data redundancies (SDRs) using both RV
and A-DAWF. This paper is presented as work in progress,
and the designed implementations of our work are discussed
in section III. In section IV, we show the preliminary results
to demonstrate that the proposed mechanism can suppress a

huge amount of data transmissions in both time and space.

II. RELATED WORK

Energy-efficienct strategies are a widely studied area in
WSNs, and a taxonomy of various approaches are presented
in the literature [1].

TiNA [3] used a clause condition for specifying the differed
ranges, if the differed range is greater than the specified
range between any two values, then the differed result can be
reported, otherwise ignored. TiNA is more related to our work,
as we also used the RV function to find TDRs between every
two window stored phenomena among the individual nodes.
CAG [2] proposed a cluster-based technique which reports
only spatial correlations of cluster nodes by a CH to the BS,
and ignores the individual nodes temporal data. The authors in
[7] proposed another cluster-based method like CAG to build
a predictive model on CH nodes instead of individual sensor
nodes and let complete computational burden on header nodes
itself. In the contrary, the authors in [4] proposed a TinyDB and
Cougar data collection models for maintaining node as a small
database query engine to the BS, and the other recent works
in [5, 10] enables a data storage with coffee file system (CFS),
and a dynamic Antelope database system in every sensor node.

Unlike previous works, our proposal avoids the consid-
eration of building either rich spatial compression-based or
temporal prediction-based mathematical models, and designed
a simple data redundancy algorithm based on the Intel datasets.
The basic window principle of this work has been approached
from one of our earlier research works [11]. In our consider-
ations, normal nodes sense the environmental phenomena by
using A-DAWF mechanism for exploiting TDRs in every node,
and SDRs in CH nodes as well.

III. A-DAWF PRELIMINARIES

In this paper, we exploit both temporal and spatial cor-
relations through the attribute window functions in order to
suppress the redundant data information at a fixed window time
intervals r and R. We consider a cluster-based sensor network
with n SNs, which continuously forward the uncorrelated set
of data attributes to the CH, TDR(t) = (p1, p2, ...., pM )
generates the sensed physical phenomena at different time
instances t, and s CHs as super nodes, which receive spatial
data messages of nodes at given time instances τ , SDR(τ) =
(q1, q2, ...., qN ) and their own sensor readings. The attribute
detection nature of environmental phenomena pM , may be the
attributes being sensed by nodes as temperature or humidity or
may be the result of any application phenomena. If the sensor
monitoring attributes are continuous, we consider A-DAWF
mechanism to monitor the redundant data.978-1-5090-2185-7/16/$31.00 c© 2016 IEEE



A. A-DAWF Implementation
A-DAWF is an aggregative window function which can

reduce the redundant data transmissions for individual sensor
nodes in both time and space. In this approach, we present
two sorts of scenarios to do the filtration in both sensor nodes
and CHs. In this work, we assume that the network model is
single-hop clustering as shown in the figure 1, and the sensor
nodes are purely distributed, which can compute and process
the obtained environmental data at different time instances t by
using A-DAWF mechanism. Since computation is the second
highest energy consumer after the communication, although
for computing the simple prediction-based models does not
require much energy to make a comparison between the sensed
readings through the window function. Thus, for suppressing

Fig. 1: Example of a cluster-star topology, show the nature of
communication between sensor nodes and CH.

TDRs, the following constraints must be satisfied in sensor
nodes.

TRcount =

{

if
|pi+1−pi|

pi
> η, TRcount= 0

otherwise, TRcount= 1
(1)

µK =

∑M
i=1 pi+KM

M
(2)

According to the first scenario, the RV function of Eq.(1),
where TRcount represents the temporal count of RV. If RV
is greater than the threshold η then the TRcount will be 0,
otherwise TRcount will be reported as 1. Therefore, we set
the threshold η value as 0.05 and it can also be varied as
per the physical phenomena or different application physical
quantities. In the second scenario, A-DAWF evaluates the
stored readings by Eq.(2) where µK is the mean value of
window at K times which starts from zero. And i is an index of
environmental property being sensed by sensor node as either
temperature or humidity at given t time instances, and r is
the round time interval of wM . And, M is a window size that
can either be fixed or vary based on the nodes computational
resources or flash memory. During every wM of a sensor
node, it can compare its current value pi+1 with the previous
value of pi through the window stored readings by Eq.(1). In
general applications, most of the obtained environmental data
are either redundant or correlated. We assume that the observed
nodes data are highly correlated. However, comparing current
data with previous data values for finding redundant data does
not show the greatest impacts of data transmission reductions,
because of the instant deletion of previous data records after
a successful transmission to the CH. While considering this,
we proposed an attribute window concept wM in every sensor
node. However, wM keeps the record of every 10 detected
values during the observed time interval r and cleared the

values on the basis of FIFO approach after each successful
data window transmission to the CH node.

Furthermore, we also implement the A-DAWF mechanism
in CHs for finding both SDRs and TDRs, since CHs receive the
data messages of SDR(τ) among sensor nodes as well as their
own sensor readings of TDR(t). In CH nodes, we assume that
the window wQ size is 50, which can also be varied based on
the CHs computational constraints for monitoring nodes spatial
data and their own readings. In this case, if sensor nodes have
the same application monitoring tasks at different periods, then
there will be several SDRs over nodes. Hence, for reducing
SDRs among nodes, CH keeps the spatial data records of its
corresponding sensor nodes during every round time interval
of R. In order to find SDRs, the following expressions Eq.(3)
and (4) must be satisfied in CH nodes, and the parameter
considerations and their ranges of SDRs are used almost same
as like sensor nodes of Eq.(1) and (2) with exception of
the window sizes, but the CH A-DAWF threshold η value is
fixed at 0.05 and may vary since CHs window constraints are
different than the SNs window constraints. According to the
Eq.(3), SRcount represents a spatial correlations count of RV
in CH windows.

SRcount =

{

if
|qj+1−qj |

qj
> η, SRcount= 0

otherwise, SRcount= 1
(3)

µL =

∑Q
j=1 qj+LQ

Q
(4)

B. A-DAWF Prediction-Based Mechanism
The iterative Algorithm 1 starts by initializing all the vari-

ables and their parameters. The core of this algorithm, consists
of a data redundancy loop that predicts the node redundant or
correlated data with the previous data values. If the current
readings are differ from the previous readings, then only node
adds/counts the sorted data into its corresponding window
packet before fowarding it to the cluster-head, otherwise the
data can be flushed itself.

The entire algorithm iteratively stored the received data of
their corresponding nodes into their attribute window func-
tions, which can comput and update the data packets before
forwarding to the CH node. In this algorithm, A-DAWF has
two time intervals; one as nodes received data time intervals
t and another one as window forwarding time intervals r.
Using RV function (Algorithm 1, line 4) A-DAWF mechanism
examines the window stored data of nodes, whether they are
redundant and correlated, if RV is greater than the threshold
then it counts and forwards the non-correlated data towards
the BS. If the window contains the redundant information
then (Algorithm, line 8) A-DAWF utilizes its mean averaging
function to send one appropriate data value rather than the
all window redundant messages. Moreover this pre-filtration
method helps to reduce their redundant data transmissions,
which then also reduces the total communication burden on
nodes and maximizes the overall nodes lifetime as well as the
network lifetime.

Moreover, we have also been developing the further
considerations and improvements of the propositions in
COOJA/Contiki simulator for both various metric and com-
parative analysis with several well known protocols. Since
the simulator uses its own developed software’s and can
be uploaded directly on any recommended real motes. For



Algorithm 1 nodes sensed phenomena (pi(t))

procedure : Initialize(n, t, r)
Parameters: t ← node time intervals,
TRcount ←

|pi+1−pi|
pi

> η

r ← window round time interval of the sensor
nodes

if pi(t) then
Store into the Window buffer wM

if
abs(pi+1−pi)

pi
> η then

Count Temporal correlations
if TRcount mod 10 == 0 then

Add mean µK averaging data
else

Count non-correlated Data
Send as single data packet

end if
end if

end if
end procedure

instance in our case we consider Tmote-sky for simulations
and TelosB devices for network deployment.

IV. EXPERIMENTAL STUDY AND PRELIMINARY RESULTS

In this section, we presented the preliminary results of
cluster topology with the help of real Intel Data sets from
[12]. According to this online repository, the data values are
captured every 31 seconds, and the readings (temperature,
relative humidity and light) are collected from the indoor
network deployment of 54 sensor nodes at Intel-Berkeley
Research Labs, between February 28 and April 5, 2004. The
preliminary study of this network simulations are permformed
in MATLAB. In this experimental study case, we considered
the temperature datasets for preliminary results, and we only
used one day and night measures of three sensor nodes.
However, while developing our proposition, we notice huge
TDRs and SDRs with A-DAWF compared to the datasets
sampling rate system as shown in Figure 2 and Figure 5.
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Fig. 2: Number of window transmissions (TX) through the
various window sizes.

Figure 2 illustrates the total number of window data
transmissions over the window wM sizes at various error
thresholds η as shown in the table I. Without A-DAWF, 1316
sensor readings would be sent by every node towards the
network. In this scenario, we consider three cluster nodes
which they do the TDRs filtration, where A-DAWF transmit
131 readings only by individual node to the CH out of 1316
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Fig. 3: Total number of saved transmissions (%) over the
windows.
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Fig. 4: Mean Absolute Error (MAE) cost over the window
sizes.

readings compared to the datasets sampling rate. In order to
calculate the transmission costs (TXcost) in every node, we
used a TXcost metric of Eq.(5) to evaluate the performances
of A-DAWF as shown in figure 3. However, we also conduct
several simulation tests using different η and wM parameters
over the TXcost and MAE metrics to explore the performances
at both varying thresholds and window sizes as shown in
figure 3 and figure 4. Figure 3 describes the total amount
of saved transmissions over various window and threshold
parameters, where a minimum window of 10 saves 66%, and
a maximum window of 100 reduces more than 90% of the
required transmissions . In figure 4, we present the mean
absolute prediction error of sensor nodes at head node, which
then shows the attained error over the various window sizes
for minimum to maximum prediction error of the thresholds η
are from 0.001 to 0.1. Following the minimum to maximum
thresholds of MAE is less than one percent (<1%) in all cases.
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Fig. 5: CH A-DAWF among nodes spatial data with different
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Figure 5 demonstrates the spatial correlations of data



detection by a considered cluster nodes to the CH at different
given time instances t from [12]. Which then figure 5 clearly
shows that there are still large amount of spatial redundant data
among the nodes, in which CH A-DAWF can still suppress
a large amount of redundant data at a various thresholds
and at a various window sizes of 10, 50 and 100. This
experimental study help us to understand the differences and
how often faulty readings generate the correlated values and
their interactions between each other. Moreover, we also notice
that there is no variation in TDRs and SDRs after η of 0.05 at
a fixed window intervals, thus whatever the higher values are
given then the A-DAWF deliverd data remain constant, which
is obvious since RV only does the redundant data comparison
between every two window data values, and process the non-
redundant or mean averaging data accordingly. If the window
size varies then the performances will obviously be varied,
which are shown in the below tabulated readings.

TABLE I: A-DAWF performances at various thresholds and
window sizes.

Thresh-

old

(η)

window

size (w)

Nodes

Temporal

data TXs (out

of 1136)
0.001 10 383
0.002 25 167
0.005 40 47
0.008 55 26
0.01 70 21
0.05 85 15
0.1 100 13

TXcost = (1− Num of window TXed messages
Total num of periodic transmissions

)× 100
(5)

According to the TXcost metric of Eq.(5), A-DAWF shows
that it can suppress up to 90% of transmissions compared
to the datasets sampling rate among the considered sensor
nodes. On the other hand, CH node suppress 386 spatial
redundancies or correlations of the nodes out of 393 data by
a fixed optimal threshold η of 0.05 and at a window WQ

of 50, which means CH only sent 7 times among the nodes
spatial data. Furthermore, we also considered to evaluate the
message costs (Mcost) over nodes. According to the authors
of [13] have experimented with two payload sizes of a node,
such as 1 and 90 bytes of data carries towards the sink or
BS to demonstrate that increasing the payload size (bytes)
to some extent does not vary the energy consumption cost
over nodes. In our considerations, A-DAWF sends its total
uncorrelated window data as a single packet during its window
time intervals.

The further in-depth research work of the algorithm, mea-
surements and system analysis among the proposed network
are work-in-progress, which can be presented in the future
work proceedings.

V. CONCLUSION AND FUTURE WORK

This paper is presented as work-in-progress implementa-
tions and the developed system models of spatio-temporal
redundancy techniques for reducing TDRs in sensor nodes as
well as both TDRs and SDRs in CH nodes. The preliminary
results show that the proposed mechanism can suppress up to
90% of temporal redundant data among the considered sensor
nodes by an optimal threshold of the window sizes as well

as their spatial correlations are being suppressed effectively
in a considered CH node compared to either periodic or a
continuous transmission system. The ongoing measurements
still need to be analyzed for measuring the message costs and
overall network lifetime with the consideration of many CHs
and their group nodes.

Further results and algorithm performances are being car-
ried out with the consideration of our LE2P lab datasets from
the recent network deployments. For comparative analysis,
we consider to make a comparison between A-DAWF with
our lab datsets and A-DAWF results from COOJA simulator.
We are particularly interested to extend our propositions for
monitoring different temporal physical properties at a time in
nodes and their spatial correlations in CHs. Further experi-
ments are also being examined in order to present comparative
results with other well-known literature works to demonstrate
the system performances especially in terms of quality of
data, latency, message cost, and energy cost. Additionally, we
also consider to design and develop A-DAWF mechanisms for
multi-hop networks.
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