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Abstract
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1 Introduction

Levinson’s theorem is a relation between the number of bound states of a quantum mechanical system
and an expression related to the scattering part of that system. Its original formulation was established
by N. Levinson in [35] in the context of a Schrödinger operator with a spherically symmetric potential,
but subsequently numerous authors extended the validity of such a relation in various contexts or for
various models. It is certainly impossible to quote all papers or books containing either Levinson’s
theorem in their title or in the subtitle of a section, but let us mention a few key references [6, 23,
36, 37, 38, 39, 40, 49, 45]. Various methods have also been used for the proof of this relation, as for
example the Jost functions, the Green functions, the Sturm-Liouville theorem, and most prominently
the spectral shift function. Note that expressions like the phase shift, the Friedel sum rule or some
trace formulas are also associated with Levinon’s theorem.

Our aim in this review paper1 is to present a radically different approach for Levinson’s theorem.
Indeed, during the last couple of years it has been shown that once recast in a C∗-algebraic framework
this relation can be understood as an index theorem in scattering theory. This new approach does
not only shed new light on this theorem, but also provides a more coherent and natural way to take
various corrections or regularization processes into account. In brief, the key point in our proof of
Levinson’s theorem consists in evaluating the index of the wave operator by the winding number of an
expression involving not only the scattering operator, but also new operators that describe the system
at thresholds energies.

From this short description, it clearly appears that this new approach relies on two distinct fields
of mathematics. On the one hand, the wave operators and the scattering operator belong to the
framework of spectral and scattering theory, two rather well-known subjects in the mathematical
physics community. On the other hand, index theorem, winding number, and beyond them index
map, K-theory and Connes’ pairing are familiar tools for operator algebraists. For this reason, a
special attention has been given to briefly introduce all concepts which belong only to one of these
communities. One of our motivations in writing this survey is to make this approach of Levinson’s
theorem accessible to both readerships.

Let us now be more precise about the organization of this paper. In Section 2 we introduce a so-
called “baby model” on which the essence of our approach can be fully presented. No prior knowledge
on scattering theory or onK-theory is necessary, and all computations can be explicitly performed. The
construction might look quite ad hoc, but this feeling will hopefully disappear once the full framework
is established.

Section 3 contains a very short introduction to scattering theory, with the main requirements
imposed on the subsequent scattering systems gathered in Assumption 3.1. In Section 4 we gradually
introduce the C∗-algebraic framework, starting with a brief introduction to K-theory followed by
the introduction of the index map. An abstract topological Levinson’s theorem in then proposed in
Theorem 4.4. Since this statement still contains an implicit condition, we illustrate our purpose by

1This paper is an extended version of a mini-course given at the International conference on spectral theory and
mathematical physics which took place in Santiago (Chile) in November 2014. The author takes this opportunity to
thank the organizers of the conference for their kind invitation and support.
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introducing in Section 4.4 various isomorphic versions of the algebra which is going to play a key role
in the subsequent examples. In the last part of this section we show how the previous computations
performed on the baby model can be explained in this algebraic framework. Clearly, Sections 3 and 4
can be skipped by experts in these respective fields, or very rapidly consulted for the notations.

In Section 5 we gather several examples of scattering systems which are either one dimensional
or essentially one dimensional. With the word “essential” we mean that a rather simple reduction of
the system under consideration leads to a system which is not trivial only in a space of dimension
one. Potential scattering on R is presented and an explanation of the usual 1

2 -correction is provided.
With another example, we show that embedded or non-embedded eigenvalues play exactly the same
role for Levinson’s theorem, a question which had led to some controversies in the past [15]. A sketchy
presentation of a few other models is also proposed, and references to the corresponding papers are
provided.

With Section 6 we start the most analytical section of this review paper. Indeed, a key role in
our approach is played by the wave operators, and a good understanding of them is thus necessary.
Prior to our investigations such a knowledge on these operators was not available in the literature, and
part of our work has consisted in deriving new explicit formulas for these operators. In the previous
section the resulting formulas are presented but not their proofs. In Section 6.1 we provide a rather
detailed derivation of these formulas for a system of potential scattering in R3, and the corresponding
computations are based on a stationary approach of scattering theory. On the algebraic side this
model is also richer than the ones contained in Section 5 in the sense that a slight extension of the
algebraic framework introduced in Section 4 together with a regularization procedure are necessary.
More precisely, we provide a regularized formula for the computation of the winding number of suitable
elements of C

(
S;Kp(h)

)
, the algebra of continuous functions on the unit circle with value in the p-th

Schatten class of a Hilbert space h.
A very brief description of the wave operators for potential scattering in R2 is provided in Section

7. However, note that for this model a full understanding of the wave operators is not available yet, and
that further investigations are necessary when resonances or eigenvalues take place at the threshold
energy 0. Accordingly, a full description of a topological Levinson’s theorem does not exist yet.

In Section 8 we extend the C∗-algebraic framework in a different direction, namely to index theo-
rems for families. First of all, we introduce a rather large family of self-adjoint operators corresponding
to so-called Aharonov-Bohm operators. These operators are obtained as self-adjoint extensions of a
closed operator with deficiency indices (2, 2). A Levinson’s theorem is then provided for each of them,
once suitably compared with the usual Laplace operator on R2. For this model, explicit formulas for
the wave operators and for the scattering operator are provided, and a thorough description of the
computation of the winding number is also given. These expressions and computations are presented
in Sections 8.1 and 8.2.

In order to present a Levinson’s theorem for families, additional information on cyclic cohomology,
n-traces and Connes’ pairing are necessary. A very brief survey is provided in Section 8.3. A glimpse
on dual boundary maps is also given in Section 8.4. With these information at hands, we derive in
Section 8.5 a so-called higher degree Levinson’s theorem. The resulting relation corresponds to the
equality between the Chern number of a vector bundle given by the projections on the bound states
of the Aharonov-Bohm operators, and a 3-trace applied to the scattering part of the system. Even if a
physical interpretation of this equality is still lacking, it is likely that it can play a role in the theory
of topological transport and/or adiabatic processes.

Let us now end this Introduction with some final comments. As illustrated by the multiplicity of
the examples, the underlying C∗-algebraic framework for our approach of Levinson’s theorem is very
flexible and rich. Beside the extensions already presented in Sections 6 and 8, others are appealing.
For example, it would certainly be interesting to recast the generalized Levinson’s theorem exhibited
in [44, 55] in our framework. Another challenging extension would be to find out the suitable algebraic
framework for dealing with scattering systems described in a two-Hilbert spaces setting. Finally, let us
mention similar investigations [5, 53] which have been performed on discrete systems with the same
C∗-algebraic framework in the background.
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2 The baby model

In this section we introduce an example of a scattering system for which everything can be computed
explicitly. It will allow us to describe more precisely the kind of results we are looking for, without
having to introduce any C∗-algebraic framework or too much information on scattering theory. In fact,
we shall keep the content of this section as simple as possible.

Let us start by considering the Hilbert space L2(R+) and the Dirichlet Laplacian HD on R+ :=

(0,∞). More precisely, we set HD = − d2

dx2 with the domain D(HD) = {f ∈ H2(R+) | f(0) = 0}. Here
H2(R+) means the usual Sobolev space on R+ of order 2. For any α ∈ R, let us also consider the

operator Hα defined by Hα = − d2

dx2 with D(Hα) = {f ∈ H2(R+) | f ′(0) = αf(0)}. It is well-known
that if α < 0 the operator Hα possesses only one eigenvalue, namely −α2, and the corresponding
eigenspace is generated by the function x 7→ eαx. On the other hand, for α ≥ 0 the operators Hα have
no eigenvalue, and so does HD.

As explained in the next section, a common object of scattering theory is defined by the following
formula:

Wα
± := s− lim

t→±∞
eitH

α

e−itHD ,

and this limit in the strong sense is known to exist for this model, see for example [57, Sec. 3.1].
Moreover, we shall provide below a very explicit formula for these operators. For that purpose, we
need to introduce one more operator which is going to play a key role in the sequel. More precisely,
we consider the unitary group {Ut}t∈R acting on any f ∈ L2(R+) as

[Utf ](x) = et/2 f
(
et x
)
, ∀x ∈ R+ (2.1)

which is usually called the unitary group of dilations, and denote its self-adjoint generator by A and
call it the generator of dilations.

Our first result for this model then reads.

Lemma 2.1. For any α ∈ R, the following formula holds:

Wα
− = 1 + 1

2

(
1 + tanh(πA)− i cosh(πA)−1

)[α+ i
√
HD

α− i
√
HD

− 1
]
. (2.2)

Note that a similar formula for Wα
+ also holds for this model, see Lemma 9.1. Since the proof

of this lemma has never appeared in the literature, we provide it in the Appendix. Motivated by the
above formula, let us now introduce the function

Γα
� : [0,+∞]× [−∞,+∞] ∋ (x, y) 7→ 1 + 1

2

(
1 + tanh(πy)− i cosh(πy)−1

)[α+ i
√
x

α− i
√
x
− 1
]
∈ C.

Since this function is continuous on the square� := [0,+∞]×[−∞,+∞], its restriction on the boundary
� of the square is also well defined and continuous. Note that this boundary is made of four parts:
� = B1 ∪B2 ∪B3 ∪B4 with B1 = {0}× [−∞,+∞], B2 = [0,+∞]×{+∞}, B3 = {+∞}× [−∞,+∞],
and B4 = [0,+∞]× {−∞}. Thus, the algebra C(�) of continuous functions on � can be viewed as a
subalgebra of

C
(
[−∞,+∞]

)
⊕ C

(
[0,+∞]

)
⊕ C

(
[−∞,+∞]

)
⊕ C

(
[0,+∞]

)
(2.3)

given by elements Γ = (Γ1,Γ2,Γ3,Γ4) which coincide at the corresponding end points, that is,

Γ1(+∞) = Γ2(0), Γ2(+∞) = Γ3(+∞), Γ3(−∞) = Γ4(+∞), and Γ4(0) = Γ1(−∞).

With these notations, the restriction function Γα
� := Γα

�
∣∣
� is given for α ̸= 0 by

Γα
� =

(
1,
α+ i

√
·

α− i
√
·
,− tanh(π·) + i cosh(π·)−1, 1

)
(2.4)
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and for α = 0 by

Γ0
� :=

(
− tanh(π·) + i cosh(π·)−1,−1,− tanh(π·) + i cosh(π·)−1, 1

)
. (2.5)

For simplicity, we have directly written this function in the representation provided by (2.3).
Let us now observe that the boundary � of � is homeomorphic to the circle S. Observe in addition

that the function Γα
� takes its values in the unit circle T of C. Then, since Γα

� is a continuous function
on the closed curve � and takes values in T, its winding number Wind(Γα

�) is well defined and can
easily be computed. So, let us compute separately the contribution wj(Γ

α
�) to this winding number

on each component Bj of �. By convention, we shall turn around � clockwise, starting from the left-
down corner, and the increase in the winding number is also counted clockwise. Let us stress that the
contribution on B3 has to be computed from +∞ to −∞, and the contribution on B4 from +∞ to 0.
Without difficulty one gets:

w1(Γ
α
�) w2(Γ

α
�) w3(Γ

α
�) w4(Γ

α
�) Wind(Γα

�)
α < 0 0 1/2 1/2 0 1
α = 0 −1/2 0 1/2 0 0
α > 0 0 −1/2 1/2 0 0

By comparing the last column of this table with the information on the eigenvalues of Hα men-
tioned at the beginning of the section one gets:

Proposition 2.2. For any α ∈ R the following equality holds:

Wind(Γα
�) = number of eigenvalues of Hα. (2.6)

The content of this proposition is an example of Levinson’s theorem. Indeed, it relates the number
of bound states of the operator Hα to a quantity computed on the scattering part of the system. Let
us already mention that the contribution w2(Γ

α
�) is the only one usually considered in the literature.

However, we can immediately observe that if w1(Γ
α
�) and w3(Γ

α
�) are disregarded, then no meaningful

statement can be obtained.
Obviously, the above result should now be recast in a more general framework. Indeed, except

for very specific models, it is usually not possible to compute precisely both sides of (2.6), but our
aim is to show that such an equality still holds in a much more general setting. For that purpose, a
C∗-algebraic framework will be constructed in Section 4.

3 Scattering theory: a brief introduction

In this section, we introduce the main objects of spectral and scattering theory which will be used
throughout this paper.

Let us start by recalling a few basic facts from spectral theory. We consider a separable Hilbert
space H, with its scalar product denoted by ⟨·, ·⟩ and its norm by ∥ · ∥. The set of bounded linear
operators on H is denoted by B(H). Now, if B(R) denotes the set of Borel sets in R and if P(H)
denotes the set of orthogonal projections on H, then a spectral measure is a map E : B(R) → P(H)
satisfying the following properties:

(i) E(∅) = 0 and E(R) = 1,

(ii) If {ϑn}n∈N is a family of disjoint Borel sets, then E(∪nϑn) =
∑

nE(ϑn) (convergence in the
strong topology).

The importance of spectral measures comes from their relation with the set of self-adjoint operators
in H. More precisely, let H be a self-adjoint operator acting in H, with its domain denoted by D(H).
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Then, there exists a unique spectral measure E(·) such that H =
∫
R λE(dλ). Note that this integral

has to be understood in the strong sense, and only on elements of D(H).
This measure can now be decomposed into three parts, namely its absolutely continuous part, its

singular continuous part, and its pure point part. More precisely, there exists a decomposition of the
Hilbert space H = Hac(H) ⊕Hsc(H) ⊕Hp(H) (which depends on H) such that for any f ∈ H•(H),
the measure

B(R) ∋ ϑ 7→ ⟨E(ϑ)f, f⟩ ∈ R

is of the type •, i.e. absolutely continuous, singular continuous or pure point. It follows that the
operator H is reduced by this decomposition of the Hilbert space, i.e. H = Hac ⊕Hsc ⊕Hp. In other
words, if one sets Eac(H), Esc(H) and Ep(H) for the orthogonal projections on Hac(H), Hsc(H) and
Hp(H) respectively, then these projections commute with H and one has Hac = HEac(H), Hsc =
HEsc(H) and Hp = HEp(H). In addition, if σ(H) denotes the spectrum of the operator H, we then
set σac(H) := σ(Hac), σsc(H) := σ(Hsc), and if σp(H) denotes the set of eigenvalues of H, then the

equality σp(H) = σ(Hp) holds. In this framework the operator H is said to be purely absolutely
continuous if Hsc(H) = Hp(H) = {0}, or is said to have a finite point spectrum (counting multiplicity)
if dim

(
Hp(H)

)
<∞. In this case, we also write ♯σp(H) <∞.

Let us now move to scattering theory. It is a comparison theory, therefore we have to consider two
self-adjoint operators H0 and H in the Hilbert space H. A few requirements will be imposed on these
operators and on their relationships. Let us first state these conditions, and discuss them afterwards.

Assumption 3.1. The following conditions hold for H0 and H:

(i) H0 is purely absolutely continuous,

(ii) ♯σp(H) <∞,

(iii) the wave operators W± := s− limt→±∞ eitH e−itH0 exist,

(iv) Ran(W−) = Ran(W+) = Hp(H)⊥ =
(
1− Ep(H)

)
H.

The assumption (i) is a rather common condition in scattering theory. Indeed, since H0 is often
thought as a comparison operator, we expect it to be as simple as possible. For that reason, any
eigenvalue for H0 is automatically ruled out. For the same reason, we will assume that H0 does not
possess a singular continuous part. On the other hand, assumption (ii), which imposes that the point
spectrum of H is finite (multiplicity included) is certainly restrictive, but is natural for our purpose.
Indeed, since at the end of the day we are looking for a relation involving the number of bound states,
the resulting equality is meaningful only if such a number is finite.

Assumption (iii) is the main condition on the relation between H0 and H. In fact, this assump-
tion does not directly compare these two operators, but compare their respective evolution group
{e−itH0}t∈R and {e−itH}t∈R for |t| large enough. This condition is usually rephrased as the existence
of the wave operators. Note that s− lim means the limit in the strong sense, i.e. when these operators
are applied on an element of the Hilbert space. For a concrete model, checking this existence is a
central part of scattering theory, and can be a rather complicated task. We shall see in the examples
developed later on that this condition can be satisfied if H corresponds to a suitable perturbation of
H0. For the time being, imposing this existence corresponds in fact to the weakest condition necessary
for the subsequent construction. Finally, assumption (iv) is usually called the asymptotic completeness
of the wave operators. It is a rather natural expectation in the setting of scattering theory. In addition,
since Ran(W±) ⊂ Hac(H) always holds, this assumption implies in particular that H has no singular
continuous spectrum, i.e. Hsc(H) = {0}. The main idea behind this notion of asymptotic completeness
will be explained in Remark 3.2.

Let us now stress some important consequences of Assumption 3.1. Firstly, the wave operators
W± are isometries, with

W ∗
±W± = 1 and W±W

∗
± = 1− Ep(H), (3.1)

6



where ∗ means the adjoint operator. Secondly, W± are Fredholm operators and satisfy the so-called
intertwining relation, namely W± e−itH0 = e−itH W± for any t ∈ R. Another crucial consequence of
our assumptions is that the scattering operator

S :=W ∗
+W−

is unitary and commute with H0, i.e. the relation S e−itH0 = e−itH0 S holds for any t ∈ R. Note that
this latter property means that S and H0 can be decomposed simultaneously. More precisely, from the
general theory of self-adjoint operators, there exists a unitary map F0 : H →

∫ ⊕
σ(H0)

H(λ) dλ from H
to a direct integral Hilbert space such that F0H0F ∗

0 =
∫ ⊕
σ(H0)

λdλ. Then, the mentioned commutation

relation implies that

F0SF ∗
0 =

∫ ⊕

σ(H0)

S(λ)dλ

with S(λ) a unitary operator in the Hilbert space H(λ) for almost every λ. The operator S(λ) is usually
called the scattering matrix at energy λ, even when this operator is not a matrix but an operator acting
in a infinite dimensional Hilbert space.

Remark 3.2. In order to understand the idea behind the asymptotic completeness, let us assume it
and consider any f ∈ Hac(H). We then set f± :=W ∗

±f and observe that

lim
t→±∞

∥∥ e−itH f − e−itH0 f±
∥∥ = lim

t→±∞

∥∥f − eitH e−itH0 f±
∥∥

= lim
t→±∞

∥∥f − eitH e−itH0 W ∗
±f
∥∥

= 0,

where the second equality in (3.1) together with the equality 1−Ep(H) = Eac(H) have been used for the
last equality. Thus, the asymptotic completeness of the wave operators means that for any f ∈ Hp(H)⊥

the element e−itH f can be well approximated by the simpler expression e−itH0 f± for t going to ±∞.
As already mentioned, one usually considers the operator H0 simpler than H, and for that reason the
evolution group {e−itH0}t∈R is considered simpler than the evolution group {e−itH}t∈R.

4 The C∗-algebraic framework

In this section we introduce the C∗-algebraic framework which is necessary for interpreting Levinson’s
theorem as an index theorem. We start by defining the K-groups for a C∗-algebra.

4.1 The K-groups

Our presentation of the K-groups is mainly based the first chapters of the book [50] to which we refer
for details.

For any C∗-algebra E , let us denote by Mn(E) the set of all n × n matrices with entries in E .
Addition, multiplication and involution for such matrices are mimicked from the scalar case, i.e. when
E = C. For defining a C∗-norm on Mn(E), consider any injective ∗-morphism ϕ : E → B(H) for some
Hilbert space H, and extend this morphism to a morphism ϕ : Mn(E) → B(Hn) by defining

ϕ

a11 . . . a1n
...

. . .
...

an1 . . . ann


f1...
fn

 =

ϕ(a11)f1 + · · ·+ ϕ(a1n)fn
...

ϕ(an1)f1 + · · ·+ ϕ(ann)fn

 (4.1)

for any t(f1, . . . , fn) ∈ Hn (the notation t(. . . ) means the transpose of a vector). Then a C∗-norm on
Mn(E) is obtained by setting ∥a∥ := ∥ϕ(a)∥ for any a ∈ Mn(E), and this norm is independent of the
choice of ϕ.
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In order to construct the first K-group associated with E , let us consider the set

P∞(E) =
∪
n∈N

Pn(E)

with Pn(E) := {p ∈ Mn(E) | p = p∗ = p2}. Such an element p is called a projection. P∞(E) is then
endowed with a relation, namely for p ∈ Pn(E) and q ∈ Pm(E) one writes p ∼0 q if there exists
v ∈ Mm,n(E) such that p = v∗v and q = vv∗. Clearly, Mm,n(E) denotes the set of m×n matrices with
entries in E , and the adjoint v∗ of v ∈ Mm,n(E) is obtained by taking the transpose of the matrix,
and then the adjoint of each entry. This relation defines an equivalence relation which combines the
Murray-von Neumann equivalence relation together with an identification of projections in different
sized matrix algebras over E . We also endow P∞(E) with a binary operation, namely if p, q ∈ P∞(E)
we set p⊕ q =

( p 0
0 q

)
which is again an element of P∞(E).

We can then define the quotient space

D(E) := P∞(E)/ ∼0

with its elements denoted by [p] (the equivalence class containing p ∈ P∞(E)). One also sets

[p] + [q] := [p⊕ q]

for any p, q ∈ P∞(E), and it turns out that the pair
(
D(E),+

)
defines an Abelian semigroup.

In order to obtain an Abelian group from the semigroup, let us recall that there exists a canonical
construction which allows one to add “the opposites” to any Abelian semigroup and which is called the
Grothendieck construction. More precisely, for an Abelian semigroup (D,+) we consider on D ×D an
equivalence relation, namely (a1, b1) ∼ (a2, b2) if there exists c ∈ D such that a1 + b2 + c = a2 + b1 + c.
The elements of the quotient D × D/ ∼ are denoted by ⟨a, b⟩ and this quotient corresponds to an
Abelian group with the addition

⟨a1, b1⟩+ ⟨a2, b2⟩ := ⟨a1 + a2, b1 + b2⟩.

One readily checks that the equalities −⟨a, b⟩ = ⟨b, a⟩ and ⟨a, a⟩ = 0 hold. This group is called the
Grothendieck group associated with (D,+) and is denoted by

(
G(D),+

)
.

Coming back to a unital C∗-algebra E , we set

K0(E) := G
(
D(E)

)
,

which is thus an Abelian group with the binary operation +, and define the map [·]0 : P∞(E) → K0(E)
by [p]0 := ⟨[p] + [q], [q]⟩ for an arbitrary fixed q ∈ P∞(E). Note that this latter map is called the
Grothendieck map and is independent of the choice of q. Note also that an alternative description of
K0(E) is provided by differences of equivalence classes of projections, i.e.

K0(E) =
{
[p]0 − [q]0 | p, q ∈ P∞(E)

}
. (4.2)

At the end of the day, we have thus obtained an Abelian group
(
K0(E),+

)
canonically associated with

the unital C∗-algebra E and which is essentially made of equivalence classes of projections.
Before discussing the non-unital case, let us observe that if E1, E2 are unital C∗-algebras, and

if ϕ : E1 → E2 is a ∗-morphism, then ϕ extends to a ∗-morphism Mn(E1) → Mn(E2), as already
mentioned just before (4.1). Since a ∗-morphism maps projections to projections, it follows that ϕ
maps P∞(E1) into P∞(E2). One can then infer from the universal property of the K0-groups that ϕ
defines a group homomorphism K0(ϕ) : K0(E1) → K0(E2) given by

K0(ϕ)([p]0) = [ϕ(p)]0 ∀p ∈ P∞(E1).

The existence of this morphism will be necessary right now.
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If E is not unital, the construction is slightly more involved. Recall first that with any C∗-algebra
E (with or without a unit) one can associate a unique unital C∗-algebra E+ that contains E as an ideal,
and such that the quotient E+/E is isomorphic to C. We do not provide here this explicit construction,
but refer to [50, Ex. 1.3] for a detailed presentation. However, let us mention the fact that the short
exact sequence2

0 −→ E −→ E+ π−→ C −→ 0

is split exact, in the sense that if one sets λ : C ∋ α 7→ α1E+ ∈ E+, then λ is a ∗-morphism and
the equality π

(
λ(α)

)
= α holds for any α ∈ C. Observe now that since π : E+ → C is a ∗-morphism

between unital C∗-algebras, it follows from the construction made in the previous paragraph that there
exists a group morphism K0(π) : K0(E+) → K0(C). In the case of a non-unital C∗-algebra E , we set
K0(E) for the kernel of this morphism K0(π), which is obviously an Abelian group with the binary
operation of K0(E+). In summary:

K0(E) := Ker
(
K0(π) : K0(E+) → K0(C)

)
which is an Abelian group once endowed with the binary operation + inherited from K0(E+).

Let us still provide an alternative description of K0(E), in a way similar to the one provided in
(4.2), but which holds both in the unital and in the non-unital case. For that purpose, let us introduce
the scalar mapping s : E+ → E+ obtained by the composition λ ◦ π. Note that π

(
s(a)

)
= π(a) and

that a− s(a) belongs to E for any a ∈ E+. As before, we keep the same notation for the extension of
s to Mn(E+). With these notations, one has for any C∗-algebra E :

K0(E) =
{
[p]0 − [s(p)]0 | p ∈ P∞(E+)

}
.

In summary, for any C∗-algebra (with or without unit) we have constructed an Abelian group
consisting essentially of equivalence classes of projections. Since projections are not the only special
elements in a C∗-algebra E , it is natural to wonder if an analogous construction holds for other families
of elements of E ? The answer is yes, for families of unitary elements of E , and fortunately this new
construction is simpler. The resulting Abelian group will be denoted by K1(E), and we are now going
to describe how to obtain it.

In order to construct the second K-group associated with a unital C∗-algebra E , let us consider
the set

U∞(E) =
∪
n∈N

Un(E)

with Un(E) := {u ∈ Mn(E) | u∗ = u−1}. This set is endowed with a binary operation, namely
if u, v ∈ U∞(E) we set u ⊕ v = ( u 0

0 v ) which is again an element of U∞(E). We also introduce an
equivalence relation on U∞(E): if u ∈ Un(E) and v ∈ Um(E), one sets u ∼1 v if there exists a natural
number k ≥ max{m,n} such that u ⊕ 1k−n is homotopic3 to v ⊕ 1k−m in Uk(E). Here we have used
the notation 1ℓ for the identity matrix4 in Uℓ(E).

Based on this construction, for any C∗-algebra E one sets

K1(E) := U∞(E+)/ ∼1,

and denotes the elements of K1(E) by [u]1 for any u ∈ U∞(E+). K1(E) is naturally endowed with a
binary operation, by setting for any u, v ∈ U∞(E+)

[u]1 + [v]1 := [u⊕ v]1,

2A short exact sequence of C∗-algebras 0 → J ι→ E q→ Q → 0 consists in three C∗-algebras J , E and Q and two
∗-morphisms ι and q such that Im(ι) = Ker(q) and such that ι is injective while q is surjective.

3Recall that two elements u0, u1 ∈ Uk(E) are homotopic in Uk(E), written u0 ∼h u1, if there exists a continuous map
u : [0, 1] ∋ t 7→ u(t) ∈ Uk(E) such that u(0) = u0 and u(1) = u1.

4The notation 1n for the identity matrix in Mn(E) is sometimes very convenient, and sometimes very annoying (with
1 much preferable). In the sequel we shall use both conventions, and this should not lead to any confusion.
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which is commutative and associative. Its zero element is provided by [1]1 := [1n]1 for any natural
number n, and one has −[u]1 = [u∗]1 for any u ∈ U∞(E+). As a consequence,

(
K1(E),+

)
is an Abelian

group, which corresponds to the second K-group of E .
In summary, for any C∗-algebra we have constructed an Abelian group consisting essentially of

equivalence classes of unitary elements. As a result, any C∗-algebra is intimately linked with two
Abelian groups, one based on projections and one based on unitary elements. Before going to the next
step of the construction, let us provide two examples of K-groups which can be figured out without
difficulty.

Example 4.1. (i) Let C(S) denote the C∗-algebra of continuous functions on the unit circle S, with
the L∞-norm, and let us identify this algebra with

{
ζ ∈ C([0, 2π]) | ζ(0) = ζ(2π)

}
, also endowed

with the L∞-norm. Some unitary elements of C(S) are provided for any m ∈ Z by the functions

ζm : [0, 2π] ∋ θ 7→ e−imθ ∈ T.

Clearly, for two different values of m the functions ζm are not homotopic, and thus define different
classes in K1

(
C(S)

)
. With some more efforts one can show that these elements define in fact all

elements of K1

(
C(S)

)
, and indeed one has

K1

(
C(S)

) ∼= Z.

Note that this isomorphism is implemented by the winding number Wind(·), which is roughly
defined for any continuous function on S with values in T as the number of times this function
turns around 0 along the path from 0 to 2π. Clearly, for any m ∈ Z one has Wind(ζm) = m.
More generally, if det denotes the determinant on Mn(C) then the mentioned isomorphism is
given by Wind ◦ det on Un

(
C(S)

)
.

(ii) Let K(H) denote the C∗-algebra of all compact operators on a infinite dimensional and separable
Hilbert space H. For any n one can consider the orthogonal projections on subspaces of dimension
n of H, and these finite dimensional projections belong to K(H). It is then not too difficult to
show that two projections of the same dimension are Murray-von Neumann equivalent, while
projections corresponding to two different values of n are not. With some more efforts, one shows
that the dimension of these projections plays the crucial role for the definition of K0

(
K(H)

)
, and

one has again
K0

(
K(H)

) ∼= Z.

In this case, the isomorphism is provided by the usual trace Tr on finite dimensional projections,
and by the tensor product of this trace with the trace tr on Mn(C). More precisely, on any element
of Pn

(
K(H)

)
the mentioned isomorphism is provided by Tr ◦ tr.

4.2 The boundary maps

We shall now consider three C∗-algebras, with some relations between them. Since twoK-groups can be
associated with each of them, we can expect that the relations between the algebras have a counterpart
between the K-groups. This is indeed the case.

Consider the short exact sequence of C∗-algebras

0 → J ι
↪→ E q→ Q → 0 (4.3)

where the notation ↪→ means that J is an ideal in E , and therefore ι corresponds to the inclusion
map. In this setting, Q corresponds either to the quotient E/J or is isomorphic to this quotient. The
relations between the K-groups of these algebras can then be summarized with the following six-term
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exact sequence

K1(J ) - K1(E) - K1(Q)

K0(Q)

exp

6

� K0(E) � K0(J ) .

ind

?

In this diagram, each arrow corresponds to a group morphism, and the range of an arrow is equal to
the kernel of the following one. Note that we have indicated the name of two special arrows, one is
called the exponential map, and the other one the index map. These two arrows are generically called
boundary maps. In this paper, we shall only deal with the index map, but let us mention that the
exponential map has also played a central role for exhibiting other index theorems in the context of
solid states physics [28, 34].

We shall not recall the construction of the index map in the most general framework, but consider
a slightly restricted setting (see [50, Chap. 9] for a complete presentation). For that purpose, let us
assume that the algebra E is unital, in which case Q is unital as well and the morphism q is unit
preserving. Then, a reformulation of [50, Prop. 9.2.4.(ii)] in our context reads:

Proposition 4.2. Consider the short exact sequence (4.3) with E unital. Assume that Γ is a unitary
element of Mn(Q) and that there exists a partial isometry W ∈ Mn(E) such that q(W ) = Γ. Then
1n −W ∗W and 1n −WW ∗ are projections in Mn(J ), and

ind([Γ]1) = [1n −W ∗W ]0 − [1n −WW ∗]0 .

Let us stress the interest of this statement. Starting from a unitary element Γ of Mn(Q), one
can naturally associate to it an element of K0(J ). In addition, since the elements of the K-groups are
made of equivalence classes of objects, such an association is rather stable under small deformations.

Before starting with applications of this formalism to scattering systems, let us add one more
reformulation of the previous proposition. The key point in the next statement is that the central role
is played by the partial isometry W instead of the unitary element Γ. In fact, the following statement
is at the root of our topological approach of Levinson’s theorem.

Proposition 4.3. Consider the short exact sequence (4.3) with E unital. Let W be a partial isometry
in Mn(E) and assume that Γ := q(W ) is a unitary element of Mn(Q). Then 1n−W ∗W and 1n−WW ∗

are projections in Mn(J ), and

ind([q(W )]1) = [1n −W ∗W ]0 − [1n −WW ∗]0 .

4.3 The abstract topological Levinson’s theorem

Let us now add the different pieces of information we have presented so far, and get an abstract version
of our Levinson’s theorem. For that purpose, we consider a separable Hilbert space H and a unital
C∗-subalgebra E of B(H) which contains the ideal of K(H) of compact operators. We can thus look at
the short exact sequence of C∗-algebras

0 → K(H) ↪→ E q→ E/K(H) → 0.

If we assume in addition that E/K(H) is isomorphic to C(S), and if we take the results presented in
Example 4.1 into account, one infers that

Z ∼= K1

(
C(S)

) ind−→ K0

(
K(H)

) ∼= Z

11



with the first isomorphism realized by the winding number and the second isomorphism realized by
the trace. As a consequence, one infers from this together with Proposition 4.3 that there exists n ∈ Z
such that for any partial isometry W ∈ E with unitary Γ := q(W ) ∈ C(S) the following equality holds:

Wind(Γ) = nTr
(
[1−W ∗W ]− [1−WW ∗]

)
.

We emphasize once again that the interest in this equality is that the left hand side is independent of
the choice of any special representative in [Γ]1. Let us also mention that the number n depends on the
choice of the extension of K(H) by C(S), see [56, Chap. 3.2], but also on the convention chosen for the
computation of the winding number.

If we summarize all this in a single statement, one gets:

Theorem 4.4 (Abstract topological Levinson’s theorem). Let H be a separable Hilbert space, and let
E ⊂ B(H) be a unital C∗-algebra such that K(H) ⊂ E and E/K(H) ∼= C(S) (with quotient morphism
denoted by q). Then there exists n ∈ Z such that for any partial isometry W ∈ E with unitary Γ :=
q(W ) ∈ C(S) the following equality holds:

Wind(Γ) = nTr
(
[1−W ∗W ]− [1−WW ∗]

)
. (4.4)

In particular if W = W− for some scattering system satisfying Assumption 3.1, the previous equality
reads

Wind
(
q(W−)

)
= −nTr

(
[Ep]

)
.

Note that in applications, the factor n will be determined by computing both sides of the equality
on an explicit example.

4.4 The leading example

We shall now provide a concrete short exact sequence of C∗-algebras, and illustrate the previous
constructions on this example.

In the Hilbert space L2(R) we consider the two canonical self-adjoint operators X of multiplication
by the variable, and D = −i d

dx of differentiation. These operators satisfy the canonical commutation
relation written formally [iD,X] = 1, or more precisely e−isX e−itD = e−ist e−itD e−isX . We recall that
the spectrum of both operators is R. Then, for any functions φ, η ∈ L∞(R), one can consider by bounded
functional calculus the operators φ(X) and η(D) in B

(
L2(R)

)
. And by mixing some operators φi(X)

and ηi(D) for suitable functions φi and ηi, we are going to produce an algebra E which will be useful
in many applications. In fact, the first algebras which we are going to construct have been introduced
in [19] for a different purpose, and these algebras have been an important source of inspiration for us.
We also mention that related algebras had already been introduced a long time ago in [8, 9, 13, 14].

Let us consider the closure in B
(
L2(R)

)
of the ∗-algebra generated by elements of the form

φi(D)ηi(X), where φi, ηi are continuous functions on R which have limits at ±∞. Stated differently,
φi, ηi belong to C([−∞,+∞]). Note that this algebra is clearly unital. In the sequel, we shall use the
following notation:

E(D,X) := C∗
(
φi(D)ηi(X) | φi, ηi ∈ C([−∞,+∞])

)
.

Let us also consider the C∗-algebra generated by φi(D)ηi(X) with φi, ηi ∈ C0(R), which means that
these functions are continuous and vanish at ±∞. As easily observed, this algebra is a closed ideal in
E(D,X) and is equal to the C∗-algebra K

(
L2(R)

)
of compact operators in L2(R), see for example [19,

Corol. 2.18].
Implicitly, the description of the quotient E(D,X)/K

(
L2(R)

)
has already been provided in Section

2. Let us do it more explicitly now. We consider the square � := [−∞,+∞] × [−∞,+∞] whose
boundary � is the union of four parts: � = C1 ∪ C2 ∪ C3 ∪ C4, with C1 = {−∞} × [−∞,+∞],
C2 = [−∞,+∞]× {+∞}, C3 = {+∞}× [−∞,+∞] and C4 = [−∞,+∞]× {−∞}. We can also view
C(�) as the subalgebra of

C([−∞,+∞])⊕ C([−∞,+∞])⊕ C([−∞,+∞])⊕ C([−∞,+∞]) (4.5)
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given by elements Γ := (Γ1,Γ2,Γ3,Γ4) which coincide at the corresponding end points, that is,
Γ1(+∞) = Γ2(−∞), Γ2(+∞) = Γ3(+∞), Γ3(−∞) = Γ4(+∞), and Γ4(−∞) = Γ1(−∞). Then
E(D,X)/K

(
L2(R)

)
is isomorphic to C(�), and if we denote the quotient map by

q : E(D,X) → E(D,X)/K
(
L2(R)

) ∼= C(�)

then the image q
(
φ(D)η(X)

)
in (4.5) is given by Γ1 = φ(−∞)η(·), Γ2 = φ(·)η(+∞), Γ3 = φ(+∞)η(·)

and Γ4 = φ(·)η(−∞). Note that this isomorphism is proved in [19, Thm. 3.22]. In summary, we have
obtained the short exact sequence

0 → K
(
L2(R)

)
↪→ E(D,X)

q→ C(�) → 0

with K
(
L2(R)

)
and E(D,X) represented in B

(
L2(R)

)
, but with C(�) which is not naturally represented

in B
(
L2(R)

)
. Note however that each of the four functions summing up in an element of C(�) can

individually be represented in B
(
L2(R)

)
, either as a multiplication operator or as a convolution operator.

We shall now construct several isomorphic versions of these algebras. Indeed, if one looks back at
the baby model, the wave operator is expressed in (2.2) with bounded functions of the two operators
HD and A, but not in terms of D and X. In fact, we shall first use a third pair of operators, namely
L and A, acting in L2(R+), and then come back to the pair (HD, A) also acting in L2(R+).

Let us consider the Hilbert space L2(R+), and as in (2.1) the action of the dilation group with
generator A. Let also B be the operator of multiplication in L2(R+) by the function − ln, i.e. [Bf ](λ) =
− ln(λ)f(λ) for any f ∈ Cc(R+) and λ ∈ R+. Note that if one sets L for the self-adjoint operator of
multiplication by the variable in L2(R+), i.e.

[Lf ](λ) := λf(λ) f ∈ Cc(R+) and λ ∈ R+, (4.6)

then one has B = − ln(L). Now, the equality [iB,A] = 1 holds (once suitably defined), and the
relation between the pair of operators (D,X) in L2(R) and the pair (B,A) in L2(R+) is well-known
and corresponds to the Mellin transform. Indeed, let V : L2(R+) → L2(R) be defined by (V f)(x) :=
ex/2 f(ex) for x ∈ R, and remark that V is a unitary map with adjoint V ∗ given by (V ∗g)(λ) =
λ−1/2g(lnλ) for λ ∈ R+. Then, the Mellin transform M : L2(R+) → L2(R) is defined by M := FV
with F the usual unitary Fourier transform5 in L2(R). The main property of M is that it diagonalizes
the generator of dilations, namely, MAM ∗ = X. Note that one also has MBM ∗ = D.

Before introducing a first isomorphic algebra, observe that if η ∈ C([−∞,+∞]), then

M ∗η(D)M = η(M ∗DM ) = η(B) = η
(
− ln(L)

)
≡ ψ(L)

for some ψ ∈ C([0,+∞]). Thus, by taking these equalities into account, it is natural to define in
B
(
L2(R+)

)
the C∗-algebra

E(L,A) := C∗
(
ψi(L)ηi(A) | ψi ∈ C([0,+∞]) and ηi ∈ C([−∞,+∞])

)
,

and clearly this algebra is isomorphic to the C∗-algebra E(D,X) in B
(
L2(R)

)
. Thus, through this iso-

morphism one gets again a short exact sequence

0 → K
(
L2(R+)

)
↪→ E(L,A)

q→ C(�) → 0

with the square � made of the four parts � = B1 ∪ B2 ∪ B3 ∪ B4 with B1 = {0} × [−∞,+∞],
B2 = [0,+∞]×{+∞}, B3 = {+∞}× [−∞,+∞], and B4 = [0,+∞]×{−∞}. In addition, the algebra
C(�) of continuous functions on � can be viewed as a subalgebra of

C
(
[−∞,+∞]

)
⊕ C

(
[0,+∞]

)
⊕ C

(
[−∞,+∞]

)
⊕ C

(
[0,+∞]

)
(4.7)

5For f ∈ Cc(R) and x ∈ R we set [Ff ](x) = (2π)−1/2
∫
R e−ixy f(y)dy.
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given by elements Γ := (Γ1,Γ2,Γ3,Γ4) which coincide at the corresponding end points, that is,
Γ1(+∞) = Γ2(0), Γ2(+∞) = Γ3(+∞), Γ3(−∞) = Γ4(+∞), and Γ4(0) = Γ1(−∞).

Finally, if one sets Fs for the unitary Fourier sine transformation in L2(R+), as recalled in
(9.1), then the equalities −A = F ∗

s AFs and
√
HD = F ∗

s LFs hold, where HD corresponds to the
Dirichlet Laplacian on R+ introduced in Section 2. As a consequence, note that the formal equality
[i 12 ln(HD), A] = 1 can also be fully justified. Moreover, by using this new unitary transformation one
gets that the C∗-subalgebra of B

(
L2(R+)

)
defined by

E(HD,A) := C∗
(
ψi(HD)ηi(A) | ψi ∈ C([0,+∞]) and φi ∈ C([−∞,+∞])

)
, (4.8)

is again isomorphic to E(D,X), and that the quotient E(HD,A)/K
(
L2(R+)

)
can naturally be viewed as

a subalgebra of the algebra introduced in (4.7) with similar compatibility conditions. Let us mention
that if the Fourier cosine transformation Fc had been chosen instead of Fs (see (9.2) for the definition
of Fc) an isomorphic algebra E(HN,A) would have been obtained, with HN the Neumann Laplacian on
R+.

Remark 4.5. Let us stress that the presence of some minus signs in the above expressions, as for
example in B = − ln(L) or in −A = F ∗

s AFs, are completely harmless and unavoidable. However,
one can not simply forget them because they play a (minor) role in the conventions related to the
computation of the winding number.

4.5 Back to the baby model

Let us briefly explain how the previous framework can be used in the context of the baby model. This
will also allow us to compute explicitly the value of n in Theorem 4.4.

We consider the Hilbert space L2(R+) and the unital C∗-algebra E(HD,A) introduced in (4.8). Let us
first observe that the wave operatorWα

− of (2.2) is an isometry which clearly belongs to the C∗-algebra
E(HD,A) ⊂ B

(
L2(R+)

)
. In addition, the image ofWα

− in the quotient algebra E(HD,A)/K
(
L2(R+)

) ∼= C(�)
is precisely the function Γα

�, defined in (2.4) for α ̸= 0 and in (2.5) for α = 0, which are unitary elements
of C(�). Finally, since C(�) and C(S) are clearly isomorphic, the winding number Wind(Γα

�) of Γα
�

can be computed, and in fact this has been performed and recorded in the table of Section 2.
On the other hand, it follows from (3.1) that 1−(Wα

−)
∗Wα

− = 0 and that 1−Wα
−(W

α
−)

∗ = Ep(H
α),

which is trivial if α ≥ 0 and which is a projection of dimension 1 if α < 0. It follows that

Tr
(
[1− (Wα

−)
∗Wα

− ]− [1−Wα
−(W

α
−)

∗]
)
= −Tr

(
Ep(H

α)
)
=

{
−1 if α < 0 ,
0 if α ≥ 0 .

(4.9)

Thus, this example fits in the framework of Theorem 4.4, and in addition both sides of (4.4) have
been computed explicitly. By comparing (4.9) with the results obtained for Wind(Γα

�), one gets that
the factor n mentioned in (4.4) is equal to −1 for these algebras. Finally, since Ep(H

α) is related to
the point spectrum of Hα, the content of Proposition 2.2 can be rewritten as

Wind(Γα
�) = ♯σp(H

α).

This equality corresponds to a topological version of Levinson’s theorem for the baby model. Obviously,
this result was already obtained in Section 2 and all the above framework was not necessary for its
derivation. However, we have now in our hands a very robust framework which will be applied to
several other situations.

5 Quasi 1D examples

In this section, we gather various examples of scattering systems which can be recast in the framework
introduced in the previous section. Several topological versions of Levinson’s theorem will be deduced
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for these models. Note that we shall avoid in this section the technicalities required for obtaining more
explicit formulas for the wave operators. An example of such a rather detailed proof will be provided
for Schrödinger operators on R3.

5.1 Schrödinger operator with one point interaction

In this section we recall the results which have been obtained for Schrödinger operators with one point
interaction. In fact, such operators were the first ones on which the algebraic framework has been
applied. More information about this model can be found in [30]. Note that the construction and the
results depend on the space dimension, we shall therefore present successively the results in dimension
1, 2 and 3. However, even in dimension 2 and 3, the problem is essentially one dimensional, as we shall
observe.

Let us consider the Hilbert space L2(Rd) and the operator H0 = −∆ with domain the Sobolev
space H2(Rd). For the operator H we shall consider the perturbation of H0 by a one point interaction
located at the origin of Rd. We shall not recall the precise definition of a one point interaction since
this subject is rather well-known, and since the literature on the subject is easily accessible. Let us just
mention that such a perturbation of H0 corresponds to the addition of a boundary condition at 0 ∈ Rd

which can be parameterized by a single real parameter family in Rd for d = 2 and d = 3. In dimension
1 a four real parameters family is necessary for describing all corresponding operators. In the sequel
and in dimension 1 we shall deal only with either a so-called δ-interaction or a δ′-interaction. We refer
for example to the monograph [2] for a thorough presentation of operators with a finite or an infinite
number of point interactions.

Beside the action of dilations in L2(R+), we shall often use the dilation groups in L2(Rd) whose
action is defined by

[Utf ](x) = edt/2 f
(
et x
)
, f ∈ L2(Rd), x ∈ Rd.

Generically, its generator will be denoted by A in all these spaces.

5.1.1 The dimension d = 1

For any α, β ∈ R, let us denote by Hα the operator in L2(R) which formally corresponds to H0 + αδ
and by Hβ the operator which formally corresponds to H0 + βδ′. Note that for α < 0 and for β < 0
the operators Hα and Hβ have both a single eigenvalue of multiplicity one, while for α ≥ 0 and for
β ≥ 0 the corresponding operators have no eigenvalue. It is also known that the wave operators Wα

±
for the pair (Hα,H0) exist, and that the wave operators W β

± for the pair (Hβ ,H0) also exist. Some
explicit expressions for them have been computed in [30].

Lemma 5.1. For any α, β ∈ R the following equalities hold in B
(
L2(R)

)
:

Wα
− = 1 + 1

2

(
1 + tanh(πA) + i cosh(πA)−1

)[2√H0 − iα

2
√
H0 + iα

− 1
]
Pe,

W β
− = 1 + 1

2

(
1 + tanh(πA)− i cosh(πA)−1

)[2 + iβ
√
H0

2− iβ
√
H0

− 1
]
Po,

where Pe denotes the projection onto the set of even functions of L2(R), while Po denotes the projection
onto the set of odd functions of L2(R).

In order to come back precisely to the framework introduced in Section 4, we need to introduce the
even/odd representation of L2(R). Given any function m on R, we write me and mo for the even part
and the odd part of m. We also set H := L2(R+;C2) and introduce the unitary map U : L2(R) → H
given on any f ∈ L2(R),

( f1
f2

)
∈ H , x ∈ R by

U f :=
√
2
(

fe
fo

)
and

[
U ∗( f1

f2

)]
(x) := 1√

2
[f1(|x|) + sgn(x)f2(|x|)]. (5.1)
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Now, observe that if m is a function on R and m(X) denotes the corresponding multiplication operator
on L2(R), then we have

U m(X)U ∗ =
(

me(L) mo(L)
mo(L) me(L)

)
where L is the operator of multiplication by the variable in L2(R+) already introduced in (4.6).

By taking these formulas and the previous lemma into account, one gets

U Wα
−U ∗ =

(
1+

1
2

(
1+tanh(πA)+i cosh(πA)−1

)[
2
√

HN−iα

2
√

HN+iα
−1
]

0

0 1

)
U W β

−U ∗ =

(
1 0

0 1+
1
2

(
1+tanh(πA)−i cosh(πA)−1

)[
2+iβ

√
HD

2−iβ
√

HD
−1
])

It clearly follows from these formulas that U Wα
−U ∗ ∈ M2

(
E(HN,A)

)
and U W β

−U ∗ ∈ M2

(
E(HD,A)

)
,

and as a consequence the algebraic framework introduced in Section 4 can be applied straightforwardly.
In particular, one can define the functions Γα

�, Γ
β
� as the image of U Wα

−U ∗ and U W β
−U ∗ in the

respective quotient algebras, and get:

Corollary 5.2. For any α, β ∈ R∗, one has

Γα
� =

((
1+ 1

2 (1+tanh(π·)+i cosh(π·)−1)[sα(0)−1] 0
0 1

)
,
(
sα(·) 0
0 1

)
,(

1+ 1
2 (1+tanh(π·)+i cosh(π·)−1)[sα(+∞)−1] 0

0 1

)
, ( 1 0

0 1 )
)

with sα(·) = 2
√
·−iα

2
√
·+iα

,

Γβ
� =

((
1 0
0 1+ 1

2 (1+tanh(π·)−i cosh(π·)−1)[sβ(0)−1]

)
,
(

1 0
0 sβ(·)

)
,(

1 0
0 1+ 1

2 (1+tanh(π·)−i cosh(π·)−1)[sβ(+∞)−1]

)
, ( 1 0

0 1 )
)

with sβ(·) = 2+iβ
√
·

2−iβ
√
· , and Γ0

� = (12, 12, 12, 12) (both for α = 0 and β = 0). In addition, one infers that

for any α, β ∈ R:

Wind(Γα
�) = ♯σp(H

α), and Wind(Γβ
�) = ♯σp(H

β).

Remark 5.3. Let us mention that another convention had been taken in [30] for the computation of
the winding number, leading to a different sign in the previous equalities. Note that the same remark
holds for equations (5.3) and (5.5) below.

5.1.2 The dimension d = 2

As already mentioned above, in dimension 2 there is only one type of self-adjoint extensions, and thus
only one real parameter family of operators Hα which formally correspond to H0 + αδ. The main
difference with dimensions 1 and 3 is that Hα always possesses a single eigenvalue of multiplicity one.
As before, the wave operators Wα

± for the pair (Hα,H0) exist, and it has been shown in the reference
paper that:

Lemma 5.4. For any α ∈ R the following equality holds:

Wα
− = 1 + 1

2

(
1 + tanh(πA/2)

)[2πα−Ψ(1)− ln(2) + ln(
√
H0) + iπ/2

2πα−Ψ(1)− ln(2) + ln(
√
H0)− iπ/2

− 1
]
P0,

where P0 denotes the projection on the spherically symmetric functions of L2(R2), and where Ψ corre-
sponds to the digamma function.
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Note that in this formula, A denotes the generator of dilations in L2(R2). It is then sufficient to
restrict our attention to P0L

2(R2) since the subspace of L2(R2) which is orthogonal to P0L
2(R2) does

not play any role for this model (and it is the reason why this model is quasi one dimensional). Thus,
let us introduce the unitary map U : P0L

2(R2) → L2(R+, rdr) defined by [U f ](r) :=
√
2πf(r) which

is well defined since f ∈ P0L
2(R2) depends only on the radial coordinate. Since the dilation group as

well as the operator H0 leave the subspace P0L
2(R2) of L2(R2) invariant, one gets in L2(R+, rdr) :

U Wα
−P0U

∗ = 1 + 1
2

(
1 + tanh(πA/2)

)[2πα−Ψ(1)− ln(2) + ln(
√
H0) + iπ/2

2πα−Ψ(1)− ln(2) + ln(
√
H0)− iπ/2

− 1
]
. (5.2)

Remark 5.5. Let us stress that the above formula does not take place in any of the representations
introduced in Section 4.4 but in a unitarily equivalent one. Indeed, one can come back to the algebra
E(L,A) by using the spectral representation of H0. More precisely let us first introduce F0 : L2(R2) →
L2
(
R+; L

2(S)
)
defined by(

[F0f ](λ)
)
(ω) = 2−1/2[Ff ](

√
λω), f ∈ Cc(R2), λ ∈ R+, ω ∈ S

with F the unitary Fourier transform in L2(R2), and recall that [F0H0f ](λ) = λ[F0f ](λ) for any
f ∈ H2(R2) and a.e. λ ∈ R+. Then, if one defines the unitary map U ′ : P0L

2(R2) → L2(R+) by
[U ′f ](λ) :=

√
π[Ff ](

√
λ), one gets U ′H0U ′∗ = L, and a short computation using the dilation group

in L2(R2) and in L2(R+) leads to the relation U ′AU ′∗ = −2A. As a consequence of this alternative
construction, the following equality holds in L2(R+) :

U ′Wα
−P0U

′∗ = 1 + 1
2

(
1− tanh(πA)

)[2πα−Ψ(1)− ln(2) + ln(
√
L) + iπ/2

2πα−Ψ(1)− ln(2) + ln(
√
L)− iπ/2

− 1
]

and it is then clear that this operator belongs to E(L,A).

By coming back to the expression (5.2) one can compute the image Γα
� of this operator in the

quotient algebra and obtain the following statement:

Corollary 5.6. For any α ∈ R, one has Γα
� =

(
1, sα(·), 1, 1

)
and

Wind(Γα
�) = Wind(sα) = ♯σp(H

α) = 1, (5.3)

with sα(·) = 2πα−Ψ(1)−ln(2)+ln(
√
·)+iπ/2

2πα−Ψ(1)−ln(2)+ln(
√
·)−iπ/2

.

5.1.3 The dimension d = 3

In dimension 3, there also exists only one real parameter family of self-adjoint operators Hα formally
represented as H0 + αδ, and this operator has a single eigenvalue if α < 0 and no eigenvalue if α ≥ 0.
As for the other two dimensions, the wave operators Wα

± for the pair (Hα,H0) exist, and it has been
shown in the reference paper that:

Lemma 5.7. For any α ∈ R the following equality holds

Wα
− = 1 + 1

2

(
1 + tanh(πA)− i cosh(πA)−1

)[4πα+ i
√
H0

4πα− i
√
H0

− 1
]
P0 .

where P0 denotes the projection on the spherically symmetric functions of L2(R3).

Note that in these formulas, A denotes the generator of dilations in L2(R3). As for the two di-
mensional case, it is sufficient to restrict our attention to P0L

2(R3) since the subspace of L2(R3) which
is orthogonal to P0L

2(R3) does not play any role for this model (and it is again the reason why this
model is quasi one dimensional). Let us thus introduce the unitary map U : P0L

2(R3) → L2(R+, r
2dr)
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defined by [U f ](r) := 2
√
πf(r) which is well defined since f ∈ P0L

2(R3) depends only on the radial
coordinate. Since the dilation group as well as the operator H0 leave the subspace P0L

2(R3) of L2(R3)
invariant, one gets in L2(R+, r

2dr) :

U Wα
−P0U

∗ = 1 + 1
2

(
1 + tanh(πA)− i cosh(πA)−1

)[4πα+ i
√
H0

4πα− i
√
H0

− 1
]
. (5.4)

Remark 5.8. As in the two dimensional case, the above formula does not take place in any of the
representations introduced in Section 4.4 but in a unitarily equivalent one. In this case again, one can
come back to the algebra E(L,A) by using the spectral representation of H0. We refer to the 2-dimensional
case for the details.

By coming back to the expression (5.4) one can compute the image Γα
� of this operator in the

quotient algebra. If one sets sα(·) = 4πα+i
√
·

4πα−i
√
· one gets:

Corollary 5.9. For any α ∈ R∗, one has

Γα
� =

(
1, sα(·),− tanh(π·) + i cosh(π·)−1, 1

)
while Γ0

� =
(
− tanh(π·) + i cosh(π·)−1,−1,− tanh(π·) + i cosh(π·)−1, 1

)
. In addition, for any α ∈ R it

follows that
Wind(Γα

�) = ♯σp(H
α). (5.5)

As before, we refer to [30] for the details of the computations, but stress that some conventions
had been chosen differently.

5.2 Schrödinger operator on R
The content of this section is mainly borrowed from [31] but some minor adaptations with respect
to this paper are freely made. We refer to this reference and to the papers mentioned in it for more
information on scattering theory for Schrödinger operators on R.

We consider the Hilbert space L2(R), and the self-adjoint operators H0 = −∆ with domain H2(R)
and H = H0 + V with V a multiplication operator by a real function which satisfies the condition∫

R
(1 + |x|)ρ|V (x)|dx <∞, (5.6)

for some ρ ≥ 1. For such a pair of operators, it is well-known that the conditions required by Assumption
3.1 are satisfied, and thus that the wave operators W± are Fredholm operators and the scattering
operator S is unitary.

In order to use the algebraic framework introduced in Section 4, more information on the wave
operators are necessary. First of all, let us recall the following statement which has been proved in [31].

Proposition 5.10. Assume that V satisfies (5.6) with ρ > 5/2, then the following representation of
the wave operator holds:

W− = 1 + 1
2

(
1 + tanh(πA) + i cosh(πA)−1(Pe − Po)

)
[S − 1] +K

with K a compact operator in L2(R), and Pe, Po the projections on the even elements, respectively odd
elements, of L2(R).

Let us now look at this result in the even/ odd representation introduced in Section 5.1.1. More
precisely, by using the map U : L2(R) → L2(R+;C2) introduced in (5.1), one gets

U W−U ∗ = 12 +
1
2

(
1+tanh(πA)+i cosh(πA)−1 0

0 1+tanh(πA)−i cosh(πA)−1

) [
S
(
HN 0
0 HD

)
− 12

]
+K ′ (5.7)

with K ′ ∈ K
(
L2(R+;C2)

)
.
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Remark 5.11. As in the previous example, the operator U W−U ∗ does not belong directly to one of
the algebras introduced in Section 4.4, but in a unitarily equivalent one which can be constructed with
the spectral representation of H0. More precisely, we set F0 : L2(R) → L2(R+;C2) defined by

[F0f ](λ) = 2−1/2λ−1/4
(

[Ff ](−
√
λ)

[Ff ](
√
λ)

)
f ∈ Cc(R), λ ∈ R+

with F the unitary Fourier transform in L2(R). As usual, one has [F0H0f ](λ) = λ[F0f ](λ) for any
f ∈ H2(R) and a.e. λ ∈ R+. Accordingly, one writes L ⊗ 12 = F0H0F ∗

0 . Similarly, the equality
F0AF ∗

0 = −2A⊗ 12 holds, where the operator A on the l.h.s. corresponds to the generator of dilation
in L2(R), while the operator A on the r.h.s. corresponds to the generator of dilations in L2(R+). Finally,
a short computation leads to the equalities F0PeF ∗

0 = 1
2 (

1 1
1 1 ) and F0PoF ∗

0 = 1
2

(
1 −1
−1 1

)
. By summing

up these information one gets

F0W−F ∗
0 = 12 +

1
2

(
1−tanh(2πA) i cosh(2πA)−1

i cosh(2πA)−1 1−tanh(2πA)

) [
S(L)− 12

]
+ F0KF ∗

0 . (5.8)

Based on this formula, it is clear that F0W−F ∗
0 belongs to M2(E(L,A)), as it should be.

Let us however come back to formula (5.7) and compute the image Γ� of this operator in the
quotient algebra. One clearly gets

Γ� =
(
12 +

1
2

(
1+tanh(π·)+i cosh(π·)−1 0

0 1+tanh(π·)−i cosh(π·)−1

)
[S(0)− 12], S(·), 12, 12

)
. (5.9)

In addition, let us note that under our condition on V , the map R+ ∋ λ 7→ S(λ) ∈ M2(C) is norm
continuous and has a limit at 0 and converges to 12 at +∞. Then, by the algebraic formalism, one
would automatically obtain that the winding number of the pointwise determinant of the function Γ�
is equal to the number of bound states of H. However, let us add some more comments on this model,
and in particular on the matrix S(0). In fact, it is well-known that the matrix S(0) depends on the
existence or the absence of a so-called half-bound state for H at 0. Before explaining this statement,
let us recall a result which has been proved in [31, Prop. 9], and which is based only on the explicit
expression (5.9) and its unitarity.

Lemma 5.12. Either det
(
S(0)

)
= −1 and then S(0) = ±

(−1 0
0 1

)
, or det

(
S(0)

)
= 1 and then S(0) =(

a b
−b a

)
with a ∈ R, b ∈ C and |a|2 + |b|2 = 1. Moreover, the contribution to the winding number of the

first term of Γ� is equal to ±1
2 in the first case, and to 0 in the second case.

Let us now mention that when H possesses a half-bound state, i.e. a solution of the equation
Hf = 0 with f in L∞(R) but not in L2(R), then det

(
S(0)

)
= 1. This case is called the exceptional case,

and thus the first term in Γ� does not provide any contribution to the winding number in this case.
On the other hand, when H does not possess such a half-bound state, then S(0) =

(−1 0
0 1

)
. This case

is referred as the generic case, and in this situation the first term in Γ� provides a contribution of 1
2 to

the winding number. By taking these information into account, Levinson’s theorem can be rewritten
for this model as

Wind(S) =

{
♯σp(H)− 1

2 in the generic case,
♯σp(H) in the exceptional case.

Such a result is in accordance with the classical literature on the subject, see [31] and references therein
for the proof of the above statements and for more explanations. Note finally that one asset of our
approach has been to show that the correction − 1

2 should be located on the other side of the above
equality (with a different sign), and that the rearranged equality is in fact an index theorem.

5.3 Rank one interaction

In this section, we present another scattering system which has been studied in [46]. Our interest in
this model comes from the spectrum of H0 which is equal to R. This fact implies in particular that
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if H possesses some eigenvalues, then these eigenvalues are automatically included in the spectrum
of H0. In our approach, this fact does not cause any problem, but some controversies for the original
Levinson’s theorem with embedded eigenvalues can be found in the literature, see [15]. Note that the
following presentation is reduced to the key features only, all the details can be found in the original
paper.

We consider the Hilbert space L2(R), and let H0 be the operator of multiplication by the variable,
i.e. H0 = X, as introduced at the beginning of Section 4.4. For the perturbation, let u ∈ L2(R) and
consider the rank one perturbation of H0 defined by

Huf = H0f + ⟨u, f⟩u, f ∈ D(H0).

It is well-known that for such a rank one perturbation the wave operators exist and that the scattering
operator is unitary. Note that for this model, the scattering operator S ≡ S(X) is simply an operator
of multiplication by a function defined on R and taking values in T. Let us also stress that for such a
general u singular continuous spectrum forH can exist. In order to ensure the asymptotic completeness,
an additional condition on u is necessary. More precisely, let us introduce this additional assumption:

Assumption 5.13. The function u ∈ L2(R) is Hölder continuous with exponent α > 1/2.

It is known that under Assumption 5.13, the operatorHu has at most a finite number of eigenvalues
of multiplicity one [3, Sec. 2]. In addition, it is proved in [46, Lem. 2.2] that under this assumption the
map

S : R ∋ x 7→ S(x) ∈ T

is continuous and satisfies S(±∞) = 1.
In order to state the main result about the wave operators for this model, let us use again the

even / odd representation of L2(R) introduced in Section 5.1.1. Let us also recall that we set me, mo

for the even part and the odd part of any function m defined on R.

Theorem 5.14 (Theorem 1.2 of [46]). Let u satisfy Assumption 5.13. Then, one has

U W−U ∗ = ( 1 0
0 1 ) +

1
2

(
1 − tanh(πA)+i cosh(πA)−1

− tanh(πA)−i cosh(πA)−1 1

)(
Se(L)−1 So(L)
So(L) Se(L)−1

)
+K, (5.10)

where K is a compact operator in L2(R+;C2).

Let us immediately mention that a similar formula holds forW+ and that this formula is exhibited
in the reference paper. In addition, it follows from (5.10) thatW− ∈ M2

(
E(L,A)

)
, and that the algebraic

framework introduced in Section 4 can be applied straightforwardly. Without difficulty, the formalism
leads us directly to the following consequence of Theorem 5.14:

Corollary 5.15. Let u satisfy Assumption 5.13. Then the following equality holds:

Wind(S) = ♯σp(Hu).

Let us stress that another convention had been taken in [46] for the computation of the winding
number, leading to a different sign in the previous equality. Note also that such a result was already
known for more general perturbations but under stronger regularity conditions [10, 16]. We stress that
the above result does require neither the differentiability of the scattering matrix nor the differentiabil-
ity of u. It is also interesting that for this model, only the winding number of the scattering operator
contributes to the left hand side of the equality.

5.4 Other examples

In this section, we simply mention two additional models on which some investigations have been
performed in relation with our topological approach of Levinson’s theorem.
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In reference [22], the so-called Friedrichs-Faddeev model has been studied. In this model, the
operator H0 corresponds to the multiplication by the variable but only on an interval [a, b], and not
on R. The perturbation of H0 is defined in terms of an integral operator which satisfies some Hölder
continuity conditions, and some additional conditions on the restriction of the kernel at the values
a and b are imposed. Explicit expressions for the wave operators for this model have been provided
in [22], but the use of these formulas for deducing a topological Levinson’s theorem has not been
performed yet. Note that one of the interests in this model is that the spectrum of H0 is equal to [a, b],
which is different from R+ or R which appear in the models developed above.

In reference [42], the spectral and scattering theory for 1-dimensional Dirac operators with mass
m > 0 and with a zero-range interaction are fully investigated. In fact, these operators are described by
a four real parameters family of self-adjoint extensions of a symmetric operator. Explicit expressions for
the wave operators and for the scattering operator are provided. Let us note that these new formulas
take place in a representation which links, in a suitable way, the energies −∞ and +∞, and which
emphasizes the role of the thresholds ±m. Based on these formulas, a topological version of Levinson’s
theorem is deduced, with the threshold effects at ±m automatically taken into account. Let us also
emphasize that in our investigations on Levinson’s theorem, this model was the first one for which
the spectrum of H0 consisted into two disjoint parts, namely (−∞,−m] ∪ [+m,∞). It was not clear
at the very beginning what could be the suitable algebra for nesting the wave operators and how the
algebraic construction could then be used. The results of these investigations are thoroughly presented
in [42], and it is expected that the same results hold for less singular perturbations of H0. Finally, a
surprising feature of this model is that the contribution to the winding number from the scattering
matrix is computed from −m to −∞, and then from +m to +∞. In addition, contributions due to
thresholds effects can appear at −m and/or at +m.

6 Schrödinger on R3 and regularized Levinson’s theorem

In this section, we illustrate our approach on the example of a Schrödinger operator on R3. In the first
part, we explain with some details how new formulas for the wave operators can be obtained for this
model. In a second part, the algebraic framework is slightly enlarged in order to deal with a spectrum
with infinite multiplicity. A method of regularization for the computation of the winding number is
also presented.

6.1 New expressions for the wave operators

In this section, we derive explicit formulas for the wave operators based on the stationary approach
of scattering theory. Let us immediately stress that the following presentation is deeply inspired from
the paper [47] to which we refer for the proofs and for more details. Thus, our aim is to justify the
following statement:

Theorem 6.1. Let V ∈ L∞(R3) be real and satisfy |V (x)| ≤ Const. (1 + |x|)−ρ with ρ > 7 for almost
every x ∈ R3. Then, the wave operators W± for the pair of operators (−∆ + V,−∆) exist and the
following equalities hold in B

(
L2(R3)

)
:

W− = 1 + 1
2

(
1 + tanh(πA)− i cosh(πA)−1

)
[S − 1] +K

and
W+ = 1 + 1

2

(
1− tanh(πA) + i cosh(πA)−1

)
[S∗ − 1] +K ′,

with A is the generator of dilations in R3, S the scattering operator, and K,K ′ ∈ K
(
L2(R3)

)
.

In order to prove this statement, let us be more precise about the framework. We first introduce
the Hilbert space H := L2(R3) and the self-adjoint operator H0 = −∆ with domain the usual Sobolev
space H2 ≡ H2(R3). We also set H := L2(R+; h) with h := L2

(
S2
)
, and S(R3) for the Schwartz space
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on R3. The spectral representation for H0 is constructed as follows: we define F0 : L2(R3) → L2(R+; h)
by (

[F0f ](λ)
)
(ω) =

(
λ
4

)1/4
[Ff ](

√
λω) =

(
λ
4

)1/4[
γ(
√
λ)Ff

]
(ω), f ∈ S(R3), λ ∈ R+, ω ∈ S2,

with γ(λ) : S(R3) → h the trace operator given by
[
γ(λ)f

]
(ω) := f(λω), and F the unitary Fourier

transform on R3. The map F0 is unitary and satisfies for f ∈ H2 and a.e. λ ∈ R+

[F0H0f ](λ) = λ[F0f ](λ) ≡ [LF0f ](λ),

where L denotes the multiplication operator in H by the variable in R+.
Let us now introduce the operator H := H0 + V with a potential V ∈ L∞(R3;R) satisfying for

some ρ > 1 the condition
|V (x)| ≤ Const.⟨x⟩−ρ, a.e. x ∈ R3, (6.1)

with ⟨x⟩ :=
√
1 + x2. Since V is bounded, H is self-adjoint with domain D(H) = H2. Also, it is

well-known [43, Thm. 12.1] that the wave operators W± exist and are asymptotically complete. In
stationary scattering theory one defines the wave operators in terms of suitable limits of the resolvents
of H0 and H on the real axis. We shall mainly use this second approach, noting that for this model
both definitions for the wave operators do coincide (see [57, Sec. 5.3]).

Let us thus recall from [57, Eq. 2.7.5] that for suitable f, g ∈ H the stationary expressions for the
wave operators are given by6⟨

W±f, g
⟩
H =

∫
R
dλ lim

ε↘0

ε

π

⟨
R0(λ± iε)f,R(λ± iε)g

⟩
H ,

where R0(z) := (H0 − z)−1 and R(z) := (H − z)−1, z ∈ C \ R, are the resolvents of the operators H0

and H. We also recall from [57, Sec. 1.4] that the limit limε↘0

⟨
δε(H0 − λ)f, g

⟩
H with δε(H0 − λ) :=

ε
πR0(λ∓ iε)R0(λ± iε) exists for a.e. λ ∈ R and that

⟨
f, g
⟩
H =

∫
R
dλ lim

ε↘0

⟨
δε(H0 − λ)f, g

⟩
H .

Thus, taking into account the second resolvent equation, one infers that⟨
(W± − 1)f, g

⟩
H = −

∫
R
dλ lim

ε↘0

⟨
δε(H0 − λ)f,

(
1 + V R0(λ± iε)

)−1
V R0(λ± iε)g

⟩
H .

We now derive expressions for the wave operators in the spectral representation of H0; that is,
for the operators F0(W± − 1)F ∗

0 . So, let φ,ψ be suitable elements of H (precise conditions will be
specified in Theorem 6.7 below), then one obtains that⟨

F0(W± − 1)F ∗
0 φ,ψ

⟩
H

= −
∫
R
dλ lim

ε↘0

⟨
V
(
1 +R0(λ∓ iε)V

)−1
F ∗

0 δε(L− λ)φ,F ∗
0 (L− λ∓ iε)−1ψ

⟩
H

= −
∫
R
dλ lim

ε↘0

∫ ∞

0

dµ
⟨{

F0V
(
1 +R0(λ∓ iε)V

)−1
F ∗

0 δε(L− λ)φ
}
(µ), (µ− λ∓ iε)−1ψ(µ)

⟩
h
.

Using the short hand notation T (z) := V
(
1 +R0(z)V

)−1
, z ∈ C \ R, one thus gets the equality⟨

F0(W± − 1)F ∗
0 φ,ψ

⟩
H

= −
∫
R
dλ lim

ε↘0

∫ ∞

0

dµ
⟨{

F0T (λ∓ iε)F ∗
0 δε(L− λ)φ

}
(µ), (µ− λ∓ iε)−1ψ(µ)

⟩
h
. (6.2)

6In this section, the various scalar products are indexed by the corresponding Hilbert spaces.
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This formula will be our starting point for computing new expressions for the wave operators.
The next step is to exchange the integral over µ and the limit ε ↘ 0. To do it properly, we need a
series of preparatory lemmas. First of all, we recall that for λ > 0 the trace operator γ(λ) extends to
an element of B(Hs

t , h) for each s > 1/2 and t ∈ R, where Hs
t = Hs

t (R3) denotes the weighted Sobolev
space over R3 with index s ∈ R and with the index t ∈ R associated with the weight7. In addition,
the map R+ ∋ λ 7→ γ(λ) ∈ B(Hs

t , h) is continuous, see for example [24, Sec. 3]. As a consequence, the
operator F0(λ) : S(R3) → h given by F0(λ)f := (F0f)(λ) extends to an element of B(Hs

t , h) for each
s ∈ R and t > 1/2, and the map R+ ∋ λ 7→ F0(λ) ∈ B(Hs

t , h) is continuous.
We recall now three technical lemmas which have been proved in [47] and which strengthen some

standard results.

Lemma 6.2. Let s ≥ 0 and t > 3/2. Then, the functions

(0,∞) ∋ λ 7→ λ±1/4F0(λ) ∈ B(Hs
t , h)

are continuous and bounded.

One immediately infers from Lemma 6.2 that the function R+ ∋ λ 7→ ∥F0(λ)∥B(Hs
t ,h)

∈ R is
continuous and bounded for any s ≥ 0 and t > 3/2. Also, one can strengthen the statement of Lemma
6.2 in the case of the minus sign:

Lemma 6.3. Let s > −1 and t > 3/2. Then, F0(λ) ∈ K(Hs
t , h) for each λ ∈ R+, and the function

R+ ∋ λ 7→ λ−1/4F0(λ) ∈ K(Hs
t , h) is continuous, admits a limit as λ↘ 0 and vanishes as λ→ ∞.

From now on, we use the notation Cc(R+;G) for the set of compactly supported and continuous
functions from R+ to some Hilbert space G. With this notation and what precedes, we note that the
multiplication operator M : Cc(R+;Hs

t ) → H given by

(Mξ)(λ) := λ−1/4F0(λ)ξ(λ), ξ ∈ Cc(R+;Hs
t ), λ ∈ R+, (6.3)

extends for s ≥ 0 and t > 3/2 to an element of B
(
L2(R+;Hs

t ),H
)
.

The next step is to deal with the limit ε↘ 0 of the operator δε(L−λ) in Equation (6.2). For that
purpose, we shall use the continuous extension of the scalar product ⟨ · , · ⟩H to a duality ⟨ · , · ⟩Hs

t ,H
−s
−t

between Hs
t and H−s

−t .

Lemma 6.4. Take s ≥ 0, t > 3/2, λ ∈ R+ and φ ∈ Cc(R+; h). Then, we have

lim
ε↘0

∥∥F ∗
0 δε(L− λ)φ− F0(λ)

∗φ(λ)
∥∥
H−s

−t

= 0.

The next necessary result concerns the limits T (λ± i0) := limε↘0 T (λ± iε), λ ∈ R+. Fortunately,
it is already known (see for example [26, Lemma 9.1]) that if ρ > 1 in (6.1) then the limit

(
1+R0(λ+

i0)V
)−1

:= limε↘0

(
1+R0(λ+ iε)V

)−1
exists in B(H−t,H−t) for any t ∈ (1/2, ρ− 1/2), and that the

map R+ ∋ λ 7→
(
1+R0(λ+ i0)V

)−1 ∈ B(H−t,H−t) is continuous. Corresponding results for T (λ+ iε)
follow immediately. Note that only the limits from the upper half-plane have been computed in [26],
even though similar results for T (λ − i0) could have been derived. Due to this lack of information in
the literature and for the simplicity of the exposition, we consider from now on only the wave operator
W−.

Proposition 6.5. Take ρ > 5 in (6.1) and let t ∈ (5/2, ρ− 5/2). Then, the function

R+ ∋ λ 7→ λ1/4T (λ+ i0)F0(λ)
∗ ∈ B(h,Hρ−t)

is continuous and bounded, and the multiplication operator B : Cc

(
R+; h

)
→ L2(R+;Hρ−t) given by

(Bφ)(λ) := λ1/4T (λ+ i0)F0(λ)
∗φ(λ) ∈ Hρ−t, φ ∈ Cc

(
R+; h

)
, λ ∈ R+, (6.4)

extends to an element of B
(
H , L2(R+;Hρ−t)

)
.

7We also use the convention Hs = Hs
0 and Ht = H0

t .
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Remark 6.6. If one assumes that H has no 0-energy eigenvalue and/or no 0-energy resonance, then
one can prove Proposition 6.5 under a weaker assumption on the decay of V at infinity. However, even
if the absence of 0-energy eigenvalue and 0-energy resonance is generic, we do not want to make such
an implicit assumption in the sequel. The condition on V is thus imposed adequately.

We are ready for stating the main result of this section. Let us simply recall that the dilation
group in L2(R+) has been introduced in (2.1) and that A denotes its generator. We also recall that the
Hilbert spaces L2(R+;Hs

t ) and H can be naturally identified with the Hilbert spaces L2(R+)⊗Hs
t and

L2(R+)⊗ h.

Theorem 6.7. Take ρ > 7 in (6.1) and let t ∈ (7/2, ρ− 7/2). Then, one has in B(H ) the equality

F0(W− − 1)F ∗
0 = −2πiM

{
1
2

(
1− tanh(2πA)− i cosh(2πA)−1

)
⊗ 1Hρ−t

}
B,

with M and B defined in (6.3) and (6.4).

The proof of this statement is rather technical and we shall not reproduce it here. Let us however
mention the key idea. Consider φ ∈ Cc(R+; h) and ψ ∈ C∞

c (R+)⊙C(S2) (the algebraic tensor product),
and set s := ρ− t > 7/2. Then, we have for each ε > 0 and λ ∈ R+ the inclusions

gε(λ) := λ1/4T (λ+ iε)F ∗
0 δε(L− λ)φ ∈ Hs and f(λ) := λ−1/4F0(λ)

∗ψ(λ) ∈ H−s .

It follows that the expression (6.2) is equal to

−
∫
R
dλ lim

ε↘0

∫ ∞

0

dµ
⟨
T (λ+ iε)F ∗

0 δε(L− λ)φ, (µ− λ+ iε)−1F0(µ)
∗ψ(µ)

⟩
Hs,H−s

= −
∫
R+

dλ lim
ε↘0

∫ ∞

0

dµ

⟨
gε(λ),

λ−1/4µ1/4

µ− λ+ iε
f(µ)

⟩
Hs,H−s

.

Then, once the exchange between the limit ε ↘ 0 and the integral with variable µ has been fully
justified, one obtains that

⟨
F0(W± − 1)F ∗

0 φ,ψ
⟩
H

= −
∫
R+

dλ

∫ ∞

0

dµ

⟨
g0(λ),

λ−1/4µ1/4

µ− λ+ i0
f(µ)

⟩
Hs,H−s

.

It remains to observe that g0(λ) = [Bφ](λ) and that f =M∗ψ, and to derive a nice function of A from

the kernel λ−1/4µ1/4

µ−λ+i0 . We refer to the proof of [47, Thm. 2.6] for the details.
The next result is a technical lemma which asserts that a certain commutator is compact. Its proof

is mainly based on a result of Cordes which states that if f1, f2 ∈ C([−∞,∞]), then the following
inclusion holds: [f1(X), f2(D)] ∈ K

(
L2(R)

)
. By conjugating this inclusion with the Mellin transform as

introduced in Section 4.4, one infers that
[
f1(A), f3(L)

]
∈ K

(
L2(R+)

)
with f3 := f2◦(− ln) ∈ C([0,∞]).

Note finally that the following statement does not involve the potential V , but only some operators
which are related to −∆ and to its spectral representation.

Lemma 6.8. Take s > −1 and t > 3/2. Then, the difference{(
tanh(2πA) + i cosh(2πA)−1

)
⊗ 1h

}
M −M

{(
tanh(2πA) + i cosh(2πA)−1

)
⊗ 1Hs

t

}
belongs to K

(
L2(R+;Hs

t ),H
)
.

Before providing the proof of Theorem 6.1, let us simply mention that the following equality holds:

1
2

(
1 + tanh(πA)− i cosh(πA)−1

)
= F ∗

0

{
1
2

(
1− tanh(2πA)− i cosh(2πA)−1

)
⊗ 1h

}
F0.

with the generator of dilations on R3 in the l.h.s. and the generator of dilations on R+ in the r.h.s.
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Proof of Theorem 6.1. Set s = 0 and t ∈ (7/2, ρ − 7/2). Then, we deduce from Theorem 6.7, Lemma
6.8 and the above paragraph that

W− − 1 = −2πiF ∗
0M

{
1
2

(
1− tanh(2πA)− i cosh(2πA)−1

)
⊗ 1Hρ−t

}
BF0

= −2πiF ∗
0

{
1
2

(
1− tanh(2πA)− i cosh(2πA)−1

)
⊗ 1h

}
MBF0 +K (6.5)

= 1
2

(
1 + tanh(πA)− i cosh(πA)−1

)
F ∗

0 (−2πiMB)F0 +K,

with K ∈ K(H). Comparing −2πiMB with the usual expression for the scattering matrix S(λ) (see

for example [26, Eq. (5.1)]), one observes that −2πiMB =
∫ ⊕
R+

dλ
(
S(λ) − 1

)
. Since F0 defines the

spectral representation of H0, one obtains that

W− − 1 = 1
2

(
1 + tanh(πA)− i cosh(πA)−1

)
[S − 1] +K. (6.6)

The formula for W+ − 1 follows then from (6.6) and the relation W+ =W−S
∗.

6.2 The index theorem

In order to figure out the algebraic framework necessary for this model, let us first look again at the
wave operator in the spectral representation of H0. More precisely, one deduces from (6.5) that the
following equality holds in H ≡ L2(R+)⊗ h :

F0W−F ∗
0 = 1 +

{
1
2

(
1− tanh(2πA)− i cosh(2πA)−1

)
⊗ 1h

}
[S(L)− 1] +K

with K ∈ K(H ). Secondly, let us recall some information on the scattering matrix which are available
in the literature. Under the assumption on V imposed in Theorem 6.1, the map

R+ ∋ λ 7→ S(λ)− 1 ∈ K2(h)

is continuous, where K2(h) denotes the set of Hilbert-Schmidt operators on h, endowed with the
Hilbert-Schmidt norm. A fortiori, this map is continuous in the norm topology of K(h), and in fact
this map belongs to C

(
[0,+∞];K(h)

)
. Indeed, it is well-known that S(λ) converges to 1 as λ → ∞,

see for example [4, Prop. 12.5]. For the low energy behavior, see [26] where the norm convergence of
S(λ) for λ→ 0 is proved (under conditions on V which are satisfied in our Theorem 6.1). The picture
is the following: If H does not possess a 0-energy resonance, then S(0) is equal to 1, but if such a
resonance exists, then S(0) is equal to 1 − 2P0, where P0 denotes the orthogonal projection on the
one-dimensional subspace of spherically symmetric functions in h ≡ L2(S2).

By taking these information into account, it is natural to define the unital C∗-subalgebra E ′ of

B
(
L2(R+)⊗ h

)
by E ′ :=

{
E(L,A) ⊗K(h)

}+
and to consider the short exact sequence

0 → K
(
L2(R+)

)
⊗K(h) ↪→ E ′ q→

{
C(�)⊗K(h)

}+ → 0.

However, we prefer to look at a unitarily equivalent representation of this algebra in the original Hilbert

space H, and set E := F ∗
0

{
E(L,A)⊗K(h)

}+
F0 ⊂ B(H). The corresponding short exact sequence reads

0 → K(H) ↪→ E q→
{
C(�)⊗K(h)

}+ → 0,

and this framework is the suitable one for the next statement:

Corollary 6.9. Let V ∈ L∞(R3) be real and satisfy |V (x)| ≤ Const.(1 + |x|)−ρ with ρ > 7 for almost

every x ∈ R3. Then W− belongs to E and its image Γ� := q(W−) in
{
C(�)⊗K(h)

}+
is given by

Γ� =
(
1 + 1

2

(
1 + tanh(π·)− i cosh(π·)−1

)
[S(0)− 1], S(·), 1, 1

)
.

In addition, the equality
ind[Γ�]1 = −[Ep(H)]0 (6.7)

holds, with [Γ�]1 ∈ K1

({
C(�)⊗K(h)

}+)
and [Ep(H)]0 ∈ K0

(
K(H)

)
.
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Let us mention again that if H has no 0-energy resonance, then S(0) − 1 is equal to 0, and thus
the first term Γ1 in the quadruple Γ� is equal to 1. However, if such a resonance exists, then Γ1 is not
equal to 1 but to

1−
(
1 + tanh(π·)− i cosh(π·)−1

)
P0 = P⊥

0 +
(
− tanh(π·) + i cosh(π·)−1

)
P0.

This term will allow us to explain the correction which often appears in the literature for 3-dimensional
Schrödinger operators in the presence of a resonance at 0. However, for that purpose we first need a
concrete computable version of our topological Levinson’s theorem, or in other words a way to deduce
an equality between numbers from the equality (6.7).

The good point in the previous construction is that the K0-group of K(H) and the K1-group of{
C(�)⊗K(h)

}+
are both isomorphic to Z. On the other hand, since S(λ)−1 takes values in K(h) and

not inMn(C) for some fixed n, it is not possible to simply apply the map Wind without a regularization
process. In the next section, we shall explain how such a regularization can be constructed, but let us
already present the final result for this model.

In the following statement, we shall use the fact that for the class of perturbations we are consid-
ering the map R+ ∋ λ 7→ S(λ) − 1 ∈ K(h) is continuous in the Hilbert-Schmidt norm. Furthermore,
it is known that this map is even continuously differentiable in the norm topology. In particular, the
on-shell time delay operator i S(λ)∗ S′(λ) is well defined for each λ ∈ R+, see [24, 25] for details. If
we set K1(h) for the trace class operators in K(h), and denote the corresponding trace by tr, then the
following statement holds:

Theorem 6.10. Let V ∈ L∞(R3) be real and satisfy |V (x)| ≤ Const.(1 + |x|)−ρ with ρ > 7 for almost
every x ∈ R3. Then for any p ≥ 2 one has

1

2π

{∫ ∞

−∞
tr
[
i
(
1− Γ1(ξ)

)p
Γ1(ξ)

∗ Γ′
1(ξ)

]
dξ +

∫ ∞

0

tr
[
i
(
1− S(λ)

)p
S(λ)∗ S′(λ)

]
dλ
}
= ♯σp(H).

In addition, if the map λ 7→ S(λ)− 1 is continuously differentiable in the Hilbert-Schmidt norm, then
the above equality holds also for any p ≥ 1.

The proof of this statement is a corollary of the construction presented in the next section. For
completeness, let us mention that in the absence of a resonance at 0 for H, in which case Γ1 = 1,
only the second term containing S(·) contributes to the l.h.s. On the other hand, in the presence of a
resonance at 0 the real part of the integral of the term Γ1 yields

Re
{ 1

2π

∫ ∞

−∞
tr
[
i
(
1− Γ1(ξ)

)p
Γ1(ξ)

∗Γ′
1(ξ)

]
dξ
}
= − 1

2

which accounts for the correction usually found in Levinson’s theorem. Note that only the real part
of this expression is of interest since its imaginary part will cancel with the corresponding imaginary
part of term involving S(·).

6.3 A regularization process

In this section and in the corresponding part of the Appendix, we recall and adapt some of the results
and proofs from [32] on a regularization process. More precisely, for an arbitrary Hilbert space h, we

consider a unitary element Γ ∈ C
(
S;K(h)

)+
of the form Γ(t) − 1 ∈ K(h) for any t ∈ S. Clearly, there

is a certain issue about the possibility of computing a kind of winding number on this element, as the
determinant of Γ(t) is not always defined. Nevertheless, at the level of K-theory, it is a priori possible
to define Wind on [Γ]1 simply by evaluating it on a representative on which the pointwise determinant
is well defined and depends continuously on t. For our purpose this approach is not sufficient, however,
as it is not clear how to construct for a given Γ such a representative. We will therefore have to make
recourse to a regularization of the determinant.
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Let us now explain this regularization in the case that Γ(t) − 1 lies in the p-th Schatten ideal
Kp(h) for some integer p, that is, |Γ(t)− 1|p belongs to K1(h). We also denote by {eiθj(t)}j the set of
eigenvalues of Γ(t). Then the regularized Fredholm determinant detp, defined by [20, Eq. (XI.4.5)]

detp
(
Γ(t)

)
=
∏
j

eiθj(t) exp

(
p−1∑
k=1

(−1)k

k
(eiθj(t) − 1)k

)

is finite and non-zero. Thus, if in addition we suppose that t 7→ Γ(t) − 1 is continuous in the p-th
Schatten norm, then the map t→ detp

(
Γ(t)

)
is continuous and hence the winding number of the map

S ∋ t 7→ detp
(
Γ(t)

)
∈ C∗ can be defined. However, in order to get an analytic formula for this winding

number, stronger conditions are necessary, as explicitly required in the following statements:

Lemma 6.11. Let I ⊂ S be an open arc of the unit circle, and assume that the map I ∋ t 7→ Γ(t)−1 ∈
Kp(h) is continuous in norm of Kp(h) and is continuously differentiable in norm of K(h). Then the
map I ∋ t 7→ detp+1

(
Γ(t)

)
∈ C is continuously differentiable and the following equality holds for any

t ∈ I: (
ln detp+1

(
Γ(·)

))′
(t) = tr

[(
1− Γ(t)

)p
Γ(t)∗Γ′(t)

]
. (6.8)

Furthermore, if the map I ∋ t 7→ Γ(t) − 1 ∈ Kp(h) is continuously differentiable in norm of Kp(h),
then the statement already holds for p instead of p+ 1.

The proof of this statement is provided in Section 9.2. Based on (6.8), it is natural to define

Wind(Γ) :=
1

2π

∫
S
tr
[
i
(
1− Γ(t)

)p
Γ(t)∗Γ′(t)

]
dt

whenever the integrant is well-defined and integrable. However, such a definition is meaningful only if
the resulting number does not depend on p, for sufficiently large p. This is indeed the case, as shown
in the next statement:

Lemma 6.12. Assume that the map S ∋ t 7→ Γ(t) − 1 ∈ Kp(h) is continuous in norm of Kp(h), and
that this map is continuously differentiable in norm of K(h), except on a finite subset of S (which can
be void). If the map t 7→ tr

[
i
(
1−Γ(t)

)p
Γ(t)∗Γ′(t) is integrable for some integer p, then for any integer

q > p one has:

1

2π

∫
S
tr
[
i
(
1− Γ(t)

)q
Γ(t)∗Γ′(t)

]
dt =

1

2π

∫
S
tr
[
i
(
1− Γ(t)

)p
Γ(t)∗Γ′(t)

]
dt .

The proof of this statement is again provided in Section 9.2. Clearly, Theorem 6.10 is an application
of the previous lemma with p = 2.

Before ending this section, let us add one illustrative example. In it, the problem does not come
from the computation of a determinant, but from an integrability condition. More precisely, for any
a, b > 0 we consider φa,b : [0, 1] → R defined by

φa,b(x) = xa sin
(
πx−b/2

)
, x ∈ [0, 1].

Let us also set Γa,b : [0, 2π] → T by

Γa,b(x) := e−2πiφa,b(x/2π) .

Clearly, Γa,b is continuous on [0, 2π] with Γa,b(0) = Γa,b(2π), and thus can be considered as an element
of C(S). In addition, Γa,b is unitary, and thus there exists an element [Γa,b]1 in K1

(
C(S)

)
. One easily

observes that the equality [e−2πi id]1 = [Γa,b]1 holds, meaning that the equivalence class [Γa,b] contains
the simpler function x 7→ e−2πix. However, the same equivalence class also contains some functions
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which are continuous but not differentiable at a finite number of points, or even wilder continuous
functions.

Now, the computation of the winding number of any of these functions can be performed by a
topological argument, and one obtains

Windt(Γa,b) := φa,b(1)− φa,b(0) = 1.

Here, we have added an index t for emphasizing that this number is computed topologically. On the other
hand, if one is interested in an explicit analytical formula for this winding number, one immediately
faces some troubles. Namely, let us first observe that for x ̸= 0

φ′
a,b(x) = axa−1 sin

(
πx−b/2

)
− bπ

2
xa−b−1 cos

(
πx−b/2

)
.

Clearly, the first term is integrable for any a, b > 0 while the second one is integrable only if a > b.
Thus, in such a case it is natural to set

Winda(Γa,b) :=
1

2π

∫ 2π

0

iΓa,b(x)
∗Γ′

a,b(x)dx =
1

2π

∫ 2π

0

φ′
a,b(x/2π)dx =

∫ 1

0

φ′
a,b(x)dx

and this formula is well defined, even if one looks at each term of φ′
a,b separately. Note that in this

formula, the index a stands for analytic. Finally, in the case b ≥ a > 0 the previous formula is not well
defined if one looks at both terms separately, but one can always find p ∈ N such that (p + 1)a > b.
Then one can set

Windr(Γa,b) :=
1

2π

∫ 2π

0

(
1− Γa,b(x)

)p
iΓa,b(x)

∗Γ′
a,b(x)dx

=
1

2π

∫ 2π

0

(
1− Γa,b(x)

)p
φ′
a,b(x/2π)dx

=

∫ 1

0

(
1− Γa,b(2πx)

)p
φ′
a,b(x)dx,

and this formula is well defined, even if one looks at each term of φ′
a,b separately. Note that here the

index r stands for regularized. Clearly, the value which can be obtained from these formulas is always
equal to 1.

7 Schrödinger operators on R2

In this section, we simply provide an explicit formula for the wave operators in the context of Schrö-
dinger operators on R2. The statement is very similar to the one presented in Section 6.1, and its proof
is based on the same scheme. We refer to [48] for a more detailed presentation of the result and for its
proof. Let us however mention that some technicalities have not been considered in R2, and therefore
our main result applies only in the absence of 0-energy bound state or 0-energy resonance.

Let us be more precise about the framework. In the Hilbert space L2(R2) we consider the Schrö-
dinger operator H0 := −∆ and the perturbed operator H := −∆+V , with a potential V ∈ L∞(R2;R)
decaying fast enough at infinity. In such a situation, it is well-known that the wave operators W±
for the pair (H,H0) exist and are asymptotically complete. As a consequence, the scattering operator
S :=W ∗

+W− is a unitary operator.

Theorem 7.1. Suppose that V ∈ L∞(R2) is real and satisfies |V (x)| ≤ Const.(1 + |x|)−ρ with ρ > 11
for almost every x ∈ R2, and assume that H has neither eigenvalues nor resonances at 0-energy. Then,
one has in B

(
L2(R2)

)
the equalities

W− = 1 + 1
2

(
1 + tanh(πA/2)

)
[S − 1] +K and W+ = 1 + 1

2

(
1− tanh(πA/2)

)
[S∗ − 1] +K ′,

with A the generator of dilations in L2(R2) and K,K ′ ∈ K
(
L2(R2)

)
.
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We stress that the absence of eigenvalues or resonances at 0-energy is generic. Their presence leads
to slightly more complicated expressions and this has not been considered in [48]. On the other hand,
we note that no spherical symmetry is imposed on V . Note also that in the mentioned reference, an
additional formula for W± which does not involve any compact remainder (as in Theorem 6.7) has
been exhibited. For this model, we do not deduce any topological Levinson’s theorem, since this has
already been performed for the 3-dimensional case, and since the exceptional case has not yet been
fully investigated. Let us however mention that similar results already exist in the literature, but that
the approaches are completely different. We refer to [7, 17, 18, 27, 52, 58] for more information on this
model and for related results.

8 Aharonov-Bohm model and higher degree Levinson’s theo-
rem

In this section, we first introduce the Aharonov-Bohm model, and discuss some of the results obtained
in [41]. In order to extend the discussion about index theorems to index theorems for families, we then
provide some information on cyclic cohomology and explain how it can be applied to this model. This
material mainly is borrowed from [29] to which we refer for more information.

8.1 The Aharonov-Bohm model

Let us denote by H the Hilbert space L2(R2). For any α ∈ (0, 1), we define the vector potential
Aα : R2 \ {0} → R2 by

Aα(x, y) = −α
(

−y
x2 + y2

,
x

x2 + y2

)
,

which formally corresponds to the magnetic field B = αδ (δ is the Dirac delta function), and consider
the operator

Hα := (−i∇−Aα)
2, D(Hα) = C∞

c

(
R2 \ {0}

)
.

The closure of this operator inH, which is denoted by the same symbol, is symmetric and has deficiency
indices (2, 2).

We briefly recall the parametrization of the self-adjoint extensions of Hα from [41]. Some elements
of the domain of the adjoint operator H∗

α admit singularities at the origin. For dealing with them, one
defines four linear functionals Φ0, Φ−1, Ψ0, Ψ−1 on D(H∗

α) such that for f ∈ D(H∗
α) one has, with

θ ∈ [0, 2π) and r → 0+,

2πf(r cos θ, r sin θ) = Φ0(f)r
−α +Ψ0(f)r

α + e−iθ
(
Φ−1(f)r

α−1 +Ψ−1(f)r
1−α

)
+O(r).

The family of all self-adjoint extensions of the operator Hα is then indexed by two matrices C,D ∈
M2(C) which satisfy the following conditions:

(i) CD∗ is self-adjoint, (ii) det(CC∗ +DD∗) ̸= 0, (8.1)

and the corresponding extensions HCD
α are the restrictions of H∗

α to the functions f satisfying the
boundary conditions

C

(
Φ0(f)
Φ−1(f)

)
= 2D

(
αΨ0(f)

(1− α)Ψ−1(f)

)
.

For simplicity, we call admissible a pair of matrices (C,D) satisfying the conditions mentioned in (8.1).

Remark 8.1. The parametrization of the self-adjoint extensions of Hα with all admissible pairs (C,D)
is very convenient but non-unique. At a certain point, it will be useful to have a one-to-one parametriza-
tion of all self-adjoint extensions. So, let us consider U2(C) (the group of unitary 2× 2 matrices) and
set

C(U) := 1
2 (1− U) and D(U) = i

2 (1 + U).
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It is easy to check that C(U) and D(U) satisfy both conditions (8.1). In addition, two different elements

U,U ′ of U2(C) lead to two different self-adjoint operators H
C(U)D(U)
α and H

C(U ′)D(U ′)
α , cf. [21]. Thus,

without ambiguity we can write HU
α for the operator H

C(U)D(U)
α . Moreover, the set {HU

α | U ∈ U2(C)}
describes all self-adjoint extensions of Hα. Let us also mention that the normalization of the above
maps has been chosen such that H−1

α ≡ H10
α = HAB

α which corresponds to the standard Aharonov-
Bohm operator studied in [1, 51].

For the spectral theory, let us mention that the essential spectrum of HCD
α is absolutely continuous

and covers the positive half-line [0,+∞). On the other hand, the discrete spectrum consists in at most
two negative eigenvalues. More precisely, the number of negative eigenvalues of HCD

α coincides with
the number of negative eigenvalues of the matrix CD∗.

8.1.1 Wave and scattering operators

One of the main results of [41] is an explicit description of the wave operators. We shall recall this
result below, but we first need to introduce the decomposition of the Hilbert space H with respect to a

special basis. For any m ∈ Z, let ϕm be the complex function defined by [0, 2π) ∋ θ 7→ ϕm(θ) := eimθ
√
2π

.

One has then the canonical isomorphism

H ∼=
⊕
m∈Z

Hr ⊗ [ϕm] , (8.2)

where Hr := L2(R+, rdr) and [ϕm] denotes the one dimensional space spanned by ϕm. For shortness,
we write Hm for Hr ⊗ [ϕm], and often consider it as a subspace of H. Let us still set

Hint := H0 ⊕H−1 (8.3)

which is clearly isomorphic to Hr ⊗ C2.
Let us also recall that the unitary dilation group {Ut}t∈R in H is defined on any f ∈ H and x ∈ R2

by [Utf ](x) = etf(etx). Its self-adjoint generator is still denoted by A. It is easily observed that this
group as well as its generator leave each subspace Hm invariant.

Let us now consider the wave operators

WCD
− ≡W−(H

C
αD,H0) := s− lim

t→−∞
eitH

CD
α e−itH0 .

where H0 := −∆ denotes the Laplace operator on R2. It is well-known that for any admissible pair
(C,D) the operator WCD

− is reduced by the decomposition H = Hint ⊕ H⊥
int and that WCD

− |H⊥
int

=

WAB
− |H⊥

int
. The restriction to H⊥

int is further reduced by the decomposition (8.2) and it is proved in

[41, Prop. 11] that the channel wave operators satisfy for each m ∈ Z,

WAB
−,m = φ−

m(A) ,

with φ−
m explicitly given for x ∈ R by

φ−
m(x) := eiδ

α
m
Γ
(
1
2 (|m|+ 1 + ix)

)
Γ
(
1
2 (|m|+ 1− ix)

) Γ( 12 (|m+ α|+ 1− ix)
)

Γ
(
1
2 (|m+ α|+ 1 + ix)

)
and

δαm = 1
2π
(
|m| − |m+ α|

)
=

{
−1

2πα if m ≥ 0
1
2πα if m < 0

.

Note that here, Γ corresponds to the usual Gamma function. It is also proved in [41, Thm. 12] that

WCD
− |Hint

=

(
φ−
0 (A) 0
0 φ−

−1(A)

)
+

(
φ̃0(A) 0

0 φ̃−1(A)

)
S̃CD
α

(√
H0

)
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with φ̃m(x) given for m ∈ {0,−1} by

1

2π
e−iπ|m|/2 eπx/2

Γ
(
1
2 (|m|+ 1 + ix)

)
Γ
(
1
2 (|m|+ 1− ix)

)Γ( 12 (1 + |m+ α| − ix)
)
Γ
(
1
2 (1− |m+ α| − ix)

)
,

and with the function S̃CD
α (·) given for λ ∈ R+ by

S̃CD
α (λ) := 2i sin(πα)

(
Γ(1−α)e−iπα/2

2α λα 0

0 Γ(α)e−iπ(1−α)/2

21−α λ(1−α)

)

·

[
D

(
Γ(1−α)2 e−iπα

4α λ2α 0

0 Γ(α)2 e−iπ(1−α)

41−α λ2(1−α)

)
+

π

2 sin(πα)
C

]−1

D

·

(
Γ(1−α)e−iπα/2

2α λα 0

0 −Γ(α)e−iπ(1−α)/2

21−α λ(1−α)

)
.

Clearly, the functions φ−
m and φ̃m are continuous on R. Furthermore, these functions admit limits

at ±∞: φ−
m(−∞) = 1, φ−

m(+∞) = e2iδ
α
m , φ̃m(−∞) = 0 and φ̃m(+∞) = 1. On the other hand,

the relation between the usual scattering operator SCD
α :=

(
WCD

+

)∗
WCD

− and the function S̃CD
α (·) is

provided by the formulas

SCD
α |Hint

= SCD
α (

√
H0) with SCD

α (λ) :=

(
e−iπα 0
0 eiπα

)
+ S̃CD

α (λ) .

Let us now state a result which has been formulated in a more precise form in [41, Prop. 14].

Proposition 8.2. The map
R+ ∋ λ 7→ SCD

α (λ) ∈ U2(C)

is norm continuous and has explicit asymptotic values for λ = 0 and λ = +∞ which depend on C,D
and α.

The asymptotic values SCD
α (0) and SCD

α (+∞) are explicitly provided in the statement of [41,
Prop. 14], but numerous cases have to be considered. For simplicity, we do not provide these details
here. By summarizing the information obtained so far, one infers that:

Theorem 8.3. For any admissible pair (C,D) the following equality holds:

WCD
− |Hint

=

(
φ−
0 (A) 0
0 φ−

−1(A)

)
+

(
φ̃0(A) 0

0 φ̃−1(A)

)[
SCD
α

(√
H0

)
−
(
e−iπα 0
0 eiπα

)]
, (8.4)

with φ−
0 , φ

−
1 , φ̃0, φ̃1 ∈ C([−∞,∞]) and with SCD

α ∈ C([0,+∞]).

Based on this result and on the content of Section 4, one could easily deduce an index type
theorem. However, we prefer to come back to an ad hoc approach, which looks more like the approach
followed for the baby model. Its interest is that individual contributions to the winding number can be
computed, and the importance of each of them is thus emphasized. A more conceptual (and shorter)
proof will be provided in Section 8.5.

8.2 Levinson’s theorem, the pedestrian approach

Let us start by considering again the expression (8.4) for the operator WCD
− |Hint

. Since the matrix-
valued functions defining this operator have limits at −∞ and +∞, respectively at 0 and +∞, one can
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define the quadruple (Γ1,Γ2,Γ3,Γ4), with Γj given for x ∈ R and λ ∈ R+ by

Γ1(x) ≡ Γ1(C,D, α, x) :=

(
φ−
0 (x) 0
0 φ−

−1(x)

)
+

(
φ̃0(x) 0
0 φ̃−1(x)

)
S̃CD
α (0) ,

Γ2(λ) ≡ Γ2(C,D, α, λ) := SCD
α (λ) , (8.5)

Γ3(x) ≡ Γ3(C,D, α, x) :=

(
φ−
0 (x) 0
0 φ−

−1(x)

)
+

(
φ̃0(x) 0
0 φ̃−1(x)

)
S̃CD
α (+∞) ,

Γ4(λ) ≡ Γ4(C,D,α, λ) := 1.

Clearly, Γ1(·) and Γ3(·) are continuous functions on [−∞,∞] with values in U2(C), and Γ2(·) and
Γ4(·) are continuous functions on [0,∞] with values in U2(C). By mimicking the approach of Section
2, one sets � = B1 ∪ B2 ∪ B3 ∪ B4 with B1 = {0} × [−∞,+∞], B2 = [0,+∞] × {+∞}, B3 =
{+∞}× [−∞,+∞], and B4 = [0,+∞]×{−∞}, and observes that the function ΓCD

α = (Γ1,Γ2,Γ3,Γ4)
belongs to C

(
�;U2(C)

)
. As a consequence, the winding number Wind

(
ΓCD
α

)
based on the map

� ∋ ξ 7→ det
[
ΓCD
α (ξ)

]
∈ T

is well defined, and our aim is to relate it to the spectral properties of HCD
α .

The following statement is our Levinson’s type theorem for this model:

Theorem 8.4. For any α ∈ (0, 1) and any admissible pair (C,D) one has

Wind
(
ΓCD
α

)
= #σp(H

CD
α ).

The proof of this equality can be obtained by a case-by-case study. It is a rather long computation
which has been performed in [41, Sec. III] and we shall only recall the detailed results. Note that one
has to calculate separately the contribution to the winding number from the functions Γ1, Γ2 and Γ3,
the contribution of Γ4 being always trivial. Below, the contribution to the winding of the function Γj

will be denoted by wj(Γ
CD
α ). Let us also stress that due to (8.5) the contribution of Γ2 corresponds to

the contribution of the scattering operator. It will be rather clear that a naive approach of Levinson’s
theorem involving only the contribution of the scattering operator would lead to a completely wrong
result.

We now list the results for the individual contributions. They clearly depend on α, C and D. The
various cases have been divided into subfamilies.

Conditions #σp(H
CD
α ) w1(Γ

CD
α ) w2(Γ

CD
α ) w3(Γ

CD
α ) Wind(ΓCD

α )

D = 0 0 0 0 0 0
C = 0 0 −1 0 1 0

Now, if det(D) ̸= 0 and det(C) ̸= 0, we set E := D−1C =: (ejk)
2
j,k=1 and obtains:

Conditions #σp(H
CD
α ) w1(Γ

CD
α ) w2(Γ

CD
α ) w3(Γ

CD
α ) Wind(ΓCD

α )

e11e22 ≥ 0, tr(E) > 0, det(E) > 0 0 0 −1 1 0
e11e22 ≥ 0, tr(E) > 0, det(E) < 0 1 0 0 1 1
e11e22 ≥ 0, tr(E) < 0, det(E) > 0 2 0 1 1 2
e11e22 ≥ 0, tr(E) < 0, det(E) < 0 1 0 0 1 1

e11 = e22 = 0, det(E) < 0 1 0 0 1 1
e11 e22 < 0 1 0 0 1 1

If det(D) ̸= 0, det(C) = 0 and if we still set E := D−1C one has:
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Conditions #σp(H
CD
α ) w1(Γ

CD
α ) w2(Γ

CD
α ) w3(Γ

CD
α ) Wind(ΓCD

α )

e11 = 0, tr(E) > 0 0 −α α− 1 1 0
e11 e22 ̸= 0, tr(E) > 0, α < 1/2 0 −α α− 1 1 0

e11 > 0, tr(E) < 0 1 −α α 1 1
e11 e22 ̸= 0, tr(E) < 0, α < 1/2 1 −α α 1 1

e22 = 0, tr(E) > 0 0 α− 1 −α 1 0
e11 e22 ̸= 0, tr(E) > 0, α > 1/2 0 α− 1 −α 1 0

e22 = 0, tr(E) < 0 1 α− 1 1− α 1 1
e11 e22 ̸= 0, tr(E) < 0, α > 1/2 1 α− 1 1− α 1 1
e11 e22 ̸= 0, tr(E) > 0, α = 1/2 0 −1/2 −1/2 1 0
e11 e22 ̸= 0, tr(E) < 0, α = 1/2 1 −1/2 1/2 1 1

On the other hand, if dim[Ker(D)] = 1, let us define the identification map I : C → C2 with
Ran(I) = Ker(D)⊥. We then set

ℓ := (DI)−1CI : C → C (8.6)

which is in fact a real number because of the condition of admissibility for the pair (C,D).
In the special case α = 1/2 one has:

Conditions #σp(H
CD
α ) w1(Γ

CD
α ) w2(Γ

CD
α ) w3(Γ

CD
α ) Wind(ΓCD

α )

ℓ > 0 0 0 −1/2 1/2 0
ℓ = 0 0 −1/2 0 1/2 0
ℓ < 0 1 0 1/2 1/2 1

If dim[Ker(D)] = 1, α < 1/2 and if t(p1, p2) ∈ Ker(D) with p21+ p
2
2 = 1 one obtains with ℓ defined

in (8.6):

Conditions #σp(H
CD
α ) w1(Γ

CD
α ) w2(Γ

CD
α ) w3(Γ

CD
α ) Wind(ΓCD

α )

ℓ < 0, p1 ̸= 0 1 0 α 1− α 1
ℓ < 0, p1 = 0 1 0 1− α α 1
ℓ > 0, p1 ̸= 0 0 0 α− 1 1− α 0
ℓ > 0, p1 = 0 0 0 −α α 0
ℓ = 0, p1 p2 ̸= 0 0 −α 2α− 1 1− α 0
ℓ = 0, p1 = 0 0 −α 0 α 0
ℓ = 0, p2 = 0 0 α− 1 0 1− α 0

Finally, if dim[Ker(D)] = 1, α > 1/2 and t(p1, p2) ∈ Ker(D) with p21 + p22 = 1 one has with ℓ
defined in (8.6):

Conditions #σp(H
CD
α ) w1(Γ

CD
α ) w2(Γ

CD
α ) w3(Γ

CD
α ) Wind(ΓCD

α )

ℓ < 0, p2 ̸= 0 1 0 1− α α 1
ℓ < 0, p2 = 0 1 0 α 1− α 1
ℓ > 0, p2 ̸= 0 0 0 −α α 0
ℓ > 0, p2 = 0 0 0 α− 1 1− α 0
ℓ = 0, p1 p2 ̸= 0 0 α− 1 1− 2α α 0
ℓ = 0, p1 = 0 0 −α 0 α 0
ℓ = 0, p2 = 0 0 α− 1 0 1− α 0

Once again, by looking at these tables, it clearly appears that singling out the contribution due
to the scattering operator has no meaning. An index theorem can be obtained only if the three contri-
butions are considered on an equal footing.
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8.3 Cyclic cohomology, n-traces and Connes’ pairing

In this section we extend the framework which led to our abstract Levinson’s theorem, namely to
Theorem 4.4. In fact, this statement can then be seen as a special case of a more general result. For
this part of the manuscript, we refer to [29] and [12, Sec. III], or to the short surveys presented in [33,
Sec. 5] and in [34, Sec. 4 & 5].

Given a complex algebra B and any n ∈ N∪ {0}, let Cn
λ (B) be the set of (n+ 1)-linear functional

on B which are cyclic in the sense that any η ∈ Cn
λ (B) satisfies for each w0, . . . , wn ∈ B:

η(w1, . . . , wn, w0) = (−1)nη(w0, . . . , wn) .

Then, let b : Cn
λ (B) → Cn+1

λ (B) be the Hochschild coboundary map defined for w0, . . . , wn+1 ∈ B by

[bη](w0, . . . , wn+1) :=

n∑
j=0

(−1)jη(w0, . . . , wjwj+1, . . . , wn+1) + (−1)n+1η(wn+1w0, . . . , wn) .

An element η ∈ Cn
λ (B) satisfying bη = 0 is called a cyclic n-cocyle, and the cyclic cohomology HC(B)

of B is the cohomology of the complex

0 → C0
λ(B) → · · · → Cn

λ (B)
b→ Cn+1

λ (B) → . . . .

A convenient way of looking at cyclic n-cocycles is in terms of characters of a graded differential
algebra over B. So, let us first recall that a graded differential algebra (A, d) is a graded algebra A
together with a map d : A → A of degree +1. More precisely, A := ⊕∞

j=0Aj with each Aj an algebra

over C satisfying the property Aj Ak ⊂ Aj+k, and d is a graded derivation satisfying d2 = 0. In
particular, the derivation satisfies d(w1w2) = (dw1)w2 + (−1)deg(w1)w1(dw2), where deg(w1) denotes
the degree of the homogeneous element w1.

A cycle (A, d,
∫
) of dimension n is a graded differential algebra (A, d), with Aj = 0 for j > n,

endowed with a linear functional
∫

: An → C satisfying
∫
dw = 0 if w ∈ An−1, and for wj ∈ Aj ,

wk ∈ Ak with j + k = n : ∫
wjwk = (−1)jk

∫
wkwj .

Given an algebra B, a cycle of dimension n over B is a cycle (A, d,
∫
) of dimension n together with a

homomorphism ρ : B → A0. In the sequel, we will assume that this map is injective and hence identify
B with a subalgebra of A0 (and do not write ρ anymore). Now, if w0, . . . , wn are n+ 1 elements of B,
one can define the character η(w0, . . . , wn) ∈ C by the formula:

η(w0, . . . , wn) :=

∫
w0 (dw1) . . . (dwn) . (8.7)

As shown in [12, Prop. III.1.4], the map η : Bn+1 → C is a cyclic (n + 1)-linear functional on B
satisfying bη = 0, i.e. η is a cyclic n-cocycle. Conversely, any cyclic n-cocycle arises as the character
of a cycle of dimension n over B. Let us also mention that a third description of any cyclic n-cocycle
is presented in [12, Sec. III.1.α] in terms of the universal graded differential algebra associated with B.

We can now introduce the precise definition of a n-trace over a Banach algebra. Recall that for
an algebra B that is not necessarily unital, we denote by B+ the canonical algebra obtained by adding
a unit to B.

Definition 8.5. A n-trace on a Banach algebra B is the character of a cycle (A, d,
∫
) of dimension

n over a dense subalgebra B′ of B such that for all w1, . . . , wn ∈ B′ and any x1, . . . , xn ∈ (B′)+ there
exists a constant c = c(w1, . . . , wn) such that∣∣∣∣∫ (x1dw1) . . . (xndwn)

∣∣∣∣ ≤ c∥x1∥ . . . ∥xn∥ .
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Remark 8.6. Typically, the elements of B′ are suitably smooth elements of B on which the derivation d

is well defined and for which the r.h.s. of (8.7) is also well defined. However, the action of the n-trace η
can sometimes be extended to more general elements (w0, . . . , wn) ∈ Bn+1 by a suitable reinterpretation
of the l.h.s. of (8.7).

The importance of n-traces relies on their duality relation withK-groups. Recall first thatMq(B) ∼=
B ⊗Mq(C) and that tr denotes the standard trace on matrices. Now, let B be a C∗-algebra and let
ηn be a n-trace on B with n ∈ N even. If B′ is the dense subalgebra of B mentioned in Definition 8.5
and if p is a projection in Mq(B′), then one sets

⟨ηn, p⟩ := cn [ηn#tr](p, . . . , p),

where # denotes the cup product. Similarly, if B is a unital C∗-algebra and if ηn is a normalized n-trace
with n ∈ N odd, then for any unitary u in Mq(B′) one sets

⟨ηn, u⟩ := cn [ηn#tr](u∗, u, u∗, . . . , u)

the entries on the r.h.s. alternating between u and u∗. The constants cn are given by

c2k =
1

(2πi)k
1

k!
, c2k−1 =

1

(2πi)k
1

22k+1

1

(k − 1
2 ) · · ·

1
2

. (8.8)

These relations are referred to as Connes’ pairing between K-theory and cyclic cohomology of
B because of the following property, see [12, Sec. III] for precise statements and for the proofs: In
the above framework, the values ⟨ηn, p⟩ and ⟨ηn, u⟩ depend only on the K0-class [p]0 of p and on the
K1-class [u]1 of u, respectively.

We now illustrate these notions by revisiting Example 4.1.

Example 8.7. If B = K(H), the algebra of compact operators on a Hilbert space H, then the linear
functional

∫
on B is given by the usual trace Tr on the set K1(H) of trace class elements of K(H).

Furthermore, since any projection p ∈ K(H) is trace class, it follows that ⟨η0, p⟩ ≡ ⟨Tr, p⟩ is well
defined for any such p and that this expression gives the dimension of the projection p.

For the next example, let us recall that det denotes the usual determinant of elements of Mq(C).

Example 8.8. If B = C(S,C), let us fix B′ := C1(S,C). We parameterize S by the real numbers
modulo 2π using θ as local coordinate. As usual, for any w ∈ B′ (which corresponds to an homogeneous
element of degree 0), one sets [dw](θ) := w′(θ)dθ (which is now an homogeneous element of degree 1).

Furthermore, we define the graded trace
∫
vdθ :=

∫ 2π

0
v(θ)dθ for an arbitrary element vdθ of degree 1.

This defines the 1-trace η1. A unitary element in u ∈ C1
(
S,Mq(C)

)
≡ Mq

(
C1(S;C)

)
pairs as follows

⟨η1, u⟩ = c1[η1#tr](u∗, u) :=
1

2πi

∫ 2π

0

tr[u(θ)∗u′(θ)]dθ = − 1

2π

∫ 2π

0

tr[iu(θ)∗u′(θ)]dθ . (8.9)

But this quantity has already been encountered at several places in this text and corresponds to analytic
expression for the computation of (minus)8 the winding number of the map θ 7→ det[u(θ)]. Since this
quantity is of topological nature, it only requires that the map θ 7→ u(θ) is continuous. Altogether, one
has thus obtained that the pairing ⟨η1, u⟩ in (8.9) is nothing but the computation of (minus) the winding
number of the map det[u] : S → T, valid for any unitary u ∈ C

(
S,Mq(C)

)
. In other words, one has

obtained that ⟨η1, u⟩ = −Wind(u).

8Unfortunately, due to our convention for the computation of the winding number, the expressions computed with
the constants provided in (8.8) differ from our expressions by a minus sign.

35



8.4 Dual boundary maps

We have seen that a n-trace η over B gives rise to a functional on Ki(B) for i = 0 or i = 1, i.e. the map
⟨η, ·⟩ is an element of Hom(Ki(B),C). In that sense n-traces are dual to the elements of the K-groups.
An important question is whether this dual relation is functorial in the sense that morphisms between
the K-groups of different algebras yield dual morphisms on higher traces. Here we are in particular
interested in a map on higher traces which is dual to the index map, i.e. a map # which assigns to an
even trace η an odd trace #η such that

⟨η, ind(·)⟩ = ⟨#η, ·⟩. (8.10)

This situation gives rise to equalities between two numerical topological invariants.
Such an approach for relating two topological invariants has already been used at few occasions.

For example, our abstract Levinson’s theorem (Theorem 4.4) corresponds to a equality of the form
(8.10) for a 0-trace and a 1-trace. In addition, in the following section we shall develop such an equality
for a 2-trace and a 3-trace. On the other hand, let us mention that similar equalities have also been
developed for the exponential map in (8.10) instead of the index map. In this framework, an equality
involving a 0-trace and a 1-trace has been put into evidence in [28]. It gives rise to a relation between
the pressure on the boundary of a quantum system and the integrated density of states. Similarly, a
relation involving 2-trace and a 1-trace was involved in the proof of the equality between the bulk-Hall
conductivity and the conductivity of the current along the edge of the sample, see [33, 34].

8.5 Higher degree Levinson’s theorem

In order to derive a higher degree Levinson’s theorem, let us first introduce the algebraic framework
which will lead to a much shorter new proof of Theorem 8.4. The construction is similar to the one
already proposed in Section 6.2 for Schrödinger operators on R3.

We recall from Section 8.1 that H denotes the Hilbert space L2(R2), that Hint has been intro-
duced in (8.3), and let us set h := L2(S). We also denote by F0 : H 7→ L2(R+; h) the usual spectral
representation of the Laplace operator H0 = −∆ in H. Then, we can define

E :=
{
F ∗

0

[
E(L,A) ⊗K(h)

]
F0

}
|Hint

⊂ B
(
Hint

)
≡ B(Hr)⊗M2(C).

Clearly, E is made of continuous functions of H0 having limits at 0 and +∞, and of continuous function
of the generator A of dilations in L2(R2) having limits at −∞ and at +∞. One can then consider the
short exact sequence

0 → K(Hint) ↪→ E q→ C
(
�;M2(C)

)
→ 0,

and infer the following result directly from the construction presented in Section 4. Note that this
result corresponds to [29, Thm. 13] and provides an alternative proof for Theorem 8.4.

Theorem 8.9. For any α ∈ (0, 1) and any admissible pair (C,D), one has WCD
− |Hint

∈ E. Further-
more, q

(
WCD

− |Hint

)
= ΓCD

α ∈ C
(
�;U2(C)

)
and the following equality holds

Wind
(
ΓCD
α

)
= #σp(H

CD
α ).

Let us stress that the previous statement corresponds to a pointwise Levinson’s theorem in the
sense that it has been obtained for fixed C,D and α. However, it clearly calls for making these param-
eters degrees of freedom and thus to include them into the description of the algebras. In the context
of our physical model this amounts to considering families of self-adjoint extensions of Hα. For that
purpose we use the one-to-one parametrization of these extensions with elements U ∈ U2(C) introduced
in Remark 8.1. We denote the self-adjoint extension corresponding to U ∈ U2(C) by HU

α .
So, let us consider a smooth and compact orientable n-dimensional manifold X without boundary.

Subsequently, we will choose for X a two-dimensional submanifold of U2(C)× (0, 1). Taking continuous
functions over X we get a new short exact sequence

0 → C
(
X ;K(Hint)

)
↪→ C(X ; E) → C

(
X ;C

(
�;M2(C)

))
→ 0 . (8.11)
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Furthermore, recall that K(Hint) is endowed with a 0-trace Tr and the algebra C
(
�;M2(C)

)
with a

1-trace Wind. There is a standard construction in cyclic cohomology, the cup product, which provides
us with a suitable n-trace on the algebra C

(
X ,K(Hint)

)
and a corresponding (n + 1)-trace on the

algebra C
(
X ;C

(
�;M2(C)

))
, see [12, Sec. III.1.α]. We describe it here in terms of cycles.

Recall that any smooth and compact manifold Y of dimension d naturally defines a structure of
a graded differential algebra (AY , dY), the algebra of its smooth differential k-forms. If we assume in
addition that Y is orientable so that we can choose a global volume form, then the linear form

∫
Y can

be defined by integrating the d-forms over Y. In that case, the algebra C(Y) is naturally endowed with
the d-trace defined by the character of the cycle (AY , dY ,

∫
Y) of dimension d over the dense subalgebra

C∞(Y).
For the algebra C

(
X ;K(Hint)

)
, let us denote by K1(Hint) the trace class elements of K(Hint).

Then, the natural graded differential algebra associated with C∞(X ,K1(Hint)
)
is given by (AX ⊗

K1(Hint), dX ). The resulting n-trace on C
(
X ;K(Hint)

)
is then defined by the character of the cycle

(AX⊗K1(Hint), dX ,
∫
X ⊗Tr) over the dense subalgebra C∞(X ,K1(Hint)

)
of C

(
X ;K(Hint)

)
. We denote

it by ηX .
For the second algebra, let us observe that

C
(
X ;C

(
�;M2(C)

)) ∼= C
(
X × S;M2(C)

) ∼= C(X × S)⊗M2(C).

Since X × S is a compact orientable manifold without boundary, the above construction applies also
to C

(
X × S;M2(C)

)
. More precisely, the exterior derivation on X × S is the sum of dX and dS (the

latter was denoted simply by d in Example 8.8). Furthermore, we consider the natural volume form on
X × S. Note because of the factor M2(C) the graded trace of the cycle involves the usual matrix trace
tr. Thus the resulting (n+ 1)-trace is the character of the cycle (AX×S ⊗M2(C), dX + dS,

∫
X×S ⊗tr).

We denote it by #ηX .
Having these constructions at our disposal we can now state the main result of this section. For the

statement, we use the one-to-one parametrization of the extensions HU
α of Hα introduced in Remark

8.1. We also consider a family {WU,α
− }(U,α)∈X ⊂ B(Hint), with W

U,α
− := W−(H

U
α ,H0), parameterized

by some compact orientable and boundaryless submanifold X of U2(C) × (0, 1). This family defines
several maps, namely

W− : X ∋ (U,α) 7→WU,α
− ∈ E

as well as
Γ : X ∋ (U,α) 7→ ΓU,α

� ∈ C
(
�;M2(C)

)
,

with ΓU,α
� := q

(
WU,α

−
)
, and also

Ep : X ∋ (U,α) 7→ Ep

(
HU

α

)
.

Theorem 8.10 (Higher degree Levinson’s theorem). Let X be a smooth, compact and orientable n-
dimensional submanifold of U2(C)× (0, 1) without boundary. Let us assume that the map W− : X → E
is continuous. Then the maps Γ and Ep are continuous, and the following equality holds:

ind[Γ]1 = −[Ep]0

where ind is the index map from the K1-group of the algebra C
(
X ;C

(
�;M2(C)

))
to the K0-group of

the algebra C
(
X ;K(Hint)

)
. Furthermore, the numerical equality⟨

#ηX , [Γ]1
⟩
= −

⟨
ηX , [Ep]0

⟩
(8.12)

also holds.

The proof of this statement is provided in [29, Thm. 15] and is based on the earlier work [33]. Let
us point out that r.h.s. of (8.12) corresponds to the Chern number of the vector bundle given by the
eigenvectors of HU

α . On the other hand, the l.h.s. corresponds to a (n+ 1)-trace applied to Γ which is
constructed from the scattering theory for the operator HU

α . For these reasons, such an equality has
been named a higher degree Levinson’s theorem. In the next section we illustrate this equality by a
special choice of the manifold X .
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8.5.1 A non-trivial example

Let us now choose a 2-dimensional manifold X and show that the previous relation between the
corresponding 2-trace and 3-trace is not trivial. More precisely, we shall choose a manifold X such that
the r.h.s. of (8.12) is not equal to 0.

For that purpose, let us fix two complex numbers λ1, λ2 of modulus 1 with Imλ1 < 0 < Imλ2 and
consider the set X ⊂ U2(C) defined by :

X =
{
V
(
λ1 0
0 λ2

)
V ∗ | V ∈ U2(C)

}
.

Clearly, X is a two-dimensional smooth and compact manifold without boundary, which can be pa-
rameterized by

X =

{(
ρ2λ1 + (1− ρ2)λ2 ρ(1− ρ2)1/2 eiϕ(λ1 − λ2)

ρ(1− ρ2)1/2 e−iϕ(λ1 − λ2) (1− ρ2)λ1 + ρ2λ2

)
| ρ ∈ [0, 1] and ϕ ∈ [0, 2π)

}
. (8.13)

Note that the (θ, ϕ)-parametrization of X is complete in the sense that it covers all the manifold
injectively away from a subset of codimension 1, but it has coordinate singularities at ρ ∈ {0, 1}.

By [41, Lem. 16], for each U ≡ U(ρ, ϕ) ∈ X the operator HU
α has a single negative eigenvalue.

It follows that the projection Ep(H
U
α ) is non-trivial for any α ∈ (0, 1) and any U ∈ X , and thus the

expression
⟨
ηX , [Ep]0

⟩
can be computed. This rather lengthy computation has been performed in [29,

Sec. V.D] and it turns out that the following result has been found for this example:⟨
ηX , [Ep]0

⟩
= 1.

As a corollary of Theorem 8.10 one can then deduce that:

Proposition 8.11. Let λ1, λ2 be two complex numbers of modulus 1 with Imλ1 < 0 < Imλ2 and
consider the set X ⊂ U2(C) defined by (8.13). Then the map W− : X → E is continuous and the
following equality holds:

1

24π2

∫
X×�

tr
[
Γ∗ (dX×�Γ

)
∧
(
dX×�Γ

∗) ∧ (dX×�Γ
)]

= 1.

9 Appendix

9.1 The baby model

In this section, we provide the proofs on the baby model which have not been presented in Section 2.
The notations are directly borrowed from this section, but we shall mainly review, modify and extend
some results obtained in [57, Sec. 3.1].

First of all, it is shown in [57, Sec. 3.1] that the wave operators Wα
± exist and are asymptotically

complete. Furthermore, rather explicit expressions for them are proposed in [57, Eq. 3.1.15]. Let us
also mention that an expression for the scattering operator Sα is given in [57, Sec. 3.1], namely

Sα =
α+ i

√
HD

α− i
√
HD

.

In the following lemma, we derive new expressions for the wave operators. They involve the
scattering operator Sα as well as the Fourier sine and cosine transforms Fs and Fc defined for x, k ∈ R+

and any f ∈ Cc(R+) ⊂ L2(R+) by

[Fsf ](k) := (2/π)1/2
∫ ∞

0

sin(kx)f(x)dx (9.1)

[Fcf ](k) := (2/π)1/2
∫ ∞

0

cos(kx)f(x)dx. (9.2)
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Lemma 9.1. The following equalities hold:

Wα
− = 1 + 1

2

(
1− iF ∗

c Fs

)
[Sα − 1],

Wα
+ = 1 + 1

2

(
1 + iF ∗

c Fs

)[
(Sα)∗ − 1

]
.

Proof. We use the notations of [57, Sec. 3.1] without further explanations. For Wα
− , it follows from [57,

Eq. 3.1.15 & 3.1.20] that

Wα
− = iPF ∗

−Fs =
i
2 (2F−P )

∗Fs =
i
2

(
Π+ − S∗Π−

)∗
Fs

= i
2

(
2iFs +Π− − S∗Π−

)∗
Fs =

i
2

(
− 2iF ∗

s −Π∗
−(S − 1)

)
Fs

= 1− i
2Π

∗
−Fs(S

α − 1).

Thus, one obtains

Wα
− = 1− i

2

(
F ∗

c + iF ∗
s

)
Fs[S

α − 1] = 1 + 1
2

(
1− iF ∗

c Fs

)
[Sα − 1].

A similar computation leads to the mentioned result for Wα
+ .

Now, we provide another expression for the operator −iF ∗
c Fs. For that purpose, let A denote the

generator of dilations in L2(R+).

Lemma 9.2. The following equality holds

−iF ∗
c Fs = tanh(πA)− i cosh(πA)−1.

Proof. This proof is inspired by the proof of [31, Lem. 3]. Let us first define for x, y ∈ R+ and ε > 0
the kernel of the operator Iε by

Iε(x, y) := (1/π)
[ x+ y

(x+ y)2 + ε2
− x− y

(x− y)2 + ε2

]
.

Then, an easy computation shows that Iε(x, y) = (2/π)
∫∞
0

cos(xz) sin(yz) e−εz dz, and an application
of the theorems of Fubini and Lebesgue for f ∈ Cc(R+) leads to the equality

lim
ε↘0

Iεf = F ∗
c Fsf.

Now, by comparing the expression for [Iεf ](x) with the following expression

[φ(A)f ](x) =
1√
2π

∫ ∞

0

φ̌
(
ln
(x
y

))(x
y

)1/2
f(y)

dy

x
,

valid for any essentially bounded function φ on R whose inverse Fourier transform is a distribution on
R, one obtains that

φ̌(s) =
1√
2π

[ 1

cosh(s/2)
− Pv

1

sinh(s/2)

]
,

where Pv means principal value. Finally, by using that the Fourier transform of the distribution s 7→
Pv 1

sinh(s/2) is the function −i
√
2π tanh(π·) and the one of s 7→ 1

cosh(s/2) is the function
√
2π cosh(π·)−1,

one obtains that
φ(A) = cosh(πA)−1 + i tanh(πA).

By replacing F ∗
c Fs with this expression, one directly obtains the stated result.

Corollary 9.3. The following equalities hold:

Wα
− = 1 + 1

2

(
1 + tanh(πA)− i cosh(πA)−1

)[α+ i
√
HD

α− i
√
HD

− 1
]
,

Wα
+ = 1 + 1

2

(
1− tanh(πA) + i cosh(πA)−1

)[α− i
√
HD

α+ i
√
HD

− 1
]
.
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9.2 Regularization

Recall that h stands for an arbitrary Hilbert space and that U(h) corresponds to the set of unitary
operators on h. Let Γ be a map S → U(h) such that Γ(t) − 1 ∈ K(h) for all t ∈ S. For p ∈ N we set
Kp(h) for the p-th Schatten ideal in K(h).

Proof of Lemma 6.11. For simplicity, let us set A(t) := 1 − Γ(t) for any t ∈ I and recall from [20,
Eq. (XI.2.11)] that detp+1

(
Γ(t)

)
= det

(
1 +Rp+1(t)

)
with

Rp+1(t) := Γ(t) exp
{ p∑

j=1

1

j
A(t)j

}
− 1 .

Then, for any t, s ∈ I with s ̸= t one has

detp+1

(
Γ(s)

)
detp+1

(
Γ(t)

) =
det
(
1 +Rp+1(s)

)
det
(
1 +Rp+1(t)

)
=

det
[(
1 +Rp+1(t)

)(
1 +Bp+1(t, s)

)]
det
(
1 +Rp+1(t)

)
= det

(
1 +Bp+1(t, s)

)
with Bp+1(t, s) =

(
1 + Rp+1(t)

)−1(
Rp+1(s) − Rp+1(t)

)
. Note that 1 + Rp+1(t) is invertible in B(h)

because detp+1

(
Γ(t)

)
is non-zero. With these information let us observe that

detp+1(Γ(s))−detp+1(Γ(t))
|s−t|

detp+1(Γ(t))
=

1

|s− t|
[
det
(
1 +Bp+1(t, s)

)
− 1
]
. (9.3)

Thus, the statement will be obtained if the limit s → t of this expression exists and if this limit is
equal to the r.h.s. of (6.8).

Now, by taking into account the asymptotic development of det(1 + εX) for ε small enough, one
obtains that

lim
s→t

1

|s− t|
[
det
(
1 +Bp+1(t, s)

)
− 1
]

= lim
s→t

tr

[
Bp+1(t, s)

|s− t|

]
= lim

s→t
tr

[
Hp+1(t)

−1Hp+1(s)−Hp+1(t)

|s− t|

]
(9.4)

with Hp+1(t) :=
(
1−A(t)

)
exp

{∑p
j=1

1
jA(t)

j
}
. Furthermore, it is known that the function h defined

for z ∈ C by h(z) := z−(p+1)(1−z) exp
{∑p

j=1
1
j z

j
}
is an entire function, see for example [54, Lem. 6.1].

Thus, from the equality
Hp+1(t) = A(t)p+1h

(
A(t)

)
(9.5)

and from the hypotheses on A(t) ≡ 1 − Γ(t) it follows that the map I ∋ t 7→ Hp+1(t) ∈ K1(h) is
continuously differentiable in the norm of K1(h). Thus, the limit (9.4) exists, or equivalently the limit
(9.3) also exists. Then, an easy computation using the geometric series leads to the expected result,
i.e. the limit in (9.4) is equal to the r.h.s. of (6.8).

Finally, for the last statement of the lemma, it is enough to observe from (9.5) that the map
I ∋ t 7→ Hp(t) ∈ K1(h) is continuously differentiable in the norm of K1(h) if the map I ∋ t 7→
Γ(t) − 1 ∈ Kp(h) is continuously differentiable in norm of Kp(h). Thus the entire proof holds already
for p instead of p+ 1.
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Proof of Lemma 6.12. Let us denote by S0 the open subset of S (with full measure) such that S0 ∋
t 7→ Γ(t) ∈ K(h) is continuously differentiable. One first observes that for any t ∈ S0 and q > p one has

Mq(t) := tr
[(
1− Γ(t)

)q
Γ(t)∗Γ′(t)

]
= tr

[(
1− Γ(t)

)q−1
Γ(t)∗Γ′(t)− Γ(t)

(
1− Γ(t)

)q−1
Γ(t)∗Γ′(t)

]
= Mq−1(t)− tr

[(
1− Γ(t)

)q−1
Γ′(t)

]
where the unitarity of Γ(t) has been used in the third equality. Thus the statement will be proved by

reiteration if one shows that the map S0 ∋ t 7→ tr
[(
1− Γ(t)

)q−1
Γ′(t)

]
∈ K(h) is integrable, with∫

S0
tr
[(
1− Γ(t)

)q−1
Γ′(t)

]
dt = 0. (9.6)

For that purpose, let us set for simplicity A(t) := 1 − Γ(t) and observe that for t, s in the same
arc of S0 and with s ̸= t one has

tr[A(s)q]− tr[A(t)q] = tr
[
A(s)q −A(t)q

]
= tr

[
Pq−1

(
A(s), A(t)

) (
A(s)−A(t)

)]
where Pq−1

(
A(s), A(t)

)
is a polynomial of degree q−1 in the two non commutative variables A(s) and

A(t). Note that we were able to use the cyclicity because of the assumptions q−1 ≥ p and A(t) ∈ Kp(h)
for all t ∈ S. Now, let us observe that∣∣∣∣ 1

|s− t|
tr
[
Pq−1

(
A(s), A(t)

) (
A(s)−A(t)

)]
− tr

[
Pq−1

(
A(t), A(t)

)
A′(t)

]∣∣∣∣
≤

∥∥∥A(s)−A(t)

|s− t|

∥∥∥ ∣∣∣tr[Pq−1

(
A(s), A(t)

)
− Pq−1

(
A(t), A(t)

)]∣∣∣
+
∥∥∥A(s)−A(t)

|s− t|
−A′(t)

∥∥∥ ∣∣∣tr[Pq−1

(
A(t), A(t)

)]∣∣∣ .
By assumptions, both terms vanish as s → t. Furthermore, one observes that Pq−1

(
A(t), A(t)

)
=

qA(t)q−1. Collecting these expressions one has shown that

lim
s→t

tr[A(s)q]− tr[A(t)q]

|s− t|
− q tr[A(t)q−1A′(t)] = 0 ,

or in simpler terms 1
q

(
tr[A(·)q]

)′
(t) = tr[A(t)q−1A′(t)]. By inserting this equality into (9.6) and by

taking the continuity of S ∋ t 7→ Γ(t) into account, one directly obtains that this integral is equal to
0, as expected.
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[17] M.B. Erdoğan, W.R. Green, A weighted dispersive estimate for Schrödinger operators in dimension
two, Comm. Math. Phys. 319 no. 3 (2013), 791–811.

[18] M.B. Erdoğan, W.R. Green, Dispersive estimates for Schrödinger operators in dimension two with
obstructions at zero energy, Trans. Amer. Math. Soc. 365 no. 12 (2013), 6403–6440.

[19] V. Georgescu, A. Iftimovici, C∗-algebras of quantum Hamiltonians, in Operator Algebras and
Mathematical Physics, Conference Proceedings: Constanţa (Romania) July 2001, 123–167, Theta
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