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Note: Application of neural network modelling for the
control of dewatering and impregnation soaking process
(osmotic dehydration)

Nota: Aplicacion del sistema de simulacion de redes
neurales para el control de la deshidratacién osmética

L.C. Trelea', A.L. Raoult-Wack?* and G. Trystram!

'ENSIA-INRA, 91305 Massy, France
2CIRAD-SAR, BP 5035, 34032 Montpellier, France

The aim of this work was to elaborate a predictive model of the mass transfer (water loss and
solute gain) that occurs during dewatering and soaking by using neural network modelling. Two
separate feedforward networks with one hidden layer were used (for water loss and solute gain
respectively). Model validation was carried out on results obtained previously, which dealt with
agar gel soaked in sucrose solution over a wide experimental range (temperature, 30-70 °C; solu-
tion concentration, 30-70 g sucrose/100 g solution; time 0-500 min; agar concentration, 2-8%). The
best results were obtained with three hidden neurons, which made it possible to predict mass
transfer, with an accuracy at least as good as the experimental error, over the whole experimental
range. The technological interest of such a model is related to a rapidity in simulation compa-
rable to that of a traditional transfer function, a limited number of parameters and experimental
data, and the fact that no preliminary assumption on the underlying mechanisms was needed.

Keyword: modelling, neural network, soaking, osmotic dehydration

En este trabajo se ha elaborado un modelo de simulacion de transferencia de masa (pérdida de
agua y ganancia de sé6lidos) durante la deshidratacién osmética mediante un sistema de red neural
(neural network). Se emplearon dos redes por separado,una para la pérdida de agua y otra para
la ganancia de sélidos. La validez del modelo se comprobé con datos publicados previamente de
gel de agar sumergido en una disolucién de sacarosa con un amplio intervalo de condiciones
experimentales (temperatura de 30 a 70 °C, concentracién de sacarosa de 30 a 70 g/100, tiempo
de 0 a 500 min y contenido de agar en el gel de 2 a 8%). Los mejores resultados se obtuvieron
con 3 neuronas ocultas (hidden neurons), con lo que se consiguié predecir una transferencia de
masa con una precision al menos tan buena como el error experimental para todo el intervalo de
condiciones estudiadas. El interés tecnolégico del modelo estd vinculado a la rapidez en la simu-
lacién, comparable a una funcién de transferencia tradicional, limitado ntimero de pardmetros y
datos experimentales y del hecho de que no se necesitan consideraciones preliminares sobre los
mecanismos propuestos.
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INTRODUCTION
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pre-treatment, which consists of soaking water-rich
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solid food materials in concentrated aqueous solu-
tions (mainly of sugars or salts). This operation leads
to simultaneous dewatering and direct formulation of
the food material (through impregnation and
leaching), and can be introduced as a pre-treatment
in any conventional processing chain to improve
quality and save energy. Recent advances in the field
were recently reviewed by Le Maguer (1988),
Torreggiani (1993), and Raoult-Wack (1994), and
existing models do not permit adequate control of the
DIS process in industrial applications, mainly because
they cannot take into account the process complexity
(Raoult-Wack, 1994).

Neural networks are recognized as good tools for
dynamic modelling, and have been extensively
studied since the publication of the perceptron iden-
tification method (Rumelhart and Zipner, 1985). The
interest of such models includes modelling without
any assumptions about the nature of underlying
mechanisms, and their ability to take into account
non-linearities and interactions between variables
(Bishop, 1994). Recent results establish that it is
always possible to identify a neural model based on
the perceptron structure, with only one hidden layer,
for either steady-state or dynamic operations (with
recurrent models) (Hornik et al., 1989; Hornik 1993).
An outstanding feature of neural networks is the
ability to learn the solution of the problem from a set
of examples and to provide a smooth and reasonable
interpolation for new data. In the field of food process
engineering, it is a good alternative to conventional
empirical modelling based on polynomial and linear
regressions. For food processes, the interest in appli-
cation of neural computing keeps on growing.
Applications concern fermentation (Latrille, 1994),
extrusion (Linko et al., 1982), filtration (Dornier et al.,
1995), and drying (Huang and Mujumdar, 1993).

The aim of the present work was to test the interest
and efficiency of neural networks to model and
predict the behaviour of food material subjected to a
DIS process.

METHODS

Model
Network structure

An artificial neural network is an association of
elementary cells or ‘neurons’ grouped into distinct
layers and interconnected according to a given archi-
tecture. The standard network structure for function
approximation is the multilayer perceptron (or feed-
forward network) that we use in this work. Figure 1
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shows the network for the solute gain model; the
water loss model is similar. The input layer consists
of m=4 identity fan-out units, one for each input,
with no coefficient associated with them. The neurons
in the single hidden layer compute a weighted sum
of their inputs, and apply a squashing transfer func-
tion to the result. The number r = 3 units was selected
after some tests. The coefficients associated with the
hidden layer are grouped into the matrices Al
(weights) and B1 (biases). The output layer contains
p =1 neuron in our case (because there is only one
output), which computes the weighted sum of the
signals provided by the hidden layer. The associated
coefficients are grouped into matrices A2 and B2. The
matrices have the following dimensions: A1 € Rr*m,
Bl e WL, A2 e P~ B2 € N¥*1,and the total number
of network coefficients is:

n=r(m+l) + p(r+1) = 19 (n

SG/ 100

Input layer

Hidden layer

PR <

Output layer

Figure 1. Schematic representation of the single
hidden layer, feedforward neural network architecture
used for the solute gain model. The network used for
the water loss model is similar.

Figura 1. Representacion esquematica de una capa
oculta sencilla de la arquitectura de red neural utilizada
para el modelo de ganancia de solutos. La red para la
pérdida de agua es similar.
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Using the matrix notation, the network output can
be computed from Equation (2) :

SG =100-[A2-tanh(Al-u + B1) + B2] (2)

For further details, the reader is referred to stan-
dard textbooks on neural networks (Freeman and
Skapura, 1992). Taking into account the normalization
of the inputs and outputs, as well as the fact that
hyperbolic tangent calculation (if suitably arranged)
requires four basic floating point operations plus an
exponential function calculation, the number N; of the
elementary floating point operation needed for a
neural model simulation is N, = 2rm+2p-rm+p+dr = 47,
and the number of exponential function calculation is
N, =r=4. These numbers are very small compared
with those needed for physical models. The simula-
tion of a model based on differential equations, for
example, typically requires many thousands of
floating point operations. On a standard Pentium-
based PC computer at 90 MHz, a basic floating point
operation takes 0.11 s, and an exponential calcula-
tion 2.2 us (figures obtained in Matlab, after several
tests on large matrices). A neural model simulation
thus takes less than 15 s, which is comparable to
traditional linear transfer function and state Space
models, with the additional advantage of taking into
account non-linear phenomena.

Identification: learning algorithm and model
quality assessment

The learning process consists of adjusting the network
coefficients (the weight Ai and Bi) in order to mini-
mize an error function (usually a quadratic one)
between the network outputs for a given set of inputs
and the known correct outputs. If smooth non-linear-
ities are used, the gradient of the error function can
be easily computed by the classical backpropagation
procedure (Rumelhart et al., 1986). Early learning
algorithms used this gradient directly in a steepest
descent optimization, but recent results and our own
experience showed that second order methods are
far more effective. In this work, the Levenberg-
Marquardt optimization procedure in the Neural
Network Toolbox (Demuth and Beale, 1993) was used.
Despite the fact that the computations involved in
each iteration are more complex than in the steepest
descent case, the convergence is faster, typically by a
factor of 100. The learning process is much more
computationally intensive than the simulation. It typi-
cally takes 5-10 min on the PC computer mentioned
above. The root mean square error (RMSE) between
the experimental values and network predictions was
used as a criterion of model adequacy.
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DATABASE PREPARATION

In this work, experimental data provided by Raoult-
Wack et al. (1991) consisted of mass transfer kinetics
(water loss and solute gain) measured. on agar gel
cubes (initial side dimension 9 x 10*m) soaked in
aqueous sucrose solutions, under constant external
conditions, over 480 min. Agar gel consisted of agar,
sucrose and water. The concentration of the occluded
solution within the agar network was fixed at 10 g
sucrose/100 g solution, which is a representative level
of sugar concentration in most fruits and vegetables,
Mass transfer measurements were water loss and
solute gain, denoted WL and SG respectively,
expressed in g/100 g initial gel.

Four process factors were varied: initial agar
weight fraction in the gel (denoted w, in %),
processing temperature (denoted T, in °C), sucrose
weight fraction in the soaking solution (denoted
w,, in %), and processing time duration (¢, in min).
Table 1 gives experimental conditions for each of the
17 situations studied. Corresponding files are denoted
F1-F17. For each situation, WL and SG measurements
were performed at time ¢t =5, 10, 20, 30, 45, 60, 90,
120, 150, 180, 240, 300, 360, 420, 480 min, resulting in
34 experimental kinetics. Figure 2 presents the distri-
bution of various experimental files in a (T, w,, w;)
space.

Table 1. Experimental conditions studied

Tabla 1. Condiciones experimentales estudiadas.

File T w, Wy t

number (°C) (%) (%) {min)
F1 50 60 2 0-480
F2 , 50 60 3 0-480
F3 50 60 3.5 0-480
F4 50 60 5 0-480
F5 50 60 6 0-480
F6 50 60 7 0-480
F7 50 60 8 0-480
F8 50 20 4 0-480
F9 50 30 4 0-480
F10 50 40 4 0-480
F11 50 50 4 0480
F12 50 70 4 0-480
F13 30 60 4 0-480
F14 40 60 4 0-480
F15 50 60 4 0-480
F16 60 60 4 0-480
F17 70 60 4 0-480

FOOD SCIENCE AND TECHNOLOGY INTERNATIONAL (1997) 3(6)
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Figure 2. Distribution of the experimental files in a
(T, w, w,) space.

Figura 2. Distribucion de los ficheros experimentales
en un espacio (T, w,, wj).

The selected experimental range is wide, and
covers two types of situation, as defined by Raoult-
Wack et al. (1991): so-called ‘dewatering situations’
when water loss is higher than sugar gain, and
‘impregnation situations’ in which sugar gain is
higher than water loss. Experimental files were split
into learning and test bases to obtain a good repre-
sentation of the situation diversity (‘dewatering’ and
‘impregnation’ situations ) in each base: ‘learning
base’, F1, F2, F5, F7, F8, F10, F11, F12, F13, F15, F17;
‘test base’, F3, F4, F6, F9, F14, F16.

The numerical behaviour of the learning routine is
significantly improved if all network inputs and
outputs are normalized to similar ranges. Hence T,
w,, WL and SG were divided by 100, w; by 10 and ¢
by 500. Hence in Equation (2) u was written as given
by Equation (3):

T/100

w,/100 (3)
w,/10

£/500

RESULTS AND DISCUSSION

Our model involved 19 weights for 11 kinetics (as
calculated from Equation 1), and hence 38 weights for
22 kinetics because there were two separate networks.

Figure 3 gives the test RSME respectively, against
iteration number in the case of SG, for one to six
neurons in the hidden layer. Results showed that the
learning error typically decreased when the number
of neurons in the hidden layer increased, but for more

I.C. Trelea et al.

Test error

Root-mean
square crror

_____

0 20 40 60 80 160

Levenberg-Maquardt iterations

Figure 3. Test root mean square error (RMSE) versus
iteration number, in the case of solute gain, for various
numbers of hidden neurones.

Figura 3. Test de la raiz del error de minimos
cuadrados (RMSE) frente al nimero de iteracion, en el
caso de ganancia de solutos, para varios numeros de
neuronas ocultas.

than six neurons in the hidden layer, an additional
increase in structure complexity did not decrease the
learning RSME further. Figure 3 showed a slight
increase in test error, accounting for over-fitting, for
more than 30 iterations and three neurons in the
hidden layer. Let us point out that the increase in test
error may be enhanced in other cases. As for water
loss, similar behaviour to that previously described
for sugar gain was obtained, hence the results are not
presented here.

Tables 2 and 3 give the final choice for the number
of neurons in the hidden layer and iterations, as well
as weight values and learning and test RSME, for WL
and SG respectively. As a whole, the learning and test
RSME were similar, which accounts for a good gener-
alization capability of the neural network. The
learning and test RSME are close (even inferior) to
experimental error of the original database (Raoult-
Wack et al., 1991) and also to that encountered in most
studies dealing with the behaviour of real raw
materials subjected to DIS processes (Saurel et al.,
1994).

When simulated against experimental data for test
and learning bases, WL and SG showed that in all
cases the prediction was correct whatever the level of
water loss and sugar gain (Figures 4 and 5).
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Table 2. Characteristics of the best neural network in
the case of water loss.

Tabla 2. Caracteristicas de la mejor red neural para
la pérdida de agua.

3 hidden neurons, 100 iterations
RSME learn =2.83 RSME test = 2.36

Al =
-0.8730 -0.4366 -0.0908 7.5406
-0.4725 -4.0081 -0.6674 0.1077
-0.6339 -0.5002 ~0.0941 6.7092
B1 =
1.1828
2.5521
1.6694
A2 =
-6.2804 ~0.3914 17.8413
B2 =
~11.1687

Table 3. Characteristics of the best neural network in
the case of solute gain.

Tabla 3. Caracteristicas de la mejor red neural para
la ganancia de solutos.

3 hidden neurons, 30 iterations
RSME learn =2.74 RSME test = 2.60

Al =
-4.3709 4.6844 0.5906 -0.1983
-0.4234 0.4326 ~1.4352 -7.6583
~4.5282 5.2997 2.0249 -0.4885
B1 =
0.0000
-1.0218
-0.9562
A2 =
0.7720 -2.0429 -0.6476
B2 =
-1.9532

Figure 6 gives simulated and experimental WL and
SG kinetics obtained in situation F4 (test base).
According to Raoult-Wack et al. (1991), general time-
course evolution could be divided into two phases,
which is typical behaviour in the DIS process, what-
ever the product nature or experimental conditions.
In the first phase (0-180 min), WL and SG were very
rapid. Then fluxes progressively decreased, and WL
stagnated whereas SG continued to increase slightly
(phase 2). Simulated results showed that the neural
network model provided accurate simulation of WL
and SG evolution in both phases.
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Figure 4. Simulated versus experimental data for test

and learning bases, in the case of water loss.

Figura 4. Datos experimentales frente a los simulados
en el caso de la pérdida de agua.
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Figure 5. Simulated versus experimental data for test
and learning bases, in the case of solute gain.

Figura 5. Datos experimentales frente a los simulados
para la ganancia de solutos.

Figure 7 gives simultaneous simulated and exper-
imental kinetics obtained in situation F9 (test base).
In contrast to situation F4, which is a dewatering situ-
ation, F9 corresponds to an impregnation situation
(SG higher than WL). Results showed that the model
satisfactorily described the kinetics in each case.
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File F4
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Figure 6. Simulated and experimental kinetics for the
water loss (o) and solute gain (+) in the dewatering situ-
ation F4.

Figura 6. Cinéticas experimental y simulada para la
pérdida de agua (o) y la ganancia de solutos {+) en el
caso de la deshidratacién osmética F4.

CONCLUSION

This study shows that neural network modelling
makes it possible to obtain accurate simulation of
water loss and sugar gain kinetics during the DIS
process, over a wide experimental range, for either
dewatering or impregnation situations, with a limited
number of parameters and experimental data. The
technological interest of this kind of modelling has to
be related to the fact that it is elaborated without any
preliminary assumptions on the underlying mecha-
nisms, and also to its implementation facilities and
speed of simulation (of the order of 15 us on a stan-
dard PC computer). This neural network modelling
was validated on results obtained with model foods.
Further modelling should be carried out on real raw
materials, and for variable operating conditions.
Other architectures (in particular recurrent ones)
should also be studied. Generally, the neural model
should provide a promising tool for process control
in DIS processes. It could also be used for data
filtering, which could be of greatest interest in
phenomenological modelling of the process, or
typology of the behaviour of materials subjected to
soaking from available experimental data, which are

claimed to be the main shortcomings of research in
this field to date.

I.C. Trelea et al.
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Figure 7. Simulated and experimental kinetics for the
water loss (o} and solute gain (+) in the impregnation
situation F9.

Figura 7. Cinéticas experimental y simulada para la
pérdida de agua (0} y la ganancia de solutos (+) en el
caso de la impregnacion F9.
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