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Large deviations for velocity-jump processes and non-local
Hamilton-Jacobi equations

Emeric Bouin ∗ Vincent Calvez † Emmanuel Grenier ‡ Grégoire Nadin §

July 20, 2016

Abstract

We establish a large deviation theory for a velocity jump process, where new random
velocities are picked at a constant rate from a Gaussian distribution. The Kolmogorov
forward equation associated with this process is a linear kinetic transport equation in which
the BGK operator accounts for the changes in velocity. We analyse its asymptotic limit
after a suitable rescaling compatible with the WKB expansion. This yields a new type of
Hamilton Jacobi equation which is non local with respect to velocity variable. We introduce
a dedicated notion of viscosity solution for the limit problem, and we prove well-posedness in
the viscosity sense. The fundamental solution is explicitly computed, yielding quantitative
estimates for the large deviations of the underlying velocity-jump process à la Freidlin-
Wentzell. As an application of this theory, we conjecture exact rates of acceleration in some
nonlinear kinetic reaction-transport equations.

Key-Words: Large deviations, Piecewise Deterministic Markov Processes, Hamilton-Jacobi
equations, Viscosity solutions, Scaling limits, Front acceleration.
AMS Class. No:

1 Introduction

This paper is mainly concerned with the asymptotic limit of the following linear kinetic transport
equation as ε→ 0,

∂tf
ε(t, x, v)+v ·∇xf ε(t, x, v) =

1

ε
(Mε(v)ρε(t, x)− f ε(t, x, v)) , t > 0 , x ∈ Rn , v ∈ Rn . (1.1) eq:main

Here, f ε(t, x, v) denotes the density of particles at time t > 0 in the phase space R2n, and ρε(t, x)
is the macroscopic density,

ρε(t, x) =

∫
Rn
f ε(t, x, v)dv .
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The velocity distribution Mε(v) is given. For the sake of clarity, we focus here on the case of
the Gaussian distribution with variance ε,

∀v ∈ R, Mε(v) =
1

(2πε)n/2
exp

(
−|v|

2

2ε

)
.

Our methodology can be applied to a wide range of distributions, as discussed at the end of this
introduction.

The time renormalizing factor ε−1 in front of the BGK velocity operator in (??) is chosen
so as to obtain a nontrivial limit in the asymptotic regime of large deviations, i.e. in order
to capture the vanishing exponential tails of the density f ε. We emphasize that the classical
diffusive limit would involve an additional factor ε in front of the time derivative ∂tf ε.

Scaling. Starting from the dimensionalized kinetic transport equation

∂t′f + v′ · ∇x′f =
1

τ

(
Mσ2(v′)ρ− f

)
, (1.2) eq:BGK-dim

where τ is the rate of reorientation, and σ2 is the variance of the velocity distribution, we can
always reduce to τ = σ = 1 after the change of variables t̃ = t′/τ , x̃ = x′/(τσ), and ṽ = v′/σ.
Then, we are interested in the asymptotics (t̃, x̃, ṽ)→∞ with the appropriate scaling. It appears
that the correct scaling in order to capture the small exponential tails of the distribution is such
that ṽ ≈ t̃1/2 and x̃ ≈ t̃3/2. Accordingly, we set

(t̃, x̃, ṽ) =

(
t

ε
,
x

ε3/2
,
v

ε1/2

)
, (1.3) eq:rescaling

for some (small) parameter ε > 0 that drives the large scale asymptotics when it vanishes. We
recover (??) in the new variables (t, x, v). Note that the appropriate rescaling (??) is specific to
the choice of a Gaussian velocity distribution.

Diffusive limit. To draw an instructive parallel, let us consider the diffusive limit of (??),
namely the heat equation (see [?] and the references therein)

∂t′ρ(t, x)− (τσ2)∆x′ρ(t, x) = 0 . (1.4) eq:diffusion

When the effective diffusion coefficient τσ2 is small (say ε = τσ2) or, equivalently, when investi-
gating the large scale asymptotics (t, x) = (εt′/τ, εx′/(τσ)) for small ε, one deals with the same
equation with vanishing viscosity,

∂tρ
ε(t, x)− ε∆xρ

ε(t, x) = 0 . (1.5) eq:diffusion

It is well-known (see e.g. [?, ?, ?]) that, under appropriate conditions, uε(t, x) = −ε log ρε(t, x)
converges uniformly locally towards a viscosity solution of the following Hamilton-Jacobi equa-
tion

∂tu(t, x) + |∇xu(t, x)|2 = 0 . (1.6) eq:HJ-heat

Our main purpose here is to obtain a similar result for the kinetic transport equation (??).

Large deviations. Our work can be viewed as a preliminary contribution to the theory of
large deviations for simple velocity jump processes. We follow the lines of Evans and Ishii [?]
(see also [?, ?]), in which PDE techniques were successfully applied to reformulate the ideas of
Fleming [?] in the context of viscosity solutions. Fleming’s work was devoted to applying the
logarithmic transformation, and ideas from stochastic control, to the Freidlin-Wentzell theory
for stochastic differential equations with a small noise.
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Logarithmic transformation. As in the diffusive case, we perform the following Hopf-Cole
transformation,

uε(t, x, v) = −ε log f ε(t, x, v) .

The function uε satisfies

∂tu
ε(t, x, v) + v · ∇xuε(t, x, v) = 1− 1

(2πε)n/2

∫
Rn

exp

(
uε(t, x, v)− uε(t, x, v′)− |v|2/2

ε

)
dv′ .

(1.7) WKB1

Limit system. Our first result can be stated informally as follows: under suitable conditions
(see Theorem ?? below), uε converges locally uniformly towards a viscosity solution of the
following non-local Hamilton-Jacobi equation,

max

(
∂tu(t, x, v) + v · ∇xu(t, x, v)− 1, u(t, x, v)− min

w∈Rn
u(t, x, w)− |v|

2

2

)
= 0 ,

∂t

(
min
w∈Rn

u(t, x, w)

)
≤ 0 ,

∂t

(
min
w∈Rn

u(t, x, w)

)
= 0 , if S(u)(t, x) = {0} ,

u(0, x, v) = u0(x, v) .

(1.8) eq:limit

where we have used the following notation,

S(u)(t, x) =

{
v ∈ Rn |u(t, x, v) = min

w∈Rn
u(t, x, w)

}
. (1.9)

To avoid possible boundary layers at t = 0 as ε → 0, we assume that the initial condition for
f ε is of the form f ε(0, ·) = exp

(
−ε−1u0(·)

)
. This set uε(0, ·) = u0(·) as the initial condition for

(??) and for the limit problem (??).
It is worth making some comments concerning the structure of the system (??). First of

all, it is not a standard Hamilton-Jacobi equation as (??), and the one obtained in the case
of bounded velocities [?]. Moreover, we notice that the first equation of (??) does not contain
enough information due to the apparition of minw u for which extra dynamics are required.
Although it seems somehow sparse, the two additional (in)equations ∂t (minw u) ≤ 0 (= 0) are
sufficient to determine a unique solution of the Cauchy problem, as stated in the comparison
principle below (Theorem ??).

To the best of our knowledge, system (??) is of a new kind. We refer to it as a Hamilton-
Jacobi problem by analogy with (??) which was obtained via a similar procedure. Moreover,
in the case of a compactly supported velocity distribution M(v), the same procedure leads to a
standard Hamilton-Jacobi problem [?, ?].

We should mention that non-local Hamilton-Jacobi equations of a very different type have
been studied in the context of dislocations by G. Barles, P. Cardaliaguet, O. Ley, R. Monneau,
and A. Monteillet in a series of papers, see e.g. [?, ?, ?] and the references therein.

Viscosity solutions. Equation (??) should be read as a coupled system of Hamilton-Jacobi
equations on u and minw u. Accordingly, we define viscosity solutions of (??) using a couple
of test functions [?]. In the sequel, we denote by z∗ (resp. z∗) the upper (resp. lower) semi
continuous envelope of a given locally bounded function z.
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def:subsol Definition 1.1 (Sub-solution). Let T > 0. A upper semi-continuous function u is a viscosity
sub-solution of (??) on [0, T )× R2n if and only if:

(i) u(0, ·, ·) ≤ (u0)
∗.

(ii) It satisfies the constraint

(∀(t, x, v) ∈ (0, T )× R2n) u(t, x, v)− min
w∈Rn

u(t, x, w)− |v|
2

2
≤ 0 .

(iii) For all pair of test functions (φ, ψ) ∈ C1
(
(0, T )× R2n

)
× C1 ((0, T )× Rn), if (t0, x0, v0)

is such that both u(·, ·, v0) − φ(·, ·, v0) and minw u(·, ·, w) − ψ(·, ·) have a local maximum at
(t0, x0) ∈ (0, T )× Rn, then∂tφ(t0, x0, v0) + v0 · ∇xφ(t0, x0, v0)− 1 ≤ 0,

∂tψ(t0, x0) ≤ 0.
(1.10) eq:S1

def:supersol Definition 1.2 (Super-solution). Let T > 0. A lower semi-continuous function u is a viscosity
super-solution of (??) on [0, T )× R2n if and only if:

(i) u(0, ·, ·) ≥ (u0)∗.

(ii) For all (t, x) ∈ (0, T ) × Rn, v = 0 is a global minimum of u(t, x, ·). Moreover, v = 0 is
locally uniformly isolated: for any compact set K ⊂ (0, T ) × Rn, there exists r > 0 such that
S(u)(t, x) ∩Br(0) = {0} for all (t, x) ∈ K.

(iii) For all pair of test functions (φ, ψ) ∈ C1
(
(0, T )× R2n

)
× C1 ((0, T )× Rn), if (t0, x0, v0) is

such that both u(·, ·, v0)−φ(·, ·, v0) and minw u(·, ·, w)−ψ(·, ·) have a local minimum at (t0, x0) ∈
(0, T )× Rn, then
∂tφ(t0, x0, v0) + v0 · ∇xφ(t0, x0, v0)− 1 ≥ 0, if u(t0, x0, v0)− min

w∈Rn
u(t0, x0, w)− |v0|

2

2
< 0,

∂tψ(t0, x0) ≥ 0 , if S(u)(t0, x0) = {0} .
(1.11) eq:S2 intro

Let mention that the mimimality (resp. maximality) in the definition of the super- (resp.
sub-) solution arises with respect to variables (t, x) only. This is consistent with the fact that
there is no derivative in the velocity variable in (??).

def:sol Definition 1.3 (Solution). Let T > 0. A function u is a viscosity solution of (??) on [0, T )×
R2n if its upper (resp. lower) semi-continuous envelope is a sub- (resp. super-) solution in the
sense of definitions ?? and ?? above.

Convergence and uniqueness for the limit system. The following theorem states a com-
parison principle for viscosity (sub/super-)solutions of the system (??). This establishes unique-
ness of viscosity solutions as a corollary. The proof is contained in Section ??.

theo:comp Theorem 1.4 (Comparison principle). Let u (resp. u) be a viscosity sub-solution (resp. super-
solution) of (??) on [0, T )× R2n. Assume that u and u are such that

b = u− |v|2/2 ∈ L∞
(
[0, T )× R2n

)
, b = u− |v|2/2 ∈ L∞

(
[0, T )× R2n

)
. (1.12) eq:v2 plus borne

Then u ≤ u on [0, T )× R2n.
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This result is extended for sub- and super- solutions with quadratic spatial growth at infinity,
in Section ??. This growth condition is compatible with the fundamental solution of the limit
system, as we shall see below.

In Section ??, we prove the convergence of the sequence (uε)ε as ε→ 0, towards the unique
viscosity solution of (??).

HJlimit Theorem 1.5 (Convergence). Assume that the initial condition u0 satisfies the following prop-
erties:

[A] b0 = u0 −
|v|2

2
∈W 1,∞(R2n) , (1.13) eq:initial condition 1

[B] − det (Hessv(u0(x, v))) 6= 0, D(3)
v u0 ∈ L∞loc. (1.14) eq:initial condition 2

Let uε be the solution of (??), with the initial data uε(0, ·) = u0. Then, uε converges locally
uniformly towards u, which is the unique viscosity solution of (??), as ε→ 0. In particular, for
all (t, x) ∈ (0,∞)× Rn, v = 0 is an isolated global minimum of u(t, x, ·).

However, we were not able to extend this convergence result to unbounded initial data with
respect to space variable. We leave this issue for future work.

Heuristics. It is useful to give some heuristics, in order to understand how the supplementary
condition

∂t

(
min
w∈Rn

u(t, x, w)

)
≤ 0 (= 0) ,

appears in the limit ε→ 0 (??), with equality if S(u)(t, x) is reduced to the singleton {0}. First,
notice that the constraint

u ≤ min
w
u+
|v|2

2
, (1.15) eq:constraint

immediately follows from (??) if the left-hand-side is bounded with respect to ε. As a con-
sequence, the minimum of u with respect to velocity is necessarily attained at v = 0. Then,
integrating (??) against the probability measure

dµε =

(∫
Rn

exp

(
−u

ε

ε

)
dv

)−1
exp

(
−u

ε

ε

)
dv =

f ε

ρε
dv ,

we obtain the following continuity equation,∫
Rn

(∂tu
ε + v · ∇xuε) dµε = 0 . (1.16) eq:heuristics 1

The probability measure dµε is expected to concentrate on the minimum points of u as ε→ 0.
Let assume that we do have in some sense,

dµε ⇀
∑

w∈S(u)(t,x)

pwδv=w = p0δv=0 +
∑

v0∈S(u)(t,x)\{0}

pv0δv=v0 , (1.17) eq:heuristics 2

where the weights satisfy
∑
pv0 = 1. We notice that the constraint (??) at each v0 ∈ S(u)(t, x)\

{0} is clearly unsaturated, in the sense that u < minw u+ |v0|2/2. There, we expect to see the
last contribution of (??) vanish. This would lead to ∂tu(t, x, v0) + v0 · ∇xu(t, x, v0) = 1 for each
such v0. Plugging this into (??), and using (??), we obtain successively,

0 =
∑

v0∈S(u)(t,x)

pv0 (∂tu+ v0 · ∇xu) = p0∂tu(t, x, 0) +
∑

v0∈S(u)(t,x)\{0}

pv0 = p0∂tu(t, x, 0) + 1− p0 .

As we have formally ∂tu(t, x, 0) = ∂t (minw u(t, x, w)) by the chain rule, we expect eventually
that ∂t minw u ≤ 0 and even ∂t minw u = 0 if p0 = 1, that is, somehow S(u)(t, x) = {0}.
Obviously, all this reasoning is formal, but we shall make it rigorous in Section ??.
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Figure 1: (Left) To illustrate the behaviour of the fundamental solution of (??), the minimum
value µ(t, · ; 0) is plotted for successive values of time; (Right) For the sake of comparison, the
fundamental solution of (??) is plotted for successive values of time.

Comparison with the case of bounded velocities. We extend previous results obtained
in [?, ?] to the case of unbounded velocities. The main difference lies of course in the velocity
rescaling (??) which is not admissible in the case of bounded velocities. This has important
consequences. Firstly, in the case of bounded velocities, the asymptotic limit u does not depend
on v, due to some averaging process arising in the velocity variable. Secondly, the limit equation
is a standard Hamilton-Jacobi equation, associated with an effective Hamiltonian. In fact, the
Hamilton-Jacobi equation obtained in the limit reads as∫

Rn

M(v)

1− ∂tu(t, x)− v · ∇xu(t, x)
dv = 1 , (1.18) eq:HJbdd

under appropriate integrability conditions1. The case of unbounded velocities is by far more
subtle, since there is no averaging with respect to velocity. High velocities play a prominent role
in the dispersion process.

The case of bounded velocities is analog to large deviations estimates for slow-fast systems
as in [?, ?, ?, ?, ?], and references therein. In our case, the role of the fast variable is played by
velocity, whereas the space variable is the slow one.

In this work, we follow the Hamiltonian viewpoint, focusing on the value function u, solution
of the Hamilton-Jacobi equation (??). There is a dual viewpoint, focusing on the trajectories of
the underlying Piecewise Deterministic Markov Process (PDMP). We refer to [?, ?] for further
reading.

The fundamental solution. In Sections ?? and ??, we compute explicitly the fundamental
solution of the non-local Hamilton-Jacobi equation (??) in space dimension one, for (x, v) ∈ R2.
We follow a time discrete iteration scheme based on the Duhamel formulation of (??). Since
the problem is not translation invariant with respect to velocity, it is necessary to compute the
solution for all initial data of the form

u(0, x, v) = 0x=0 + 0v=w ,

1Namely, it is required that lim
∫
Rn

M(v)
1+h−v·p dv > 1, where the limit is taken as h → maxv∈V (v · p) − 1 from

above (in order to preserve the positivity of the denominator). Caillerie has extended this result to the general
case, without such integrability condition [?].
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where

0x=0(y) =

{
+∞ if y 6= 0,

0 if y = 0.

We obtain the following expression for the fundamental solution,

φ(t, x, v;w) =

min

0x=tv + min

(
0v=w,

|v|2

2

)
+ t,
|v|2

2
+ min

s1,s2,s3≥0
0≤s1+s2+s3≤t

(
(x− s1w − s3v)2

2s22
+ s1 + s2 + s3

) .

The minimum value with respect to velocity is given by

µ(t, x;w) = min
v∈Rn

φ(t, x, v;w) = min
s1,s2≥0

0≤s1+s2≤t

(
(x− s1w)2

2s22
+ s1 + s2

)
.

The function µ(t, · ; 0) is plotted in Figure ?? for successive values of time. A striking feature
is that the solution does not converge to zero as t → +∞, as compared to the fundamental
solution of the Hamilton-Jacobi equation associated with the heat equation (??).

Comparison with the heat equation. At first glance, the asymptotics of the kinetic equa-
tion (??), is linked with the asymptotics of the heat equation (??) with vanishing viscosity, as
the latter is the limit of the former under appropriate diffusive rescaling, yet different from (??):
(t̃, x̃, ṽ) = (t/ε2, x/ε, v). However, as shown in in Figure ??, the two behaviours are radically
different. We may informally present our results as follows: the scaling (t̃, x̃, ṽ) = (t/ε, x/ε, v)
leads to the heat equation with vanishing viscosity ε > 0 after a simple Chapman-Enskog expan-
sion2. The fundamental solution of the associated Hamilton-Jacobi equation, associated with
the initial data 0x=0, is x2/(4t). In particular, it converges to zero in long time, uniformly on
compact intervals.

On the other hand, we have computed the fundamental solution of the limit system (??),
obtained after the more appropriate rescaling (t̃, x̃, ṽ) = (t/ε, x/ε3/2, v/ε1/2) (??). For the sake
of comparison, it is better to describe minw∈Rn u(t, x, v) (which corresponds to the macroscopic
density ρ via the Hopf-Cole transform). Surprisingly enough, it does not converge to zero, but
to the function (3/2)|x|2/3. We interpret this as follows: at a larger scale than the standard
hyperbolic rescaling (t̃, x̃, ṽ) = (t/ε, x/ε, v) (both space and velocity are larger in (??)), we get
non trivial asymptotics, but the density f ε remains uniformly exponentially small far from the
origin, of the order � exp(−O(|x|2/3)/ε).

As compared to the heat equation, (??) lacks scaling invariance (with respect to velocity).
This is emphasized by the fact that the fundamental solution of (??) does not have a single-line
expression, see (??) below. Furthermore, picking a high velocity from a Gaussian distribution
is a rare event, that can be completely reset at the next velocity jump. This leads to the
predominance of low velocities that slows down the dispersion. This has to be compared with
the Fokker-Planck equation having the same stationary velocity distribution,

∂tf(t, x, v) + v · ∇xf(t, x, v) = ∇v · (∇vf(t, x, v) + vf(t, x, v)) , (1.19) eq:FP

for which we expect that the large deviations potential in the scaling (t, x, v)→
(
ε−1t, ε−1x, v

)
behaves like a solution of (??). Technically speaking, we expect that the limit function is
independent of the velocity variable due to the additional drift that compactifies the velocity
space. This is under investigation by the first author.

2This is essentially due to the fact that time should be speed up by a factor t/ε2 in order to preserve the
diffusive scaling x2 = O(t)
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Accelerated fronts in reaction-transport equations. As an application of this work, we
investigate quantitatively front propagation in reaction-transport equations in Section ??. We
focus on (??) with an additional monostable reaction term:

∂tf(t, x, v) + v · ∇xf(t, x, v) = (M(v)ρ(t, x)− f(t, x, v)) + rρ(t, x) (M(v)− f(t, x, v)) . (1.20) eq:kinreac

This models a population of particles that change velocity at rate one, pick up a random new
velocity following a Gaussian distribution, and divide at rate r > 0. Moreover, new particles
pick up their initial velocity from the same Gaussian distribution. This type of model has been
studied in [?, ?, ?] in the case of bounded velocities, and in [?] in the case of possible unbounded
velocities. In the case of bounded velocities, there exist traveling waves with constant speed
[?, ?, ?]. Moreover, any solution to the Cauchy problem with sufficiently decaying initial data
spreads with the minimal speed.

The classical Fisher-KPP equation is obtained in the diffusive limit, provided that the rate
of division is assumed to be of order ε2,

∂tρ(t, x)− θ∆ρ(t, x) = rρ(t, x)(1− ρ(t, x)) . (1.21) eq:FKPP

It is well known that front propagation occurs at constant speed, here 2
√
rθ [?, ?], for any

suitably decaying initial data (otherwise, see [?, ?]).
Beyond this classical problem, there has been some recent interest for describing accelerating

fronts in reaction-diffusion equations.
Garnier has investigated integro-differential equations, where the spreading operator is given

by the convolution with a fat-tailed kernel [?],

∂tρ(t, x) +

(
−
∫
R
J(x− y)ρ(t, y) dy + ρ(t, x)

)
= rρ(t, x)(1− ρ(t, x)) . (1.22) eq:garnier

Here, fat-tailed means that the kernel J decays slower than exponentially. There, the level lines
of the solution spread super linearly, depending on the decay of the convolution kernel J .

Cabré and Roquejoffre have studied the Fisher-KPP equation where the diffusion operator
is replaced with a fractional diffusion operator [?, ?],

∂tρ(t, x) + (−∆)αρ(t, x) = rρ(t, x)(1− ρ(t, x)) , (1.23) eq:cabre

for some exponent α ∈ (0, 1). They describe quantitatively the acceleration of the front, which
occurs at exponential rate, namely X(t) ≈ exp(rt/(n+ 2α)) in a weak sense. This seminal work
was continued by Coulon and Roquejoffre in [?]. More recently, Mirrahimi and Méléard have
described the limit of the reaction-diffusion with a fractional diffusion operator in dimension
n = 1, after suitable rescaling and the Hopf-Cole transform [?]. As opposed to our results,
the limit function has the following simple expression, with separation of variables: u(t, x) =
max(0, (1 + 2α) log |x| − t).

Recently, spreading in the so-called cane toads equation has been studied intensively.

∂tn(t, x, θ)− θ∂2xn(t, x, θ)− ∂2θn(t, x, θ) = rn(t, x, θ)(1− ρ(t, x)) , ρ(t, x) =

∫
n(t, x, θ) dθ ,

(1.24) eq:canetoads
When the variable θ is unbounded, accelerated propagation has been proved independently by
Berestycki, Mouhot and Raoul [?], and by the first author, Henderson and Ryzhik [?]. There
is a formal analogy between (??), and our problem (??), or rather (??). Indeed, acceleration
also happens due to the influence of the microscopic variable θ, which plays a similar role as the

8



velocity variable in this paper. This is another example of a nonlinear acceleration phenomena
appearing in a structured model.

Both equations (??) and (??) describe spatial jumps of particles, with a focus on the dis-
tribution of long-range jumps. Equation (??) describes a velocity-jump process, with a focus
on the distribution of high velocities, that correspond somehow to long-range spatial jumps. It
was established in [?] that solutions to (??) behave in the long-time asymptotics as accelerat-
ing fronts due to the (rare) occurence of high velocities that send particles far from the bulk.
Furthermore, the location of the front is of the order of t3/2, in accordance with the scaling
limit (??). However, the exact location of the front was not determined accurately, but it was
estimated as (

r

r + 2

)3/2

≤ X(t)

t3/2
≤
√

2r , (1.25) eq:bounds expansion

in a weak sense (see [?, Theorem 1.11] for details).
From the knowledge of the quantitative scaling limit procedure in the kinetic dispersion

operator (Sections 2 to 5), we aim to apply the same procedure as in [?, ?], respectively for the
classical Fisher-KPP equation, and for the fractional Fisher-KPP equation. However, we face
several issues, two of them are still open.

Starting from (??), after appropriate rescaling, we prove that uε(t, x, v) = −ε log f ε(t, x, v)
converges towards a non-local Hamilton-Jacobi equation, very similar to (??), complemented
with the additional constraint,(

∀(t, x) ∈ R+ × Rn
)

min
w∈Rn

u(t, x, w) ≥ 0. (1.26) eq:nonlocal constraint

So far, the limit is rigorously proven for bounded data u0 only. However, this rules out compactly
supported initial data f0 = exp(−u0/ε). On the other hand, in order to estimate quantitatively
the location of the front, as the boundary of the support of the limit function minv u(t, x, v),
some condition on the extremal trajectories is needed: the so-called Freidlin condition [?, ?]. We
propose an extension of this condition in our context, taking into account the non local feature
of the constraint (??). We verify that this condition is verified, but only on a subset of R+×R2n.
This rules out an immediate application of our comparison principle.

We conjecture that the edge of the front is located around

X(t) =

(
((2/3)r)3/2

1 + r

)
t3/2 .

Naturally, this lies between the two bounds (??) obtained in [?].
Finally, we claim that our work can be extended in a straightforward way to include the

velocity distribution

M(v) = Cγ exp

(
−|v|

γ

γ

)
,

for γ ≥ 1 (this last assumption appearing for convexity reasons). The rate of expansion should
be given in the limit ε→ 0 by the following expression,

X(t) =
((γ/(1 + γ)r)1+1/γ

1 + r
t1+1/γ .

2 The comparison principle
sec:Comp

In this Section, we prove the comparison principle stated in Theorem ??. We perform a classical
doubling of variables argument. However, much attention has to be paid to the velocity variable.
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This is the main concern of this proof. In particular, the velocity variable is not doubled, which
is consistent with the fact that there is no gradient with respect to velocity in the limit system
(??). However, due to the unboundedness of the velocity space, it is mandatory to confine the
velocities in a way to get absolute extrema.

Proof of Theorem ??. Let us define, for (t, x) ∈ [0, T )×Rn, the minimum values with respect
to the velocity variable:

m(t, x) := min
w∈Rn

u(t, x, w), m(t, x) := min
w∈Rn

u(t, x, w).

Let α > 0, R > 0. Let δ > 0 to be suitably chosen below. Since the limit system requires two
test functions, we shall define

χ̂(t, x) = m(t, x)−m(t, x)− δ

2
|x|2 − α

T − t
, (2.1) eq:chi hat

χ̃(t, x, v) = u(t, x, v)− u(t, x, v)− δ

2
|x|2 − α

T − t
−
(
|v|2 −R2

)
+
. (2.2) eq:chi tilde

Notice that χ̃ penalizes high velocities. We denote B = max(‖b‖∞, ‖b‖∞). The assumption
(??) will give a confinement on the minima of u, u as follows.

lem:minconf Lemma 2.1. Let R2
0 = 2B+1. For all R > R0, for all (t, x) ∈ [0, T )×Rn, we have S (u) (t, x) ⊂

BR(0).

Proof of Lemma ??. Fix (t, x) ∈ [0, T ) × Rn. Suppose that there exists v ∈ S(u)(t, x) such
that |v| > R. Then at (t, x),

m(t, x) =
v2

2
+ b(t, x, v) ≥ v2

2
− ‖b‖∞ > ‖b‖∞ ≥ b(t, x, 0) = u(t, x, 0) ≥ m(t, x),

and this cannot hold. Therefore we have S (u) (t, x) ⊂ BR(0).

Let R > R0. We can now introduce the following maximum values,

ω = max
[0,T )×Rn

χ̂ , Ω = max
[0,T )×Rn×Rn

χ̃ . (2.3) eq:def delta

These two quantities are clearly finite from (??).

lem:Oomega Lemma 2.2. We have ω ≤ Ω.

Proof of Lemma ??. Let (t∗, x∗) ∈ [0, T )×Rn be a maximum point of χ̂. Let v∗ ∈ S (u) (t, x) ⊂
BR(0). The following sequence of inequalities hold true,

Ω ≥ χ̃(t∗, x∗, v∗)

= u(t∗, x∗, v∗)− u(t∗, x∗, v∗)− δ

2
|x∗|2 − α

T − t∗
−
(
|v∗|2 −R2

)
+

≥ m(t∗, x∗)− u(t∗, x∗, v∗)− δ

2
|x∗|2 − α

T − t∗

= m(t∗, x∗)−m(t∗, x∗)− δ

2
|x∗|2 − α

T − t∗
≥ ω.
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We now prove that for suitably chosen parameters α, δ, the supremum Ω of χ̃ is attained at
t = 0. For that, we distinguish between two cases: ω < Ω, and ω = Ω.

# Case 1: ω < Ω.

We denote by (t̃0, x̃0, v0) a maximum point of χ̃, such that χ̃(t̃0, x̃0, v0) = Ω. This point exists
thanks to the penalization in the three variables and the fact that χ̃ is upper semi-continuous.
We emphasize that this point depends on the parameters α,R and δ, but for legibility we omit
this dependency. We aim to prove that t̃0 = 0. We argue by contradiction, and assume that
t̃0 > 0.

We know show that v0 necessarily satisfies a priori a bound independent of δ.

lem:velconf Lemma 2.3. We have (
|v0|2 −R2

)
+
≤ 4B.

Proof of Lemma ??. The evaluation χ̃(t̃0, x̃0, v0) ≥ χ̃(0, 0, 0) gives

4B ≥ −u(0, 0, 0) + u(0, 0, 0) + u(t̃0, x̃0, v0)− u(t̃0, x̃0, v0)

≥ δ

2
|x̃0|2 +

α

T − t̃0
+
(
|v0|2 −R2

)
+
− α

T
≥
(
|v0|2 −R2

)
+
.

We define some auxiliary function with twice the number of variables, except for the velocity,
as follows

χ̃ε(t, x, s, y, v) = u(t, x, v)− u(s, y, v)− δ

2
|x|2

− α

T − t
− 1

2ε

(
|t− s|2 + |x− y|2

)
− 1

2

(
|s− t̃0|2 + |y − x̃0|2

)
−
(
|v|2 −R2

)
+
.

Let (t̃ε, x̃ε, s̃ε, ỹε) which realizes the maximum of χ̃ε(·, v0).

lem:limit t0 Lemma 2.4. The following limit holds true,

lim
ε→0

(t̃ε, x̃ε, s̃ε, ỹε) = (t̃0, x̃0, t̃0, x̃0) .

Proof of Lemma ??. The evaluation Ω = χ̃ε(t̃0, x̃0, t̃0, x̃0, v0) ≤ χ̃ε(t̃ε, x̃ε, s̃ε, ỹε, v0) yields

δ

2
|x̃ε|2 +

α

T − t̃ε
+

1

2ε

(
|t̃ε − s̃ε|2 + |x̃ε − ỹε|2

)
+

1

2

(
|s̃ε − t̃0|2 + |ỹε − x̃0|2

)
≤ 2B − Ω .

We deduce the following estimates,

δ|x̃ε| ≤ Cδ1/2 , |t̃ε − s̃ε|, |x̃ε − ỹε| ≤ Cε1/2 .

Therefore, the sequence (t̃ε, x̃ε, s̃ε, ỹε) converges as ε → 0, up to a subsequence. A closer look
shows that the limit is necessarily (t̃0, x̃0, x̃0, x̃0). We denote by (t̃′0, x̃

′
0, s̃
′
0, ỹ
′
0) an accumulation

point. We have t̃′0 = s̃′0 and x̃′0 = ỹ′0. On the other hand, passing to the limit ε → 0 in the
inequality χ̃ε(t̃0, x̃0, t̃0, x̃0, v0) ≤ χ̃ε(t̃ε, x̃ε, s̃ε, ỹε, v0), we deduce

χ̃(t̃0, x̃0, v0) +
1

2

(
|t̃′0 − t̂0|2 + |x̃′0 − x̂0|2

)
≤ u(t̃′0, x̃

′
0, v0)− u(t̃′0, x̃

′
0, v0)−

δ

2
|x̃′0|2 −

α

T − t̃′0
≤ χ̃(t̃0, x̃0, v0) .

Therefore, we have necessarily t̃′0 = t̃0, and x̃′0 = x̃0.
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lem:constraint Lemma 2.5. There exists ε0 > 0 such that for all ε < ε0,

u(s̃ε, ỹε, v0)−m(s̃ε, ỹε)−
|v0|2

2
< 0 .

Proof of Lemma ??. The evaluation χ̃ε(t̃0, x̃0, t̃0, x̃0, v0) ≤ χ̃ε(t̃ε, x̃ε, s̃ε, ỹε, v0) gives the fol-
lowing piece of information,

χ̃ε(t̃ε, x̃ε, s̃ε, ỹε, v0) ≥ χ̃(t̃0, x̃0, v0) = Ω . (2.4) eq:chi eps

We rewrite (??) as

u(s̃ε, ỹε, v0)−m(s̃ε, ỹε)−
|v0|2

2
≤ −Ω +

(
u(t̃ε, x̃ε, v0)−m(t̃ε, x̃ε)−

|v0|2

2

)
+

(
m(t̃ε, x̃ε)−m(s̃ε, ỹε)−

δ

2
|x̃ε|2 −

α

T − t̃ε

)
.

Since u is a subsolution and t̃ε > 0 is verified for ε small enough, we get that

u(s̃ε, ỹε, v0)−m(s̃ε, ỹε)−
|v0|2

2
≤ −Ω +

(
m(t̃ε, x̃ε)−m(s̃ε, ỹε)−

δ

2
|x̃ε|2 −

α

T − t̃ε

)
. (2.5) supersolution insaturee

As ε→ 0, by upper semi-continuity, the last contribution in the r.h.s. of (??) is such that

lim sup
ε→0

(
m(t̃ε, x̃ε)−m(s̃ε, ỹε)−

δ

2
|x̃ε|2 −

α

T − t̃ε

)
≤ m(t̃0, x̃0)−m(t̃0, x̃0)−

δ

2
|x̃0|2−

α

T − t̃0
≤ ω .

Therefore, there exists ε0 > 0 such that for all ε < ε0,

u(s̃ε, ỹε, v0)−m(s̃ε, ỹε)−
|v0|2

2
≤ −Ω +

ω + Ω

2
=
ω − Ω

2
< 0 .

since we have assumed in this case that Ω > ω.

We now use the test function

φ2(s, y, v) = u(t̃ε, x̃ε, v)− δ

2
|x̃ε|2 −

α

T − t̃ε
− 1

2ε

(
|t̃ε − s|2 + |x̃ε − y|2

)
− 1

2

(
|s− t̃0|2 + |y − x̃0|2

)
−
(
|v|2 −R2

)
+
,

associated to the supersolution u at the point (s̃ε, ỹε, v0). Notice that the condition s̃ε > 0 is
verified for ε small enough. By using the definition ?? of a super-solution, this yields

−1

ε
(s̃ε − t̃ε)− (s̃ε − t̃0) + v0 ·

(
−1

ε
(ỹε − x̃ε)− (ỹε − x̃0)

)
− 1 ≥ 0 . (2.6) eq:chain rule 1.1

On the other hand, using the test function

φ1(t, x, v) = u(s̃ε, ỹε, v) +
δ

2
|x|2 +

α

T − t

+
1

2ε

(
|t− s̃ε|2 + |x− ỹε|2

)
+

1

2

(
|s̃ε − t̂0|2 + |ỹε − x̂0|2

)
+
(
|v|2 −R2

)
+
,
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associated to the subsolution u at the point (t̃ε, x̃ε, v0), we obtain

α

(T − t̃ε)2
+

1

ε
(t̃ε − s̃ε) + v0 ·

(
δx̃ε +

1

ε
(x̃ε − ỹε)

)
− 1 ≤ 0 , (2.7) eq:chain rule 2.1

by using the definition ?? of a sub-solution. By substracting (??) to (??), we obtain

α

T 2
≤ α

(T − t̃ε)2
≤ −δv0 · x̃ε +

(
s̃ε − t̃0

)
− v0 · (ỹε − x̃0) .

Letting ε → 0, this gives α/T 2 ≤ −δv0 · x̃0. Recall that from the estimates in the proof of
Lemma ??, we have that δ|x̃0| ≤ Cδ1/2 holds true for some constant C > 0, and for ε > 0 small
enough. Recall also Lemma ??. We obtain

α/T 2 ≤ Cδ
1
2R,

where C depends only on B. Hence, the choice δ = (αT−2R−1C−1)2/2 establishes a contradic-
tion. We conclude that t̃0 = 0 in this case.

# Case 2: ω = Ω. We denote by (t̂0, x̂0) a maximum point of χ̂. We aim to prove that t̂0 = 0.
We argue again by contradiction and we suppose that t̂0 > 0. The evaluation χ̂(0, 0) ≤ χ̂(t̂0, x̂0)
yields immediately the following bound:

δ

2
|x̂0|2 +

α

T − t̂0
≤ 4B +

α

T
. (2.8) eq:bound t_0 x_0

# # Case 2.1: We first consider the case where S(u)(t̂0, x̂0) = {0}. We introduce
the following auxiliary function

χ̂ε(t, x, s, y) = m(t, x)−m(s, y)− δ

2
|x|2

− α

T − t
− 1

2ε

(
|t− s|2 + |x− y|2

)
− 1

2

(
|s− t̂0|2 + |y − x̂0|2

)
.

Let (t̂ε, x̂ε, ŝε, ŷε) which realizes the maximum value of χ̂ε. We can prove as in Lemma ??, that
the following limit holds true,

lim
ε→0

(t̂ε, x̂ε, ŝε, ŷε) = (t̂0, x̂0, t̂0, x̂0) .

We use the test function

ψ2(s, y) = m(t̂ε, x̂ε)−
δ

2
|x̂ε|2 −

α

T − t̂ε
− 1

2ε

(
|t̂ε − s|2 + |x̂ε − y|2

)
− 1

2

(
|s− t̂0|2 + |y − x̂0|2

)
,

associated to the supersolution m at the point (ŝε, ŷε). Notice that the condition ŝε > 0 is
verified for ε small enough.

In order to apply the second criterion in (??), it is required that the set S(u)(ŝε, ŷε) is
reduced to {0}, provided ε is sufficiently small.

lem:26 Lemma 2.6. There exists ε0 > 0 such that the set S(u)(ŝε, ŷε) is reduced to {0}, provided that
ε < ε0.
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Proof of Lemma ??. We argue by contradiction. Assume that there exists a sequence εn ↘ 0
such that S(u)(ŝεn , ŷεn) contains some nonzero v∗n. It is required in the definition ?? of a viscosity
super-solution that v = 0 is a locally uniformly isolated minimum over Rd. Hence, there exists
r > 0 such that r < |v∗n| < R for all n. Up to extraction of a subsequence, we can assume that
(v∗n) converges to some nonzero v∗. The following inequalities are satisfied,

u(t̂0, x̂0, v
∗) ≤ lim inf

n→+∞
u(ŝεn , ŷεn , v

∗
n) = lim inf

n→+∞
m(ŝεn , ŷεn). (2.9) eq:m bar liminf

There is some subtlety here, because the lower semi continuity ofm would only imply lim inf m(ŝεn , ŷεn) ≥
m(t̂0, x̂0) in full generality. However, the following argument establishes that such a lim inf is in
fact a true limit.

From the maximality of (t̂ε, x̂ε, ŝε, ŷε), we have

m(t̂ε, x̂ε)−m(ŝε, ŷε) = χ̂ε(t̂ε, x̂ε, ŝε, ŷε)

+
δ

2
|x̂ε|2 +

α

T − t̂ε
+

1

2ε

(
|t̂ε − ŝε|2 + |x̂ε − ŷε|2

)
+

1

2

(
|ŝε − t̂0|2 + |ŷε − x̂0|2

)
≥ χ̂ε(t̂0, x̂0, t̂0, x̂0) +

δ

2
|x̂ε|2 +

α

T − t̂ε

= m(t̂0, x̂0)−m(t̂0, x̂0) +
δ

2
|x̂ε|2 +

α

T − t̂ε
− δ

2
|x̂0|2 −

α

T − t̂0
.

Now using the upper semi-continuity of m and the lower semi-continuity of m, we deduce that

0 = m(t̂0, x̂0)−m(t̂0, x̂0)

≥ lim sup
ε→0

(
m(t̂ε, x̂ε)−m(t̂0, x̂0)

)
≥ lim sup

ε→0

(
m(ŝε, ŷε)−m(t̂0, x̂0) +

δ

2

(
|x̂ε|2 − |x̂0|2

)
+

α

T − t̂ε
− α

T − t̂0

)
≥ lim inf

ε→0

(
m(ŝε, ŷε)−m(t̂0, x̂0) +

δ

2

(
|x̂ε|2 − |x̂0|2

)
+

α

T − t̂ε
− α

T − t̂0

)
≥ m(t̂0, x̂0)−m(t̂0, x̂0) = 0.

As a consequence of the previous inequalities, all inequalities are equalities. Thus, the following
limit is well-defined,

lim
ε→0

(
m(ŝε, ŷε)−m(t̂0, x̂0)

)
= 0.

We conclude from (??) that
u(t̂0, x̂0, v

∗) ≤ m(t̂0, x̂0).

This yields the existence of v∗ 6= 0 such that S(u)(t̂0, x̂0) ⊃ {0, v∗}, which is a contradiction.

The second criterion in (??) writes as follows,

−1

ε
(ŝε − t̂ε)− (ŝε − t̂0) ≥ 0 . (2.10) eq:chain rule 1

On the other hand, using the test function

ψ1(t, x) = m(ŝε, ŷε) +
δ

2
|x|2 +

α

T − t
+

1

2ε

(
|t− ŝε|2 + |x− ŷε|2

)
+

1

2

(
|ŝε − t̂0|2 + |ŷε − x̂0|2

)
,

associated to the subsolution m at the point (t̂ε, x̂ε), we obtain

α

(T − t̂ε)2
+

1

ε
(t̂ε − ŝε) ≤ 0 . (2.11) eq:chain rule 2
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By substracting (??) to (??), we obtain

−(ŝε − t̂0) ≥
α

(T − t̂ε)2
≥ α

T 2
.

Passing to the limit ε→ 0, we get a contradiction.

# # Case 2.2: There exists some nonzero v0 ∈ S(u)(t̂0, x̂0).
The following lemma describes the equality cases in Lemma ??.

lem:Oomega eq Lemma 2.7. Assume ω = Ω, and let v0 ∈ S(u)(t̂0, x̂0) \ {0}. Then,

1. (t̂0, x̂0, v0) realizes the supremum of χ̃,

2. v0 is a minimum velocity also for u(t̂0, x̂0, ·).

Proof of Lemma ??. We repeat the proof of Lemma ?? with (t∗, x∗, v∗) = (t̂0, x̂0, v0). By
examining the case of equality, we realize that{

Ω = χ̃(t̂0, x̂0, v0),

u(t̂0, x̂0, v0) = m(t̂0, x̂0).

Similarly as in Case 1, we define some auxiliary function with twice the number of variables,
except for the velocity, as follows

χ̃ε(t, x, s, y, v) = u(t, x, v)− u(s, y, v)− δ

2
|x|2

− α

T − t
− 1

2ε

(
|t− s|2 + |x− y|2

)
− 1

2

(
|s− t̂0|2 + |y − x̂0|2

)
−
(
|v|2 −R2

)
+
.

Let (t̃ε, x̃ε, s̃ε, ỹε) which realizes the maximum value of χ̃ε(·, v0). We can prove as in Lemma ??,
that the following limit holds true,

lim
ε→0

(t̃ε, x̃ε, s̃ε, ỹε) = (t̂0, x̂0, t̂0, x̂0) .

One key observation is that the following strict inequality holds true

u(t̂0, x̂0, v0)− min
w∈Rn

u(t̂0, x̂0, w)− |v0|
2

2
< 0, (2.12)

by the very definition of v0 6= 0.
As (s̃ε, ỹε) → (t̂0, x̂0) as ε → 0, we expect that this inequality is also strict for ε small

enough. However, this is not compatible with the a priori lower semi-continuity of u as it may
exhibit some negative jump when passing to the limit ε→ 0. The following lemma resolves this
difficulty (see also the proof of Lemma ??).

lem:constraint2 Lemma 2.8. There exists ε0 > 0 such that for all ε < ε0,

u(s̃ε, ỹε, v0)−m(s̃ε, ỹε)−
|v0|2

2
< 0 .
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Proof of Lemma ??. From the maximality of (t̃ε, x̃ε, s̃ε, ỹε, v0), we have

u(t̃ε, x̃ε, v0)− u(s̃ε, ỹε, v0) = χ̃ε(t̃ε, x̃ε, s̃ε, ỹε, v0)

+
δ

2
|x̃ε|2 +

α

T − t̃ε
+

1

2ε

(
|t̃ε − s̃ε|2 + |x̃ε − ỹε|2

)
+

1

2

(
|s̃ε − t̂0|2 + |ỹε − x̂0|2

)
+
(
|v0|2 −R2

)
+

≥ χ̃ε(t̂0, x̂0, t̂0, x̂0, v0) +
δ

2
|x̃ε|2 +

α

T − t̃ε
+
(
|v0|2 −R2

)
+

= u(t̂0, x̂0, v0)− u(t̂0, x̂0, v0) +
δ

2
|x̃ε|2 +

α

T − t̃ε
− δ

2
|x̂0|2 −

α

T − t̂0
.

Using the upper semi-continuity of u and the lower semi-continuity of u, we deduce that

0 = u(t̂0, x̂0, v0)− u(t̂0, x̂0, v0)

≥ lim sup
ε→0

(
u(t̃ε, x̃ε, v0)− u(t̂0, x̂0, v0)

)
≥ lim sup

ε→0

(
u(s̃ε, ỹε, v0)− u(t̂0, x̂0, v0) +

δ

2

(
|x̃ε|2 − |x̂0|2

)
+

α

T − t̃ε
− α

T − t̂0

)
≥ lim inf

ε→0

(
u(s̃ε, ỹε, v0)− u(t̂0, x̂0, v0) +

δ

2

(
|x̃ε|2 − |x̂0|2

)
+

α

T − t̃ε
− α

T − t̂0

)
= u(t̂0, x̂0, v0)− u(t̂0, x̂0, v0) = 0.

As a consequence of the previous inequalities, all inequalities are equalities. Thus, the following
limit is well-defined,

lim
ε→0

(
u(s̃ε, ỹε, v0)− u(t̂0, x̂0, v0)

)
= 0. (2.13) eq:continuity ubar

Now define d = −u(t̂0, x̂0, v0) +m(t̂0, x̂0) +
|v0|2

2
> 0 and take ε sufficiently small such that

both inequalities hold true,

u(s̃ε, ỹε, v0) ≤ u(t̂0, x̂0, v0) +
d

4
, m(t̂0, x̂0) ≤ m(s̃ε, ỹε) +

d

4

The former is a consequence of (??), while the latter is deduced from lower semi-continuity of
m. Then, one has

u(s̃ε, ỹε, v0) ≤ u(t̂0, x̂0, v0) +
d

4
=
d

4
− d+m(t̂0, x̂0) +

|v0|2

2
≤ m(s̃ε, ỹε) +

|v0|2

2
− d

2

and the lemma follows.

Therefore, we can use the test function

φ2(s, y, v) = u(t̃ε, x̃ε, v)− δ

2
|x̃ε|2 −

α

T − t̃ε
− 1

2ε

(
|t̃ε − s|2 + |x̃ε − y|2

)
− 1

2

(
|s− t̂0|2 + |y − x̂0|2

)
−
(
|v0|2 −R2

)
+
,

associated to the supersolution u at the point (s̃ε, ỹε, v0). Notice that the condition s̃ε > 0 is
verified for ε small enough. This yields

−1

ε
(s̃ε − t̃ε)− (s̃ε − t̂0) + v0 ·

(
−1

ε
(ỹε − x̃ε)− (ỹε − x̂0)

)
− 1 ≥ 0 . (2.14) eq:chain rule 1
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On the other hand, using the test function

φ1(t, x, v) = u(s̃ε, ỹε, v) +
δ

2
|x|2 +

α

T − t

+
1

2ε

(
|t− s̃ε|2 + |x− ỹε|2

)
+

1

2

(
|s̃ε − t̂0|2 + |ỹε − x̂0|2

)
+
(
|v0|2 −R2

)
+
,

associated to the subsolution u at the point (t̃ε, x̃ε, v0), we obtain

α

(T − t̃ε)2
+

1

ε
(t̃ε − s̃ε) + v0 ·

(
δx̃ε +

1

ε
(x̃ε − ỹε)

)
− 1 ≤ 0 . (2.15) eq:chain rule 2

By substracting (??) to (??), we obtain

−(s̃ε − t̂0)− v0 · (ỹε − x̂0)− δv0 · x̃ε ≥
α

(T − t̃ε)2
≥ α

T 2
.

Passing to the limit ε→ 0, we get

α

T 2
≤ −δv0 · x̂0 ≤ Cδ

1
2R0 .

Similarly as in Case 1, the choice δ = (αT−2R−10 C−1)2/2 yields a contradiction. We conclude
that t̃0 = 0 in this case also.

We are in position to conclude. By using that u(0, ·, ·) ≤ u0 ≤ u(0, ·, ·), we deduce that
Ω ≤ 0, that is

(∀(t, x, v) ∈ [0, T )×Rn×Rn) u(t, x, v)−u(t, x, v) ≤ 1

4
(αT−2R−1C−1)2|x|2+ α

T − t
+
(
|v|2 −R2

)
+
.

We obtain the comparison by taking limits α→ 0, and R→ +∞.

3 Convergence of uε when ε→ 0.
sec:Conv

In this Section, we shall prove that uε converges locally uniformly towards the unique viscosity
solution of the system (??). We first establish Lipschitz bounds that allow to extract a locally
uniformly converging subsequence. Then, we prove that this limit is a solution of (??).

Proposition 3.1. (Uniform estimates). Let uε ∈ C1b
(
R+ × R2n

)
be a solution of equationestimates

(??) and define bε as bε := uε − |v|2/2. If bε0 = b0 satisfies condition (??), then bε is uniformly
locally Lipschitz. Precisely the following a priori bounds hold for all t ∈ R+:

(i) ‖bε(t, ·)‖∞ ≤ ‖b0‖∞,

(ii) ‖∇xbε(t, ·)‖∞ ≤ ‖∇xb0‖∞,

(iii) ‖∂tbε(t, ·)‖L∞(B(0,R)×B(0,R′)) ≤ C(R,R′),

(iv) ‖∇vbε(t, ·)‖∞ ≤ ‖∇vb0‖∞ + t‖∇xb0‖∞.
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Proof of Proposition ??. The function bε satisfies

∂tb
ε + v · ∇xbε = 1−

∫
Rn
Mε(v

′) exp

(
bε(v)− bε(v′)

ε

)
dv′. (3.1) eq:b

Let us notice that we obtain a unique solution bε ∈ C1
(
R+ × R2n

)
, and thus a unique uε, from

a fixed point method on the Duhamel formulation of (??):

bε(t, x, v) = b0(x− tv, v) +

∫ t

0

(
1−

∫
Rn
Mε(v

′)e
bε(t−s,x−sv,v)−bε(t−s,x−sv,v′)

ε dv′
)
ds. (3.2) eq:duhamel

Proof of the bound (i). We define, for C, δ > 0 to be chosen later:

ψεδ(t, x, v) = bε(t, x, v)− Cδt− δ4|x|2 − δ|v|.

For any δ > 0, ψεδ attains a maximum at point (tδ, xδ, vδ). Suppose that tδ > 0. Then, we have

∂tb
ε(tδ, xδ, vδ) ≥ Cδ, ∇xbε(tδ, xδ, vδ) = 2δ4xδ.

As a consequence, we have at the maximum point (tδ, xδ, vδ):

Cδ + 2vδδ
4xδ ≤ 1−

∫
Rn
Mε(v

′)e
δ|vδ |−δ|v

′|
ε e

ψεδ(tδ,xδ,vδ)−ψ
ε
δ(tδ,xδ,v

′)
ε dv′,

≤ 1−
∫
Rn
Mε(v

′)e
δ|vδ |−δ|v

′|
ε dv′,

≤ 1−
∫
Rn
Mε(v

′)e
−δ|v′|
ε dv′,

(3.3) ppmax

Moreover, the maximal character of (tδ, xδ, vδ) also implies

sup bε − δ4|xδ|2 − δ|vδ| ≥ bε(tδ, xδ, vδ)− Cδtδ − δ4|xδ|2 − δ|vδ| ≥ bε(0, 0, 0) ≥ inf bε .

It yields that |xδ| ≤ (sup bε)
1
2

δ2
and |vδ| ≤ sup bε

δ . Introducing these last inequalities in (??) yields

Cδ − 2δ(sup bε)
3
2 ≤ 1−

∫
Rn
Mε(v

′)e
−δ|v′|
ε dv′,

and thus
C − 2(sup bε)

3
2 ≤ 1

δ

(
1−

∫
Rn
Mε(v

′)e
−δ|v′|
ε dv′

)
.

One can choose C such that, for sufficiently small δ, this last inequality is impossible since the
r.h.s is O(1) when δ → 0:

1

δ

(
1−

∫
Rn
Mε(v

′)e
−δ|v′|
ε dv′

)
−→
δ→0

1

ε

∫
Rn
|v′|Mε(v

′)dv′.

As a consequence tδ = 0, and we have,

bε(t, x, v) ≤ b0(xδ, vδ) + Cδt+ δ4|x|2 + δ|v| ≤ sup
R2n

b0 + Cδt+ δ4|x|2 + δ|v|.

Passing to the limit δ → 0, we obtain bε(t, x, v) ≤ supR2n b0. One can carry out the same
argument with −bε to get the lower bound.
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Proof of the bound (ii). To find Lipschitz bounds, we use the same ideas on the difference
bεh(t, x, v) = bε(t, x+ h, v)− bε(t, x, v). The equation for bεh reads as follows,

∂tb
ε
h + v · ∇xbεh =

∫
Rn
Mε(v

′) exp

(
bε(v)− bε(v′)

ε

)(
1− exp

(
bεh(v)− bεh(v′)

ε

))
dv′ . (3.4) WKB2

Using the same argument as above with the correction function −Cδt− δ4|x|2− δ|v|, we end up
with

C − 2(sup bεh)
3
2 ≤ 1

δ

∫
Rn
Mε(v

′)e
bε(v)−bε(v′)

ε

(
1− e

−δ|v′|
ε

)
dv′.

Using the L∞ bound on bε, we find

C − 2(sup bεh)
3
2 ≤ 1

δ

∫
Rn
Mε(v

′)e
2‖bε‖∞

ε

(
1− e

−δ|v′|
ε

)
dv′.

Taking again C suitably, we get that the previous inequality is impossible for small δ. As a
consequence,

∀(t, x, v) ∈ [0, T ]× R2n, bεh(t, x, v) ≤ sup
(x,v)∈R2n

(b0(x+ h, v)− b0(x, v))

The same argument will apply to −bεh. Indeed, one can write an equation on −bεh on the following
form,

∂t(−bεh) + v · ∇x(−bεh) = −
∫
Rn
Mε(v

′)e
bε(v)−bε(v′)

ε

(
1− exp

(
−

(−bεh)(v)− (−bεh)(v′)

ε

))
dv′,

(3.5)
such the maximum principle works since the r.h.s has the right sign when −bεh attains a maxi-
mum. Finally,

∀(t, x, v) ∈ [0, T ]× R2n, |bεh(t, x, v)| ≤ sup
(x,v)∈R2n

|b0(x+ h, v)− b0(x, v)| ≤ ‖∇xb0‖∞ |h|.

from which the estimate follows.

Proof of the bound (iii). Let R > 16‖b0‖∞ and BR := B(0, R). To obtain the local bound
on the time derivative on R∗+ × Rn × BR, let us differentiate with respect to time,

(∂t + v · ∇x) (∂tb
ε) = −1

ε

∫
Rn
Mε(v

′)
(
∂tb

ε(v)− ∂tbε(v′)
)
e
bε(v)−bε(v′)

ε dv′.

We shall multiply by sgn (∂tb
ε) and split the r.h.s into two parts :

(∂t + v · ∇x) (|∂tbε|) = −1

ε

∫
BR
Mε(v

′)
(
|∂tbε(v)| − sgn (∂tb

ε(v)) ∂tb
ε(v′)

)
e
bε(v)−bε(v′)

ε dv′

− 1

ε

∫
Rn\BR

Mε(v
′)
(
|∂tbε(v)| − sgn (∂tb

ε(v)) ∂tb
ε(v′)

)
e
bε(v)−bε(v′)

ε dv′,

and estimate both parts separately. First, re-using the equation on bε and the estimate on the
space derivative, we get∣∣∣∣∣1ε

∫
Rn\BR

Mε(v
′)sgn (∂tb

ε(v)) ∂tb
ε(v′)e

bε(v)−bε(v′)
ε dv′

∣∣∣∣∣
≤ 1

ε

∫
Rn\BR

Mε(v
′)
[
|v′|‖∇xbε‖∞ + 1 + e

2‖bε‖∞
ε

]
e

2‖bε‖∞
ε dv′ := C(ε),
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where C(ε) is uniformly bounded (and vanishes when ε → 0) since the ball BR contains the
centered ball of radius 16‖b0‖∞.

Assume now that |∂tbε|−C(ε)t has a positive local maximum at (t0, x0, v0) ∈ R∗+×Rn×BR.
Then at this point

C(ε) < −1

ε

∫
BR
Mε(v

′)
(
∂tb

ε(v)− ∂tbε(v′)
)
e
bε(v)−bε(v′)

ε dv′

+

∣∣∣∣∣1ε
∫
Rn\BR

Mε(v
′)sgn (∂tb

ε(v)) ∂tb
ε(v′)e

bε(v)−bε(v′)
ε dv′

∣∣∣∣∣ ≤ C(ε).

We thus deduce that t0 = 0, and thus

∀(t, x, v) ∈ [0, T ]× Rn × BR, |∂tbε| ≤ C(ε)t+ sup
(x,v)∈Rn×BR

|∂tbε|(0, x, v) .

We now recall (??) to compute ∂tbε(0, x, v) = ∂tu
ε(0, x, v). Indeed, we have

∂tu
ε(0, x, v) + v · ∇xuε(0, x, v) = 1− 1√

2πε

∫
Rn

exp

(
u0(x, v)− u0(x, v′)− |v|2/2

ε

)
dv′ .

The Laplace method gives that

1√
2πε

∫
Rn

exp

(
u0(x, v)− u0(x, v′)− |v|2/2

ε

)
dv′

is uniformly bounded in ε, locally in (x, v) ∈ Rn×BR as soon as any minimum point in velocity
v of u0 is non degenerate (in the sense that −det (Hessv(u0(x, v))) 6= 0) and that the third order
derivatives in velocities are locally uniformly bounded, which is exactly hypothesis [B]. As a
consequence, we may bound ∂tuε(0, x, v) by a uniform constant in ε, locally uniformly in (x, v).

Proof of the bound (iv). To obtain regularity in the velocity variable, we differentiate (??)
with respect to v,

(∂t + v · ∇x) (∇vbε) = −gε(bε)∇vbε −∇xbε,

where gε(bε) = 1
ε

∫
RnMε(v

′)e
bε−bε′
ε dv′ ≥ 0. Multiplying by ∇vbε

|∇vbε| , we obtain

(∂t + v · ∇x) (|∇vbε|) = −gε(bε)|∇vbε| −
(
∇xbε ·

∇vbε

|∇vbε|

)
≤ ‖∇xb0‖∞ .

from which we deduce

∀t > 0, ‖∇vbε(t, ·)‖∞ ≤ ‖∇vb0‖∞ + t‖∇xb0‖∞.

Proof of Theorem ??. Thanks to Proposition ??, the sequence uε converges locally uniformly
towards u0. We first start with a lemma that shows how the supplementary equation giving the
evolution of the minimum in velocity in the system appears in the limit ε→ 0.

lem:convmin Lemma 3.2. Let I ⊂ Rn. One has, locally uniformly in (t, x) ∈ R+ × Rn,

lim
ε→0

(
−ε log

(∫
I
e−

uε(t,x,v′)
ε dv′

))
= min

w∈I
u0(t, x, w).
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Proof of Lemma ??. We shall find the limit of

−ε log

(∫
I
e−

uε(v′)
ε dv′

)
= min

w∈Rn
uε − ε log

(∫
I
e

minw∈Rn u
ε−uε(v′)

ε dv′
)
. (3.6) eq:estimateconvmin

Thanks to the local uniform convergence of uε, we know that minw∈Rn u
ε converges locally

uniformly to minw∈Rn u. We shall prove that the remaining part of the r.h.s converges to 0. For
this purpose, we will prove the following estimate:

∀δ > 0, ∃δ′ > 0, ∀K > 0, −ε log
(
ωnK

n +
√

2πε
)
≤ −ε log

(∫
I
e

minw∈Rn u
ε−uε(v′)

ε dv′
)
≤ δ−ε log

(
δ′
)
,

for some δ, δ′,K suitably chosen. We start with the l.h.s.. For δ > 0 (possibly depending on ε
at the end), we write∫

I
e

minw∈Rn u
ε−uε(v′)

ε dv′ =

∫
Iδ

e
minw∈Rn u

ε−uε(v′)
ε dv′ +

∫
I\Iδ

e
minw∈Rn u

ε−uε(v′)
ε dv′ (3.7) eq:intI

where Iδ := {v ∈ I | minw∈Rn u
ε − uε(v) > −δ}. Thanks to the Lipschitz bound on the deriva-

tives in v, Iδ has non empty interior. Indeed, for all (t, x) ∈ R+ × Rn, for all vε ∈ S(uε)(t, x),
one has∣∣∣∣min
w∈Rn

uε − uε(v)

∣∣∣∣ ≤ ∣∣∣∣bε(vε)− bε(v) +
|vε|2

2
− |v|

2

2

∣∣∣∣ ≤ (‖∇vbε‖∞ +
1

2
|v − vε|+ |vε|

)
|vε − v|.

Next, as vε ∈ S(uε)(t, x), one has ∇vuε(t, x, vε) = 0, and thus ∇vbε(t, x, vε) = −vε. Hence,
|vε| ≤ ‖∇vbε‖∞, we deduce

∀(t, x, v) ∈ R+×R2n,∀vε ∈ S(uε)(t, x),

∣∣∣∣min
w∈Rn

uε − uε(v)

∣∣∣∣ ≤ (‖∇vbε‖∞ +
1

2
|v − vε|

)
|vε−v|.

Take δ′ > 0 such that
(
‖∇vbε‖∞ + 1

2δ
′) δ′ < δ. The previous inequality gives that

∀(t, x) ∈ R+ × Rn, ∀vε ∈ S(uε)(t, x), B
(
vε, δ′

)
⊂ Iδ.

Coming back to (??), we get∫
I
e

minw∈Rn u
ε−uε(v′)

ε dv′ >

∫
Iδ

e−
δ
ε dv′ > |Iδ|e−

δ
ε > δ′e−

δ
ε , (3.8) eq:boundI1

which gives the first bound that we want to prove. Let us come to the second part, namely the
r.h.s. of (??). For all v ∈ V , one has

min
w∈Rn

uε − uε(v) =

(
bε(vε)− bε(v) +

|vε|2

2

)
− |v|

2

2
≤ 2‖bε‖∞ +

1

2
‖∇vbε‖2∞ −

|v|2

2
.

We write K2

2 := 1
2‖∇vb

ε‖2∞ + 2‖bε‖∞ for legibility. We deduce

min
w∈Rn

uε − uε(v) ≤ min

(
0,
K2

2
− |v|

2

2

)
. (3.9) eq:K/2

As a consequence,∫
I
e

minw∈Rn u
ε−uε(v)

ε dv =

∫
|v|≤K

1 dv +

∫
|v|≥K

e
K2−|v|2

2ε dv

< ωnK
n +
√

2πεe
K2

2ε

(
1−

√
1− e−

K2

2ε

)
< ωnK

n +
√

2πε,
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(where ωn denotes the volume of the unit ball in Rn). Gathering the inequalities, we find

−ε log
(
ωnK

n +
√

2πε
)
≤ −ε log

(∫
I
e

minw∈Rn u
ε−uε(v′)

ε dv′
)
≤ −ε log

(
δ′e−

δ
ε

)
= δ − ε log

(
δ′
)
,

which gives the conclusion.

We shall start by the following lemma:

lem:convmeas Lemma 3.3. For ε > 0, (t0, x0) ∈ R+ × Rn, consider the probability measure on Rn:

dµεt0,x0(v) :=
e−

uε(v)
ε dv′∫

Rn
e−

uε(v′)
ε dv′

.

Assume that S(u0)(t0, x0) = {0}. Then for any δ > 0, one has

lim
ε→0

∫
Rn\B(0,δ)

|v| dµεt0,x0(v) = 0.

Proof of Lemma ??. Let us rewrite

dµεt,x(v) :=
e

minw∈Rn u
ε−uε(v′)

ε dv′∫
Rn
e

minw∈Rn u
ε−uε(v′)

ε dv′

One has:∫
Rn\B(0,δ)

|v′| e
minw∈Rn u

ε−uε(v′)
ε dv′ =

∫
Rn\B(0,K)

|v′| e
minw∈Rn u

ε−uε(v′)
ε dv′

+

∫
B(0,K)\B(0,δ)

|v′| e
minw∈Rn u

ε−uε(v′)
ε dv′,

where K comes from (??). We estimate again∫
Rn\B(0,K)

|v′| e
minw∈Rn u

ε−uε(v′)
ε dv′ ≤

∫
Rn\B(0,K)

|v′| e
K2−|v|2

2ε dv′ = O
(
ε1+

n
2

)
.

The estimation of the remaining part will use the condition on the minimum points. Since u0

only achieves its minimum at v = 0, since uε converges locally uniformly towards u0 and the
minimas of uε are uniformly localized, we have necessarily some γ > 0 such that

∀v ∈ B(0,K)\B(0, δ), min
w∈Rn

uε − uε ≤ −γ.

Thus, ∫
B(0,K)\B(0,δ)

|v′| e
minw∈Rn u

ε−uε(v′)
ε dv′ ≤ O

(
e
−γ
ε

)
.

Gathering everything, the result follows.

To prove the Theorem ??, we need to go through the two following steps.

# Step 1 : Viscosity sub-solution.

Let T > 0. One wants to prove that u0 is a viscosity sub-solution of (??) on [0, T ), in the
sense of Definition ??. Let (φ, ψ) ∈ C2

(
[0, T )× R2n

)
× C2 ([0, T )× Rn), such that u0 − φ and(

minv∈Rn u
0
)
−ψ have a local maximum in the (t, x) variables at the point (t0, x0, v0) ∈ R+×R2n,

with t0 > 0. We shall prove that the following conditions are fulfiled at (t0, x0, v0):
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(i) (i) ∂tφ+ v · ∇xφ− 1 ≤ 0,

(ii) (ii) u0 −minv∈Rn u
0 − |v|

2

2 ≤ 0,

(iii) (iii) ∂tψ ≤ 0.

Inequality (??) comes from the fact that one can pass to the limit in the viscosity sense in the
following inequality

∀ε > 0, ∀(t, x, v) ∈ R∗+ × R2n, ∂tu
ε + v · ∇xuε − 1 ≤ 0 .

To prove the constraint (??), assume by contradiction that(
u0 − min

w∈Rn
u0 − |v|

2

2

)
(t0, x0, v0) = δ > 0 .

Thanks to the local uniform convergence of uε, for ε sufficiently small,(
uε − min

w∈Rn
uε − |v|

2

2

)
(t0, x0, v0) >

δ

2
.

Since ∇vuε is locally bounded uniformly in ε, there exists a uniform interval I centered at a
minimal point such that

∀v′ ∈ I, uε(t0, x0, v0)− uε(t0, x0, v′)−
|v0|2

2
>
δ

4
.

Forgetting the dependence in (t, x) in order to shorten the notations, we deduce that at the
point (t0, x0, v0),∫

Rn

1√
2πε

exp

(
uε(v0)− uε(v′)− |v0|

2

2

ε

)
dv′ ≥ |I|√

2πε
exp

(
δ

4ε

)
−→
ε→0

+∞.

which contradicts the estimates of Proposition ?? since (∂tu
ε + v0 · ∇xuε)(t0, x0, v0) is bounded

with respect to ε.
It remains to prove inequality (??). This is the main originality in this procedure. Let δ > 0

be any positive number. Let us fix (t0, x0) ∈ R∗+ × Rn.
For all (t, x) ∈ R+ × Rn, let us integrate (??) over B(0, δ) to find:

∂t

(
−ε
∫
B(0,δ)

e−
uε(v′)
ε dv′

)
+

∫
B(0,δ)

(v · ∇xuε) e−
uε(v′)
ε dv′

=

∫
B(0,δ)

e−
uε(v′)
ε dv′ −

∫
B(0,δ)

Mε(v
′)dv′

∫
Rn
e−

uε(v′)
ε dv′

One can write, using
∫
Rn e

−u
ε(v′)
ε dv′ ≥

∫
B(0,δ) e

−u
ε(v′)
ε dv′:

∂t

(
−ε
∫
B(0,δ)

e−
uε(v′)
ε dv′

)
+

∫
B(0,δ)

(v · ∇xuε) e−
uε(v′)
ε dv′ ≤

(
1−

∫
B(0,δ)

Mε(v
′)dv′

)∫
B(0,δ)

e−
uε(v′)
ε dv′.

As a consequence, introducing the probability measure dµεt,x, we obtain:

∂t

(
−ε log

(∫
B(0,δ)

e−
uε(v)
ε dv

))
+

∫
B(0,δ)

(v · ∇xuε) dµεt,x(v) ≤
∫
Rn\B(0,δ)

Mε(v)dv. (3.10)
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We conclude by investigating the following integral∣∣∣∣∣
∫
B(0,δ)

(v · ∇xuε) dµεt,x(v)

∣∣∣∣∣ ≤
∫
B(0,δ)

|v|‖∇xuε‖∞dµεt,x(v) ≤ δ‖∇xuε‖∞
∫
B(0,δ)

dµεt,x(v) ≤ δ‖∇xuε‖∞

(3.11)
We can now pass to the limit in the viscosity sense with Lemma ??, to conclude that there exists
C > 0 such that for all δ > 0,

∂t

(
min

w∈B(0,δ)
u0(·, w)

)
≤ Cδ

We now recall the crucial fact that for any (t, x) ∈ R+ × Rn, any sub-solution achieves its
minimum in velocity at v = 0, since u − minw∈Rn u − |v|2/2 ≤ 0. As a consequence, for any
δ > 0, for any (t, x) ∈ R+ × Rn,

min
w∈B(0,δ)

u0(t, x, w) = min
w∈Rn

u0(t, x, w).

Finally, we can pass to the limit δ → 0, and get

∂t

(
min
w∈Rn

u0(t, x, w)

)
≤ 0, (3.12) eq:m decreasing

in the viscosity sense.

# Step 2 : Viscosity super-solution.

We now need to prove that u0 is a super solution of (??) in the viscosity sense∂tφ+ v · ∇xφ− 1 ≥ 0, if u0 − min
w∈Rn

u0 − |v|2/2 < 0,

∂tψ(t0, x0) ≥ 0 , if S(u0)(t0, x0) = {0} ,
(3.13) eq:suptop

To prove the first line of (??), let us take (t0, x0, v0) ∈ R∗+×R2n such that−δ := u0(t0, x0, v0)−
minw∈Rn u

0(t0, x0)− |v0|2/2 < 0. Thus, thanks to the locally uniform convergence and the con-
finement of the minima of uε, for ε sufficiently small, one has uε(t0, x0, v0)−minw∈Rn u

ε(t0, x0)−
|v0|2/2 < −δ/2. Thus, recalling minw∈Rn u

ε − uε(v) ≤ min
(
0,K2/2− |v|2/2

)
, we have

(2πε)−
n
2
∫
Rn e

uε(t0,x0,v0)−u
ε(t0,x0,v

′)−|v0|
2/2

ε dv′ < (2πε)−
n
2
∫
Rn e

−uε(t0,x0,v
′)−δ/2+minw∈Rn u

ε(t0,x0,w)

ε dv′

< e−
δ
2ε (2πε)−

n
2
∫
Rn e

minw∈Rn u
ε(t0,x0,w)−uε(t0,x0,v

′)
ε dv′ → 0.

Next, assume that S(u)(t, x) = {0}, that is, 0 is the only minimum of v 7→ u(t, x, v). For all
(t, x) ∈ R+ × Rn, let us integrate (??) over Rn to find:

∂t

(
−ε log

(∫
Rn
e−

uε(v′)
ε dv′

))
= −

∫
Rn

(
v′ · ∇xuε

)
dµεt,x(v′), (3.14) eq:supersol1

For any fixed δ > 0, we now split the last r.h.s into two parts:∫
Rn

(
v′ · ∇xuε

)
dµεt,x(v′) =

∫
B(0,δ)

(
v′ · ∇xuε

)
dµεt,x(v′) +

∫
Rn\B(0,δ)

(
v′ · ∇xuε

)
dµεt,x(v′).

We estimate the first part exactly as in the sub-solution case:∣∣∣∣∣
∫
B(0,δ)

(
v′ · ∇xuε

)
dµεt,x(v′)

∣∣∣∣∣ ≤ δ‖∇xuε‖∞. (3.15)
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To estimate the second part, we use Lemma ??:∫
Rn\B(0,δ)

(
v′ · ∇xuε

)
dµεt0,x0(v′) ≤ ‖∇xuε‖∞

∫
Rn\B(0,δ)

|v′| dµεt0,x0(v′) = oε→0(1). (3.16)

As a consequence, passing to the limit in ε and then in δ, and recalling again Lemma ??, we get

∂t

(
min
w∈Rn

u0(t0, x0, w)

)
= 0,

in the viscosity sense.
It remains to check that v = 0 is an isolated minimum for t > 0. This is the purpose of the

final Lemma,

lem:isolated Lemma 3.4. For all t > 0 and x ∈ Rd, v = 0 is an isolated minimum point of the function
u(t, x, ·).

Proof of Lemma ??. We introduce the minimal value function m(t, x) = minw u(t, x, w). We
shall prove that for all (t, x) such that t > 0, there exists a neighbourhood V(t, x) of 0, such that

(∀v ∈ V(t, x)) u(t, x, v) = m(t, x) +
|v|2

2
. (3.17) eq:saturated neighbourhood

This would immediately imply that 0 is an isolated minimum point.
Passing to the limit ε→ 0 in the Duhamel formula,

f ε(t, x, v) = f ε0 (x− tv, v)e−t/ε +Mε(v)

∫ t

0
ρε(t− s, x− sv)e−s/ε ds ,

we deduce that the functions u, and m satisfy the following identity,

u(t, x, v) = min

(
u0(x− tv, v) + t, min

0≤s≤t
(m(t− s, x− sv) + s) +

|v|2

2

)
. (3.18) eq:duhamel u

The claim (??) is equivalent to proving the two following estimates:

(∀v ∈ V(t, x))


u0(x− tv, v) + t ≥ m(t, x) +

|v|2

2
(?) ,

(∀s ∈ [0, t]) m(t− s, x− sv) + s+
|v|2

2
≥ m(t, x) +

|v|2

2
(??)

(3.19)

The proof of (??) goes as follows. First recall that m is time decreasing (??). Thus, it is
sufficient to establish that m(t, x− sv) + s ≥ m(t, x) for all s and small v. This holds for v = 0.
On the other hand, the uniform spatial Lipschitz estimate in Proposition ??(ii) guarantees
that the minimal value m is Lipschitz continuous with respect to x, with the same bound, i.e.
Lip xm ≤ ‖∇xu0‖∞. We deduce that

m(t, x− sv)−m(t, x) + s ≥ (1− ‖∇xu0‖∞|v|) s .

As a conclusion, (??) holds true for |v| ≤ (‖∇xu0‖∞)−1.
The proof of (?) is similar. Firstly, we have

u0(x− tv, v) + t−m(t, x)− |v|
2

2
≥ m(0, x− tv) + t−m(0, x)− |v|

2

2

≥ t− ‖∇xu0‖∞|v|t−
|v|2

2
.
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The latter is nonnegative, provided that

|v| ≤ ‖∇xu0‖∞t

(
−1 +

(
1 +

2

‖∇xu0‖2∞t

)1/2
)
≤ 1

‖∇xu0‖∞
.

The latter condition suitably defines the neighbourhood V(t, x).

4 Derivation of the fundamental solution of the limit system
sec:fund

Our aim in this Section is to compute some particular solutions of the Cauchy problem (??). For
this purpose we first present a recursive numerical scheme which is based on the representation
of the solution as an iterated semi-group. We propose a time-discretization of this formulation
which enables to compute the solution. We justify a posteriori that the solution that we exhibit
via the discretization procedure is the solution of the Cauchy problem.

4.1 Interlude: The spatially homogeneous case as a toy problem
sec:homog

Let us focus for a little while on the spatially homogeneous problem:
∂tf = M(v)ρ(t)− f ,

ρ(t) =

∫
Rn
f(t, v) dv.

Its solution is given by

f(t, v) =

∫
w∈Rn

K(t, v, w)f0(w) dw ,

where K(t, v, w) is the fundamental solution of the system, starting from the measure f0(v) =
δv=w. Since in this case ρ ≡ 1, one can compute this fundamental solution straightforwardly:

K(t, v, w) = e−tδv=w + (1− e−t)M(v) .

After performing the Hopf-Cole transform ψε = −ε logKε in the scaling t̃ = ε−1t, ṽ = ε−1/2v,
we obtain with the fundamental solution in the HJ framework,

ψ0(t, v, w) = min

(
t+ 0v=w;

|v|2

2

)
,

where 0v=w(v) := +∞ if v 6= w, 0 if v = w. We thus have the following representation for the
associated Cauchy problem:

φ(t, v) = min
w∈Rn

(
ψ0(t, v, w) + φ0(w)

)
= min

(
t+ φ0(v);

|v|2

2
+ min

w
φ0(w)

)
4.2 The discrete time numerical scheme.

We now come back to equation (??). The Duhamel formula for a positive ε > 0 writes

f ε(t, x, v) = f ε0 (x− tv, v)e−t/ε +Mε(v)

∫ t

0
ρε(t− s, x− sv)e−s/ε ds . (4.1) eq:Duhamel formula
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We deduce that the functions φε = −ε log f ε, µε = −ε log ρε satisfy formally in the limit ε→ 0,
φ(t, x, v) = min

(
φ0(x− tv, v) + t,

|v|2

2
+ min

0≤s≤t
(µ(t− s, x− sv) + s)

)
µ(t, x) = min

v∈Rn
φ(t, x, v) .

(4.2) eq:phi recursive

The minimal value function µ satisfies a closed equation:

µ(t, x) = min

(
min
v∈Rn

(
φ0(x− tv, v) + t

)
, min
0≤s≤t

(
min
v∈Rn

(
|v|2

2
+ µ(t− s, x− sv)

)
+ s

))
(4.3) eq:mu

The time discretization of this implicit semi-group formulation is not trivial. We propose to use
an explicit method for the last recursive contribution in (??). We approximate the function µ
by µn at time tn = n∆t, where ∆t > 0 is a given time step. Our recursive formula for (µn)n≥0
writes

µn+1(x) = min

(
min
v∈Rn

(
φ0(x− tn+1v, v)

)
+ tn+1, min

0≤k≤n

(
min
v∈Rn

(
|v|2

2
+ µn−k(x− tkv)

)
+ tk

))
(4.4) eq:mu_n

4.3 The fundamental solution starting from (x, v) = (0, 0).

We consider the initial data φ0(x, v) = 0x=0 + |v|2
2 . This corresponds in fact to the initial

condition 0x=0+0v=0 which has been instantaneously projected in order to satisfy the constraint
φ0 ≤ minv∈Rn φ

0 + |v|2
2 , see the spatially homogeneous case of Section ?? for a discussion.

lem:minvalue Lemma 4.1. The minimum value satisfies

µn(x) = min
0≤k≤n

(
min
v∈Rn

(
φ0(x− tkv, v)

)
+ tk

)
. (4.5) eq:formula mu_n

Proof of Lemma ??. The formula (??) is clearly true for n = 0. To proceed with the recursion
at range n+ 1, it is sufficient to establish the following identity:

min
0≤k≤n

(
min
v∈Rn

(
|v|2

2
+ µn−k(x− tkv)

)
+ tk

)
= min

0≤k≤n

(
min
v∈Rn

(
φ0(x− tkv, v)

)
+ tn

)
. (4.6) eq:recursion

By the induction hypothesis (??), we have

min
0≤k≤n

(
min
v∈Rn

(
|v|2

2
+ µn−k(x− tkv)

)
+ tk

)
= min

0≤k≤n

(
min
v∈Rn

(
|v|2

2
+ min

0≤j≤n−k

(
min
w

(
φ0(x− tkv − tjw,w)

)
+ tj

))
+ tk

)
= min

0≤j+k≤n

(
min
(v,w)

(
|v|2

2
+ φ0(x− tkv − tjw,w)

)
+ tj + tk

)
.

The key convexity inequality is simply the following,

1

2

∣∣∣∣ tkv + tjw

tk+j

∣∣∣∣2 ≤ ( tk
tk+j

)
|v|2

2
+

(
tj
tk+j

)
|w|2

2
≤ |v|

2

2
+
|w|2

2
.
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The second inequality is an equality if and only if j = 0 and w = 0, or k = 0 and v = 0. We
deduce that

min
(k,j)

(
min
(v,w)

(
|v|2

2
+ φ0(x− tkv − tjw,w)

)
+ tj + tk

)
= min

(k,j)
min
(v,w)

(
φ0
(
x− tk+j

(
tkv + tjw

tk+j

)
,
tkv + tjw

tk+j

)
+ tk+j

)
= min

0≤k′≤n
min
v′

(
φ0
(
x− tk′v′, v′

)
+ tk′

)

We deduce from (??) the more explicit formula:

µn(x) = min
0≤k≤n

(
|x|2

2t2k
+ tk

)
, (4.7) eq:mu_n explicite

with the convention that |x|
2

2t2k
= 0x=0 if k = 0. Therefore, the solution is an envelope of parabolas.

For the sake of convenience, we prove directly that (??) is the solution of the recursive identity
(??). It is sufficient to compute the minimum value for (k, j) such that 0 ≤ j ≤ n− k,

min
v∈Rn

(
|v|2

2
+
|x− tkv|2

2t2j
+ tj + tk

)
=

|x|2

2(t2j + t2k)
+ tj + tk ≥

|x|2

2(tj+k)2
+ tj+k , (4.8)

with equality if and only if j = 0 or k = 0.

4.4 The fundamental solution starting from (x, v) = (0, w).

Let w ∈ R. We consider the initial data φ0(x, v) = 0x=0 +min
(
0v=w,

|v|2
2

)
. This corresponds in

fact to the initial condition 0x=0 + 0v=w which has been instantaneously projected in order to
satisfy the constraint φ0 ≤ minv∈Rn φ

0 + |v|2
2 , as in the previous case. Let us compute first the

primary evolution of the initial data, which is essential for the comprehension of the dynamics.
It amounts to compute the following minimum value:

min
v∈Rn

(
φ0(x− tnv, v)

)
+ tn = min

(
0x=tnw + tn,

|x|2

2t2n
+ tn

)
.

The first contribution is new in comparison with the case w = 0. This corresponds to the
deposition of mass at point x = tnw, with an initial level of tn. It is expected that this mass will
create secondary parabolas, as the ones which are already located around x = 0. Therefore, the
solution should consist of the envelope of parabolas centered at x = 0, and secondary parabolas
centered at x = tnw, having some delay with respect to the central parabolas. We infer from
this reasoning the following Lemma. Let us introduce the set of indices An ⊂ N2 defined by

An = {(i, k) : 0 ≤ i+ k ≤ n− 1} ∪ {(n, 0)} ∪ {(0, n)}

lem:expmin Lemma 4.2. The solution of the recursive identity (??) starting from the initial condition
φ0(x, v) = 0x=0 + min

(
0v=w,

|v|2
2

)
is given by the formula

µn(x) = min
(i,k)∈An

(
|x− tiw|2

2t2k
+ ti+k

)
, (4.9) eq:mu_n w

with the convention that |x−tiw|
2

2t2k
= 0x=tiw if k = 0.
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Proof of Lemma ??. The formula (??) coincides with the initial condition for n = 0, namely
µ0(x) = 0x=0. We inject (??) into the recursive formula (??). The first contribution gives:

min
v∈Rn

(
φ0(x− tn+1v, v)

)
+ tn+1 = min

(
0x=tn+1w + tn+1,

|x|2

2t2n+1

+ tn+1

)
= min

(
|x− tn+1w|2

2t20
+ tn+1,

|x|2

2t2n+1

+ tn+1

)
.

This corresponds to the two extreme cases in the formula (??), namely (i, k) = (n + 1, 0) and
(i, k) = (0, n + 1). On the other hand, the second contribution when (??) is plugged into (??)
is the following,

min
0≤k≤n

min
v∈Rn

(
|v|2

2
+ min

(i,j)∈An−k

(
|x− tkv − tiw|2

2t2j
+ ti+j

)
+ tk

)

= min
0≤k≤n

(
min

(i,j)∈An−k

|x− tiw|2

2(t2j + t2k)
+ ti+j+k

)

≥ min
0≤k≤n

(
min

(i,j)∈An−k

|x− tiw|2

2(tj+k)2
+ ti+j+k

)
,

with equality if and only if j = 0 or k = 0. It remains to verify that the rule of induction on the
sets An → An+1 is compatible with this recursion. We have already seen that the two extreme
points (n + 1, 0) and (0, n + 1) are taken into account. For k = 0 in the preceding equality,
we obtain the set An. Then, for all 0 ≤ k ≤ n, we obtain (i, k) from the choice j = 0, where
(i, 0) ∈ An−k, i.e. i ≤ n− k. This gives the additional set of indices (i, k) such that i+ k ≤ n.
This completes the set An+1.

4.5 The continuous time fundamental solution.

We infer from the preceding recursive numerical scheme that the fundamental solution should
write in the continuous setting as follows,

µ(t, x;w) = min
s1,s2≥0

0≤s1+s2≤t

(
|x− s1w|2

2s22
+ s1 + s2

)
(4.10) eq:mu total

For the sake of clarity, we notify the dependency of µ with respect to the parameter w (initial
concentration in the velocity space). It is the envelope of a two-parameters family of parabolas.
To conclude, we plug the expression (??) into the formula for the full fundamental solution φ
(??),

φ(t, x, v;w)

= min

0x=tv + min

(
0v=w,

|v|2

2

)
+ t,
|v|2

2
+ min

s1,s2,s3≥0
0≤s1+s2+s3≤t

(
|x− s1w − s3v|2

2s22
+ s1 + s2 + s3

)
(4.11) eq:kernelphi

We deduce from the knowledge of the fundamental solution, and the comparison principle
Theorem ?? a useful representation formula.
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Theorem 4.3. Let u0 : R2n → R be a bounded continuous function. Then, the viscosity solution
of (??) is given by the following formula:

u(t, x, v) = inf(y,w)
(
φ(t, x− y, v;w) + u0(y, w)

)
. (4.12) eq:hopflax

Interestingly enough, by exchanging the minima, the minimum value has a similar represen-
tation:

min
v∈Rn

u(t, x, v) = min
(y,w)

(
µ(t, x− y;w) + u0(y, w)

)
. (4.13) eq:hopflax min

Notice that (??) is not written as an inf-convolution with respect to velocity. This reflects
the lack of invariance of the problem with respect to this variable.

5 Explicit computations around the fundamental solution in di-
mension 1 in space and velocity.

sec:explicit
In this section, we now stick to dimension 1 in space and velocity. This is to make explicit
computations without having a too big computational cost, which appears to increase when the
dimension is greater. Moreover, this is reasonable for our final purpose which is the study of
propagation fronts.

5.1 Computation of the macroscopic fundamental solution µ(t, x;w).

We can derive a more explicit formulation of the minimization problem (??). This is done after
a discussion of several possible cases.

In particular, if w = 0, it is better to choose s1 = 0, and we have

µ(t, x; 0) = min
0≤s≤t

(
|x|2

2s2
+ s

)
=


3

2
|x|2/3 , if |x| ≤ t3/2,

|x|2

2t2
+ t , if |x| ≥ t3/2.

(5.1) eq:calcul mu w=0

We now assume that w 6= 0. We introduce some notations for the sake of convenience,

∀(s1, s2) ∈ [0, t]2, 0 ≤ s1 + s2 ≤ t, J(s1, s2) =
|x− s1w|2

2s22
+ s1 + s2 .

(i) Assume that the minimum is attained at an interior point (s1, s2), that is such that

s1 > 0, s2 > 0, s1 + s2 < t.

Then, computing the gradient yields the first order condition and the possible points of
minimum: {

s22 = w · (x− s1w)

s32 = |x− s1w|2
,

s1 =
x

w
− |w|2

s2 = |w|2.
(5.2)

Therefore, under the conditions to be an interior point, which read equivalently,

|w|2 < x

w
< t , (5.3) eq:condition interior

the first candidate for the minimum value is

J
( x
w
− |w|2, |w|2

)
=
|w|2

2
+
x

w
. (5.4) eq:candidate 1
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(ii) Assume that the minimum is attained on the edge (s1, 0), s1 ∈ [0, t]. Recall that we have
by convention

J(s1, 0) = 0x=s1w + s1 .

Therefore, under the condition 0 ≤ s1 =
x

w
≤ t, including the equality x = tw, the second

candidate for the minimum value is

J
( x
w
, 0
)

=
x

w
. (5.5) eq:candidate x w

We notice immediately that this candidate is always better than (??).

(iii) Assume that the minimum is attained on the edge (0, s2), s2 ∈ [0, t]. We have from (??)

min
s2∈[0,t]

J(0, s2) = min
s2∈[0,t]

(
|x|2

2s22
+ s2

)
=


3

2
|x|2/3 , if |x| ≤ t3/2

|x|2

2t2
+ t , if |x| ≥ t3/2

, (5.6) eq:candidate 3

and the optimal s2 is given by s2 = min
(
t, |x|

2
3

)
.

(iv) Finally, assume that the minimum is attained on the edge s1+s2 = t, with (s1, s2) ∈ ]0, t[2.
Then minimizing J(s1, s2) reduces to minimizing on ]0, t[ the following function

J̃(s2) :=
|x− tw + s2w|2

2s22
+ t.

If x = tw, then J̃ is constant and its value is always worse than (??). We can now assume
that x 6= tw since we are done if not. We have

J̃ ′(s2) = −(x− tw) · (x− tw + s2w)

s32
.

The minimizing s2 is t− x
w , if and only if t− x

w ∈ ]0, t[, that is x
w ∈ ]0, t[. The value of the

minimum is J̃(s2) = t in this case. Else, the minimum can not be achieved on the interior
of the edge. In any case, we notice that this choice is always worse than (??) under the
same restriction x

w ∈ ]0, t[.

Therefore, only three possible candidates remain after this discussion,

µ(t, x;w) :=


x
w , if 0 ≤ x

w ≤ t
3

2
|x|2/3 , if |x| ≤ t3/2

|x|2

2t2
+ t , if |x| ≥ t3/2.

(5.7) eq:candidates all

We plot in Figure ?? the final result that we obtain after minimizing between these three
candidates.
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Figure 2: Zones of the fundamental solution

5.2 Computation of the full fundamental kernel φ(t, x, v;w) and of the char-
acteristic trajectories.

Starting from an initial data of the form 0x=0 + 0v=w, a particle arriving at (x, v) at time t
follows the following trajectory in the phase plane

x(τ) :=



wτ , if 0 ≤ τ ≤ s1(
x− s1w − s3v

s2

)
(τ − s1) + s1w, if s1 ≤ τ ≤ s1 + s2

x− s3v, if s1 + s2 ≤ τ ≤ t− s3
x− s3v + (τ − (t− s3)) v, if t− s3 ≤ τ ≤ t,

v(τ) :=



w , if 0 ≤ τ ≤ s1
x− s1w − s3v

s2
, if s1 ≤ τ ≤ s1 + s2

0, if s1 + s2 ≤ τ ≤ t− s3
v, if t− s3 ≤ τ ≤ t.

In order to compute the fundamental kernel φ given by (??), we first fully determine:

K(s1, s2, s3) :=
|x− s1w − s3v|2

2s22
+ s1 + s2 + s3,

on the set
{

(s1, s2, s3) ∈ [0, t]3 : 0 ≤ s1 + s2 + s3 ≤ t
}
.

prop:traj Proposition 5.1 (Expression of the characteristic trajectories). We have

min
(s1,s2,s3):

0≤s1+s2+s3≤t

K(s1, s2, s3) = min (µ(t, x; v), µ(t, x;w)) .

Define s(t, x) := min
(
t, |x|

2
3

)
. The Lagrangian trajectories are given in the phase space by:
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• If µ(t, x; v) = min (µ(t, x; v), µ(t, x;w)), then depending on the position on the (t, x)-plane
(see Figure ??), we have either

1.

x(τ) :=


τx

s
, if 0 ≤ τ ≤ s

x, if s ≤ τ ≤ t,
v(τ) :=


x

s
, if 0 ≤ τ ≤ s

0, if s ≤ τ ≤ t,

2.

x(τ) :=

0, if 0 ≤ τ ≤ t− x

v

x− (t− τ)v, if t− x

v
≤ τ ≤ t,

v(τ) :=

0, if 0 ≤ τ ≤ t− x

v

v, if t− x

v
≤ τ ≤ t.

• If µ(t, x;w) = min (µ(t, x; v), µ(t, x;w)), then depending on the position on the (t, x)-plane
(see Figure ??), we have either

1.

x(τ) :=


τx

s
, if 0 ≤ τ ≤ s

x, if s ≤ τ ≤ t,
v(τ) :=


x

s
, if 0 ≤ τ ≤ s

0, if s ≤ τ ≤ t.

2.

x(τ) :=

wτ , if 0 ≤ τ ≤ x

w

x, if
x

w
≤ τ ≤ t,

v(τ) :=

w , if 0 ≤ τ ≤ x

w

0, if
x

w
≤ τ ≤ t.

In particular, it shows that to reach its final point, it is better for a particule to redistribute
its velocity only once.

Remark 1. If v and w have the same sign, positive say, then

min (µ(t, x; v), µ(t, x;w)) = µ(t, x; max(v, w)).

Proof of Proposition ??. We should now discuss the values of the three times s1, s2, s3 that
minimize the travelling energy. We can make a bunch of reductions before computing the
minimum. We may assume that w 6= 0 and v 6= 0, as well as v 6= w. Indeed, in the three
opposite cases, the work is already done through the minimization of the functional J above.
The values of the minimum are then respectively given by µ(t, x; v), µ(t, x;w) and µ(t, x; v = w)
and the travel times are obtained through the minimization of the functional J above.

(i) Assume that the minimum is attained at an interior point (s1, s2, s3):

s1 > 0, s2 > 0, s3 > 0, s1 + s2 + s3 < t.

Then, computing the gradient yields the first order condition,
s22 = w · (x− s1w − s3v),

s22 = v · (x− s1w − s3v),

s32 = |x− s1w − s3v|2.

(5.8)

Since we work with v 6= w, there is no solution to the first order condition, so the minimizer
can not be an interior point.
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(ii) Assume that the minimum is attained on the edge (s1, 0, s3), s1 + s3 ∈ [0, t]. We have by
convention

K(s1, 0, s3) = 0x=s1w+s3v + s1 + s3 .

The latter quantity is finite for values of (s1, s3) ∈ [0, t]2 and s1 + s3 ∈ [0, t] such that
x = s1w + s3v can be achieved. The minimum of the quantity s1 + s3 on this set is
necessarily attained on the boundary of the triangle. Thus,

• The minimizer (0, 0, xv ) is available only if xv ∈ [0, t], and then a candidate is x
v .

• The minimizer ( xw , 0, 0) is available only if x
w ∈ [0, t], and then a candidate is x

w .

• The minimizer (x−tvv−w , 0,
x−tw
v−w ) is available only if x ∈ [min(v, w)t,max(v, w)t], and

then a candidate is t.

We check that the latest possibility is always worse than the two others. As a consequence,
one has to take the minimum between the two remaining of these possibilities,

• The minimizer (0, 0, xv ) is available only if xv ∈ [0, t], and then a candidate is x
v ,

• The minimizer ( xw , 0, 0) is available only if x
w ∈ [0, t], and then a candidate is x

w ,

and there is no possible minimum else. We see that the value of the minimum in these
zones is nevertheless given by min(µ(t, x; v), µ(t, x;w)).

(iii) Assume that the minimum is attained on the edge (0, s2, s3), s2 + s3 ∈ [0, t]. We have

K(0, s2, s3) = J(s2, s3) = µ(t, x; v),

and the optimal times are given through µ.

(iv) Assume that the minimum is attained on the edge (s1, s2, 0), s1 + s2 ∈ [0, t]. We have

K(s1, s2, 0) = J(s1, s2) = µ(t, x;w).

and the optimal times are given through µ.

(v) Finally, assume that the minimum is attained in the interior of the edge s1 + s2 + s3 = t.
We have to minimize for

(s1, s3) ∈ ]0, t[2, 0 < s1 + s3 < t,

the quantity
K(s1, s2, s3) = K (s1, t− (s1 + s3), s3) .

The first order condition reads

∃(s1, s3) ∈ ]0, t[2, 0 < s1 + s3 < t, x− s1w − s3v = 0,

⇐⇒ ∃u ∈ ]0, t[, ∃s1 ∈ ]0, u[, x = u
(s1
u
w +

(
1− s1

u

)
v
)
,

⇐⇒ ∃u ∈ ]0, t[, x ∈ u · [v, w].

Then the corresponding value of the minimum is t. We observe that this possibility is
always worse than µ(t, x; v) or µ(t, x;w).
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Discussing all the different cases, we see that

min
(s1,s2,s3):

0≤s1+s2+s3≤t

K(s1, s2, s3) = min (µ(t, x; v), µ(t, x;w)) .

and that the optimal travel times and trajectories are given by the statement of Proposition ??.

With the knowledge of the trajectories in hand, we can now simplify the expression of the
fundamental kernel φ(t, x, v;w).

prop:kernel Proposition 5.2 (Expression of φ(t, x, v;w)). For all (t, x, v, w) ∈ R+ × R3n, one has

φ(t, x, v;w) =
|v|2

2
+ min (µ(t, x; v), µ(t, x;w)) ,

except in the very special case when v = w = x/t, for which

φ(t, x, v;w) =
x

w
.

We point out the discontinuity in the fundamental kernel due to the initial condition when
w 6= 0.

Proof of Proposition ??. From Proposition ??, recall that we have

min
(s1,s2,s3):

0≤s1+s2+s3≤t

K(s1, s2, s3) = min (µ(t, x; v), µ(t, x;w)) .

Thus,

φ(t, x, v;w) = min

(
0x=tv + min

(
0v=w,

|v|2
2

)
+ t,
|v|2

2
+ min (µ(t, x; v), µ(t, x;w))

)
We can now distinguish various cases, depending on the value of 0x=tv and 0v=w.

1. First, if x 6= vt, we have directly φ(t, x, v;w) = |v|2
2 + min (µ(t, x; v), µ(t, x;w)).

2. Now assuming that x = vt, one has

φ(t, x, v;w) = min

(
min

(
0v=w,

|v|2

2

)
+
x

v
,
|v|2

2
+ min (µ(t, x; v), µ(t, x;w))

)
(a) If w = v, then

φ(t, x, v;w) = min

(
x

v
,
|v|2

2
+ µ(t, x; v)

)
=
x

v
.

(b) Now, if w 6= v, then

φ(t, x, v;w) = min

(
|v|2

2
+
x

v
,
|v|2

2
+ min (µ(t, x; v), µ(t, x;w))

)
=
|v|2

2
+ min

(
min

(x
v
, µ(t, x; v)

)
, µ(t, x;w)

)
,

=
|v|2

2
+ min (µ(t, x; v), µ(t, x;w)) .

Finally, φ(t, x, v;w) = |v|2/2 + µ(t, x; max(v, w)) unless v = w = x/t for which φ(t, x, v;w) =
x/w.
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Figure 3: Plot of v 7→ φ(t, x, v; 0): (left) x = 5 for t = (1 : 10), (right) x = 10 for t = (1 : 10).

6 Rate of acceleration in kinetic reaction-transport equations
sec:acc

We consider a kinetic reaction-transport problem. We focus on equation (??) after rescaling
(??) [?, ?, ?]:

∀(t, x, v) ∈ R+ × R2n, ε (∂tf(t, x, v) + v · ∇xf(t, x, v))

= Mε(v)ρε(t, x)− f(t, x, v) + rρε(t, x)
(
Mε(v)− ε−

n
2 f(t, x, v)

)
. (6.1) eq:kinKPPR

The latter equation satisfies a maximum principle as soon as the initial data f ε0 is measurable
and satisfies

∀(t, x, v) ∈ R+ × Rn × Rn, 0 ≤ f ε0 (x, v) ≤ ε
n
2Mε(v). (6.2) eq:estf0

This readily implies the following estimate on u0 :

∀(t, x, v) ∈ R+ × Rn × Rn, uε0(x, v) ≥ |v|
2

2
+
εn

2
log(2πε).

We recall the following existence result from [?]:

Cauchypbm Proposition 6.1 (Global existence: Theorem 4 in [?]). Suppose that f ε0 satisfies (??). Then
the Cauchy problem (??) has a unique solution f ε ∈ C0b (R+×R2n) in the sense of distributions,
satisfying

∀(t, x, v) ∈ R+× ∈ R2n, 0 ≤ f ε(t, x, v) ≤ ε
n
2Mε(v) . (6.3) eq:maxpcple

After performing the Hopf-Cole transform uε := −ε log f ε, the equation satisfied by uε is the
following

∀(t, x, v) ∈ R+×R2n, ∂tu
ε+v·∇xuε = 1−(1 + r)

∫
Rn

1

(2πε)
n
2

e
uε−u′ε−|v|2/2

ε dv′+
r

ε
n
2

∫
Rn
e−

u′ε
ε dv′.

(6.4) eq:kinreacWKB
In this section, we extend the comparison principle (Theorem ??), and the convergence of

(uε) to a viscosity solution of the corresponding non-local Hamilton-Jacobi equation (Theorem
??) for bounded initial data. We further extend Theorem ?? for solutions having locally uni-
form quadratic growth both in space and velocity (Section ??). This class of solutions appears
naturally in our problem (Section ??). However, we were not able to prove the convergence
Theorem ?? for unbounded initial data. In particular, we were not able to adapt the proof of
uniformly isolated minima (Lemma ??) due to the lack of uniform Lipschitz regularity in space.
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Then, we extend the representation formula (??) to the case r > 0, but ignoring the quadratic
nonlinearity in (??). This nonlinear term yields a constraint in the limit problem. Usually, this
additionnal constraint is handled by means of the so-called Freidlin condition which asserts
that the solution to the constrained problem can be obtained by truncating the representation
formula of the unconstrained problem so that it fulfils the constraint minu ≥ 0. The latter
condition is an immediate consequence of (??).

We now define the non-local Hamilton-Jacobi system obtained in the limit ε→ 0. Formally,
under suitable conditions (see Theorem ?? below), uε converges locally uniformly towards a
viscosity solution of the following non-local Hamilton-Jacobi system,

1. If minw∈Rn u(t, x, w) = 0 then, for all v ∈ Rn, one has u(t, x, v) = |v|2
2 .

2. If minw∈Rn u(t, x, w) > 0,

max

(
∂tu(t, x, v) + v · ∇xu(t, x, v)− 1, u(t, x, v)− min

w∈Rn
u(t, x, w)− |v|

2

2

)
= 0 ,

∂t

(
min
w∈Rn

u(t, x, w)

)
≤ −r ,

∂t

(
min
w∈Rn

u(t, x, w)

)
= −r , if S(u)(t, x) = {0} .

(6.5) eq:nlsys

3. u(0, ·, ·) = u0(·, ·).

A function u is a solution of the limit system if, and only if it is both a sub and a super-
solution as described in the following definitions.

def:nlsub Definition 6.2 (Sub-solution). Let T > 0. A upper semi-continuous function u is a viscosity
sub-solution of equation (??) on [0, T ) if and only if for all (t0, x0) ∈ [0, T )× Rn:

1. u(0, ·, ·) ≤ (u0)
∗

2. If minw∈Rn u(t0, x0, w) > 0,

(i) It satisfies the constraint

(∀v ∈ Rn) u(t0, x0, v)− min
w∈Rn

u(t0, x0, w)− |v|
2

2
≤ 0 .

(ii) For all pair of test functions (φ, ψ) ∈ C1
(
(0, T )× R2n

)
×C1 ((0, T )× Rn), if (t0, x0, v0)

is such that both u(·, ·, v0)− φ(·, ·, v0) and minw u(·, ·, w)−ψ(·, ·) have a local maximum at
(t0, x0) ∈ (0, T )× Rn, then∂tφ(t0, x0, v0) + v0 · ∇xφ(t0, x0, v0)− 1 ≤ 0,

∂tψ(t0, x0) ≤ −r.
(6.6) eq:S1

3. If minw∈Rn u(t0, x0, w) ≤ 0 then, for all v ∈ Rn, one has u(t0, x0, v) ≤ |v|
2

2 .

def:nlsup Definition 6.3 (Super-solution). A lower semi-continuous function u is a viscosity super-
solution of equation (??) on [0,T) if and only if for all (t0, x0) ∈ [0, T )× Rn,
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1. u(0, ·, ·) ≥ (u0)∗

2. For all v ∈ Rn, one has u(t0, x0, v) ≥ |v|
2

2 .

3. For all (t, x) ∈ (0, T ) × Rn, v = 0 is a global minimum of u(t, x, ·). Moreover, v = 0 is
locally uniformly isolated: for any compact set K ⊂ (0, T ) × Rn, there exists r > 0 such
that S(u)(t, x) ∩Br(0) = {0} for all (t, x) ∈ K.

4. For all pair of test functions (φ, ψ) ∈ C1
(
(0, T )× R2n

)
× C1 ((0, T )× Rn), if (t0, x0, v0) is

such that both u(·, ·, v0) − φ(·, ·, v0) and minw u(·, ·, w) − ψ(·, ·) have a local minimum at
(t0, x0) ∈ [0, T )× Rn, then
∂tφ(t0, x0, v0) + v0 · ∇xφ(t0, x0, v0)− 1 ≥ 0, if u(t0, x0, v0)− min

w∈Rn
u(t0, x0, w)− |v0|

2

2
< 0,

∂tψ(t0, x0) ≥ −r , if S(u)(t0, x0) = {0} .
(6.7)

We consider the linearized version of (??), ignoring the quadratic nonlinearity,

ε
(
∂tf̃(t, x, v) + v · ∇xf̃(t, x, v)

)
= Mε(v)ρ̃ε(t, x)− f̃(t, x, v) + rρ̃ε(t, x)Mε(v) . (6.8) eq:kinKPPR lin

We point out that (??) and (??) are equivalent after the following change of variables: Let g
defined by g(t′, x′, v) = ertf̃(t′/(1 + r), x′/(1 + r), v), then g solves (??). As a consequence, the
corresponding Hamilton-Jacobi system for ũ is written

max

(
∂tũ(t, x, v) + v · ∇xũ(t, x, v)− 1, ũ(t, x, v)− min

w∈Rn
ũ(t, x, w)− |v|

2

2

)
= 0 ,

∂t

(
min
w∈Rn

ũ(t, x, w)

)
≤ −r ,

∂t

(
min
w∈Rn

ũ(t, x, w)

)
= −r , if S(ũ)(t, x) = {0} ,

ũ(0, x, v) = u0(x, v) .

(6.9) eq:limit r

We define accordingly the fundamental solution φr by performing the same change of variables
in (??).

We refer to it as the unconstrained problem, because the definition of viscosity sub-solution
(resp. super-solution) coincide with Definition ?? (resp. Definition ??) except that the constraint
minu ≥ 0 is ignored, meaning that Item 2 is ignored in Definition ?? (resp. in Definition ??).

By opposition, we refer to the combination of Definition ?? and Definition ?? as the con-
strained problem.

For the rest of this preliminary discussion, we restrict to dimension n = 1.
We conjecture that a solution to the constrained problem can be built following a procedure

analogous to [?].

conj Conjecture 6.4. First, solve the unconstrained problem,

ũ(t, x, v) = min
(y,w)

(φr(t, x− y, v;w) + u0(y, w)) . (6.10) eq:hopf lax cinetique

Then, truncate the solution by taking into account the constraint minu ≥ 0 in the following way:
for (t, x) such that min ũ ≤ 0, replace ũ by v2/2 on the zone v < x/t (for x > 0), resp. on the
zone v > x/t (for x < 0). This would determine the minimal value minu for all (t, x) as the
latter is necessarily attained for v = 0.
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Although we were not able to prove that this truncation procedure is valid, this would have
the following consequences on the spatial spreading rate of accelerating fronts for (??). In fact,
we can compute the exact location of the level sets associated with the minimal value of the
fundamental solution φr.

prop:rate Proposition 6.5 (Level lines of µr). Assume that Conjecture ?? holds. Let w ∈ R. There
exists T0(w) such that for all t ≥ T0(w), the negative part of the minimum value µr is located as
follows, {

x ∈ R
∣∣∣ µr(t, x;w) ≤ 0

}
=

x ∈ R
∣∣∣ |x| ≤ (23r) 3

2

1 + r
t
3
2

 .

This yields formally the rate of spreading for initial data of the form u0(x, v) = 0x=0 +

min
(
0v=w,

|v|2
2

)
. We conjecture that the same rate of spreading holds for initial data which are

growing sufficiently fast at infinity.

Proof of Proposition ??. The spreading rate comes straightforwardly from the expression of
µr. We can infer that

µr(t, x;w) ≤ 0 ⇐⇒



(
(1 + r)

x

w
− rt

)
1 x
w
≤min(t,( 32 )3w2) ≤ 0,

or(
3

2
((1 + r)|x|)

2
3 − rt

)
1 x
w
>min(t,( 32 )3w2) ≤ 0,

⇐⇒ |x| ≤
(
2
3r
) 3

2

1 + r
t
3
2 for t sufficiently large.

Although we were not able to prove this Conjecture, we discuss in the rest of this section
several intermediate results supporting it. First, in order to prove that the truncation procedure
might yield a representation of the solution of equation (??), one needs to check that this solution
is unique. We thus first show a comparison principle for bounded initial data in Subsection ??.
We then extend in Subsection ?? this comparison principle to unbounded initial data with an
appropriate quadratic growth rate, this rate being satisfied by the fundamental solution after
positive time. We then discuss in Subsection ?? the validity of the truncation by checking a
Freidlin-type condition for equation (??), although we are not able to prove that this condition
yields the Conjecture.

6.1 Uniformly bounded initial data
subsec:bdd

Here, we restrict to bounded initial data, as in Sections ?? and ??.

6.1.1 The comparison principle

prop:compR Theorem 6.6 (Comparison principle). Let u and u be respectively a viscosity sub-solution
and a viscosity super-solution of equation (??) in the sense of Definitions ?? and ??. Assume
that u and u satisfy (??). Then u ≤ u.
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Proof of Theorem ??. We follow the same lines as for the proof of Theorem ??. For the sake
of clarity, we do not reproduce all the details, but we focus on the arguments specific to the
constrained problem. This is the discussion on the minimum minw∈Rn u.

Define χ̂ and χ̃ as in (??)-(??), and define ω,Ω accordingly. For the sake of clarity, we omit
the correcting terms in the following discussion.

Suppose by contradiction that the maximum value Ω is positive. Let (t0, x0, v0) be either
(t̃0, x̃0, v0) or (t̂0, x̂0, v0).
# Case 1: ω < Ω. If minw u(t0, x0, w) > 0, then argue as in Section ??. On the other hand,
if minw u(t0, x0, w) ≤ 0, then by definition we have (∀v) u(t0, x0, v) ≤ |v|2

2 . But we also have
u(t0, x0, v) ≥ |v|

2

2 . Therefore, we have a contradiction at v = v0.
# Case 2.1: ω = Ω and S(u)(t0, x0) = {0}. If m(t0, x0) > 0, then argue as in Section ??. On
the other hand, if m(t0, x0) ≤ 0, then by definition m(t0, x0) ≥ 0. This is a contradiction.
# Case 2.2: ω = Ω and S(u)(t0, x0) 6= {0}. Same as Case 1.

6.1.2 Convergence of solutions to the kinetic equation

thm:cv sec 6 Theorem 6.7 (Convergence). Let uε be the solution of (??), with the initial data uε = u0.
We assume that the initial data satisfies conditions (??) and (??). Then, as ε→ 0, uε converges
towards u, the unique viscosity solution of the limit system, characterized by Definitions ?? and
??.

Proof of Theorem ??. We now show how to pass to the limit in the presence of the nonlinear-
ity. We again follow the same lines as for the linear case, and do not reproduce the technicalities
to focus only on the main features of the argument. We start with reproducing the Lipschitz
estimates. Then, we derive the viscosity procedure.

Lipschitz estimates. The function bε satisfies :

(∂t + v · ∇x) (bε) (v) = 1−(1 + r)

∫
Rn

(2πε)−
n
2 e

bε(v)−bε(v′)−|v′|2/2
ε dv′+

r

(2πε)
n
2

∫
Rn
e−
|v′|2
2ε e−

bε(v′)
ε dv′.

We shall rewrite this equation on the form :

(∂t + v · ∇x) (bε) (v) = (1 + r)

(
1−

∫
Rn

1

(2πε)
n
2

e
bε(v)−bε(v′)−|v′|2/2

ε dv′
)

+ r (ρε − 1) .

The fact that ρε ≤ 1 combined with a maximum principle argument for bε gives the uniform
bound. For the space derivative, we write :

(∂t + v · ∇x) (∇xuε) (v) = −1

ε

∫
Rn
Mε(v)

[
∇xuε(v)−∇xuε(v′)

]
e
uε(v)−uε(v′)

ε dv′

− r

ε

∫
Rn

[
∇xuε(v)−∇xuε(v′)

] (
Mε(v)e

uε(v)
ε − 1

)
e
−uε(v′)

2 dv′ − r

ε

(∫
Rn
e−

u′ε
ε dv′

)
∇xuε,

and the result follows from a maximum principle argument. To bound the time derivative, we
write the same type of equation as for the space derivative and redo the argument used for the
linear case.
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Convergence procedure.

# Step 1 : Viscosity super-solution.

We start with the viscosity super-solution step. We first show that u0 is a super solution of
(??) that is∂tu+ v · ∇xu− 1 ≥ 0 if

{
(t, x, v) ∈ R+ × R2n |u−minw∈Rn u− |v|

2

2 < 0
}
,

∂t (minw∈Rn u) ≥ −r if S(u)(t, x) = {0} .
(6.11)

in the viscosity sense, and u(t, x, v) ≥ |v|
2

2 .
The first inequality comes from the fact that ρε ≥ 0 and then the same argument as for the

linear case works. Let us set vε = uε + rt, we get

∂tv
ε + v · ∇xvε ≥ (1 + r)

(
1−

∫
Rn

1

(2πε)
n
2

e
vε−v′ε−|v|2/2

ε dv′
)
.

Since the r.h.s is now mass conservative, the same procedure as for the linear case applied to vε

gives

∂t

(
min
w∈Rn

u+ rt

)
≥ 0 if S(u0)(t, x) = {0}

and thus the result follows.
From the fact that f ε(t, x, v) ≤ ε

n
2Mε(v) for all (t, x, v) ∈ R+ × R2n, we deduce

uε(t, x, v) = −ε log f ε(t, x, v) ≥ |v|
2

2
+
εn

2
log(2πε),

and thus u(t, x, v) ≥ |v|
2

2 passing to the limit ε→ 0.

# Step 2 : Viscosity sub-solution.

Since
r

ε
n
2

∫
Rn
e−

uε(v′)
ε dv′

is bounded uniformly, the same proof as in the linear case gives

(∀(t, x, v) ∈ R+ × R2n), u(t, x, v) ≤ min
w∈Rn

u(t, x, w) + |v|2/2.

The maximum principle on f ε yields that in the limit, one has necessarily u ≥ |v|2/2. We deduce

|v|2

2
≤ u(t, x, v) ≤ min

w∈Rn
u(t, x) +

|v|2

2
.

Take first a point (t, x) such that minw∈Rn u ≤ 0. The previous inequality gives u(t, x, v) =
|v|2/2. Take finally a point (t, x) such that minw∈Rn u > 0. Then in this case ρε goes to zero.
Thus, passing to the limit in the viscosity sense in

∂tu
ε + v · ∇xuε ≤ 1 +

r

ε
n
2

∫
Rn
e−

u′ε
ε dv′.

gives the first inequality of the limit system. The proof in the linear case can be reproduced to
give

∂t

(
min
w∈Rn

u

)
≥ −r if S(u)(t, x) = {0}
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6.2 Unbounded initial data
subsec:unbdd

6.2.1 The comparison principle
sec:621

Here, we explain how to extend the comparison principle Section ?? beyond Hypothesis (??),
i.e. u = v2/2 + L∞. Specifically, we consider sub- and super- solutions having locally uniform
quadratic growth at infinity both in space and velocity. This is motivated by the fact that the
fundamental solution that was derived in Section ?? has precisely this large scale behaviour after
positive time (see also Figure ??). The method cannot handle asymptotic behaviour bigger than
quadratic.

theo:comp2 Theorem 6.8 (Comparison principle). Let u (resp. u) be a viscosity sub-solution (resp. super-
solution) of (??) on [0, T ) × R2n. Assume that u and u are such that there exist constants
A > 1, B > 0, C > 0 such that for all (x, v),

1

A
|v|2 −B|x|2 − C ≤ u(t, x, v), u(t, x, v) ≤ A|v|2 +B|x|2 + C . (6.12) eq:growth condition

Then u ≤ u on [0, T )× R2n.

An immediate consequence of (??) is that any minimum with respect to velocity, say attained
at v0, satisfies

|v0|2 ≤ 2A
(
B|x|2 + C

)
. (6.13) eq:localization minimum x

Proof of Theorem ??. We shall not reproduce all the details of proof of the comparison prin-
ciple, but only indicate the major changes that have to be made in comparison with Section ??.
The major discrepancy concerns the localization of minima with respect to the velocity variable.
Indeed, they are no more confined uniformly with respect to x as in Section ??, see (??). We
have to adapt the penalization terms in χ̂ and χ̃ accordingly. A side effect is that a short time
condition T < T0 is required. However, this does not affect the conclusion since we can iterate
the comparison principle on time intervals of length T0. Let us define

T0 =
1

4
√
AB

. (6.14) eq:shorttime

Let T < T0. Let α > 0, R > 0. Let δ > 0 to be suitably chosen below. We define

χ̂(t, x) = m(t, x)−m(t, x)− δ

4
eγ(t−T )|x|4 − α

T − t
(6.15) eq:chiapp

χ̃(t, x, v) = u(t, x, v)− u(t, x, v)− δ

4
eγ(t−T )|x|4 − α

T − t
− Λ

(
|v|2 −B1|x− tv|2 −R2

)
+
,

(6.16)

for some suitable constants γ,B1 to be chosen below. The quadratic penalty term in (??) has
been turned into a quartic one in order to ensure the existence of a minimum with respect to
space variable. The exponential prefactor is inspired from [?, page 72]. Also, the penalization
with respect to velocity has been extended in order to take into account the nonuniform velocity
confinement.

We define ω,Ω as in (??). To establish that ω ≤ Ω, it is enough to check that the penalty
term

(
|v|2 −B1|x− tv|2 −R

)
+

vanishes at the minima of u with respect to velocity. This is
indeed a consequence of (??) and the short time condition. The following lemma replaces the
confinement Lemma ??.
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lem:minconf A Lemma 6.9. Let B1 ≥
4AB

1− 4ABT 2
and R ≥

√
2AC (1 + T 2B1). For all (t, x) ∈ [0, T ) × Rn,

the additionnal penalization vanishes on S (u) (t, x),

(∀v0 ∈ S (u) (t, x))
(
|v0|2 −B1|x− tv0|2 −R2

)
+

= 0. (6.17)

Proof of Lemma ??. Let v0 be a minimum, we have:

|v0|2 −B1|x− tv0|2 −R2 ≤
(
1− t2B1

)
|v0|2+2B1tx · v0 −B1|x|2 −R2

≤
(
1− t2B1

)
|v0|2 +

1

2
B1|x|2 + 2B1t

2|v0|2 −B1|x|2 −R2

≤
(
1 + t2B1

)
|v0|2 −

1

2
B1|x|2 −R2

≤ A
(
1 + T 2B1

) (
2B|x|2 + 2C

)
− 1

2
B1|x|2 −R2 .

The last quantity is certainly nonpositive due to our choice of B1 and R.

lem:Oomega A Lemma 6.10. We have ω ≤ Ω.

The proof goes the same as in Lemma ??.

# Case 1: ω < Ω. We denote by (t̃0, x̃0, v0) a maximum point of χ̃, such that χ̃(t̃0, x̃0, v0) = Ω.

lem:velconf A Lemma 6.11. There exist two constants C1, C2 such that

|v0| ≤ C1|x̃0|+ C2R+ C3,

Proof of Lemma ??. The evaluation χ̃(t̃0, x̃0, v0) ≥ χ̃(0, 0, 0) gives

Λ
(
|v0|2 −B1|x̃0 − t̃0v0|2 −R2

)
+
≤ u(t̃0, x̃0, v0)− u(t̃0, x̃0, v0)− u(0, 0, 0) + u(0, 0, 0)

Λ
(
|v0|2 −B1|x̃0 − t̃0v0|2 −R2

)
≤
(
A− 1

A

)
|v0|2 + 2B|x̃0|2 + C

We expand the left-hand-side, to obtain

Λ
(
1− 2B1t̃

2
0

)
|v0|2 ≤ 2ΛB1|x̃0|2 + ΛR2 +

(
A− 1

A

)
|v0|2 + 2B|x̃0|2 + C(

1

3
Λ−

(
A− 1

A

))
|v0|2 ≤ B|x̃0|2 + C + ΛR2

We conclude by taking Λ = 3(A− 1/A) + 1.

According to the changes performed in the definitions of χ̂, χ̃, we change the definition of χ̃ε
to

χ̃ε(t, x, s, y, v) = u(t, x, v)− u(s, y, v)− δ

4
eγ(t−T )|x|4

− α

T − t
− 1

2ε

(
|t− s|2 + |x− y|2

)
− 1

2

(
|s− t̃0|2 + |y − x̃0|2

)
− Λ

(
|v|2 −B1|x− tv|2 −R2

)
+
.

Let (t̃ε, x̃ε, s̃ε, ỹε) which realizes the maximum of χ̃ε(·, v0).
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lem:limit t0 A Lemma 6.12. The following limit holds true,

lim
ε→0

(t̃ε, x̃ε, s̃ε, ỹε) = (t̃0, x̃0, t̃0, x̃0) .

lem:constraint A Lemma 6.13. There exists ε0 > 0 such that for all ε < ε0,

u(s̃ε, ỹε, v0)−m(s̃ε, ỹε)−
|v0|2

2
< 0 .

We now present the test function step

φ2(s, y, v) = u(t̃ε, x̃ε, v)− δ

4
eγ(t̃ε−T )|x̃ε|4

− α

T − t̃ε
− 1

2ε

(
|t̃ε − s|2 + |x̃ε − y|2

)
− 1

2

(
|s− t̃0|2 + |y − x̃0|2

)
− Λ

(
|v|2 −B1|x− tv|2 −R2

)
+
,

associated to the supersolution u at the point (s̃ε, ỹε, v0). Notice that the condition s̃ε > 0 is
verified for ε small enough. This yields

−1

ε
(s̃ε − t̃ε)− (s̃ε − t̃0) + v0 ·

(
−1

ε
(ỹε − x̃ε)− (ỹε − x̃0)

)
− 1 ≥ 0 . (6.18) eq:chain rule 1.1

We strongly emphasize a crucial cancellation. Namely, the free transport operator cancels the
velocity penalization

(
|v|2 −B1|x− tv|2 −R2

)
+
. This is the main motivation for considering

such an expression.
On the other hand, using the test function

φ1(t, x, v) = u(s̃ε, ỹε, v) +
δ

4
eγ(t−T )|x|4

+
α

T − t
+

1

2ε

(
|t− s̃ε|2 + |x− ỹε|2

)
+

1

2

(
|s̃ε − t̂0|2 + |ỹε − x̂0|2

)
+ Λ

(
|v|2 −B1|x− tv|2 −R2

)
+
,

associated to the subsolution u at the point (t̃ε, x̃ε, v0), we obtain

α

(T − t̃ε)2
+
δ

4
γeγ(t̃ε−T )|x̃ε|4 +

1

ε
(t̃ε− s̃ε) + v0 ·

(
δeγ(t̃ε−T )|x̃ε|2x̃ε +

1

ε
(x̃ε − ỹε)

)
− 1 ≤ 0 . (6.19) eq:chain rule 2.1

By substracting (??) to (??), we obtain

α

T 2
≤ α

(T − t̃ε)2
≤ δeγ(t̃ε−T )

(
−1

4
γ|x̃ε|4 − |x̃ε|2v0 · x̃ε

)
+
(
s̃ε − t̃0

)
− v0 · (ỹε − x̃0) .

We deduce from Lemma ?? and lim x̃ε = x̃0 that

|v0| ≤ C1|x̃ε|+ C2R+ C3,

for ε small enough. Now observe that

−1

4
γ|x̃ε|4−|x̃ε|2v0 · x̃ε ≤ −

1

4
C|x̃ε|4 + |x̃ε|3|v0| ≤

(
C1 −

1

4
γ

)
|x̃ε|4 +C2R|x̃ε|3 +C3|x̃ε|3 ≤ K(R),
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for some explicit constant K(R), provided that γ > 4C. By taking the limit ε → 0, we deduce
that

α

T 2
≤ δeγ(t̃ε−T )K ≤ δK(R).

The choice δ = (αT−2K(R)−1)/2 yields a contradiction.

# Case 2: ω = Ω. We denote by (t̂0, x̂0) a maximum point of χ̂.
# # Case 2.1: We first consider the case where S(u)(t̂0, x̂0) = {0}.
In this case, the spatial derivative of the transport equation is not used, however the time

derivative of the test function being different, one has to perform slight changes. The new
function χ̂ε is

χ̂ε(t, x, s, y) = m(t, x)−m(s, y)− δ

4
eγ(t−T )|x|4

− α

T − t
− 1

2ε

(
|t− s|2 + |x− y|2

)
− 1

2

(
|s− t̂0|2 + |y − x̂0|2

)
.

lem:26 A Lemma 6.14. There exists ε0 > 0 such that the set S(u)(ŝε, ŷε) is reduced to {0}, provided that
ε < ε0.

We now use the test function

ψ2(s, y) = m(t̂ε, x̂ε)−
δ

4
eγ(t̂ε−T )|x̂ε|4

− α

T − t̂ε
− 1

2ε

(
|t̂ε − s|2 + |x̂ε − y|2

)
− 1

2

(
|s− t̂0|2 + |y − x̂0|2

)
,

associated to the supersolution m at the point (ŝε, ŷε). Notice that the condition ŝε > 0 is
verified for ε small enough.

The second criterion in (??) writes as follows,

−1

ε
(ŝε − t̂ε)− (ŝε − t̂0) ≥ 0 . (6.20) eq:chain rule 1app

On the other hand, using the test function

ψ1(t, x) = m(ŝε, ŷε) +
δ

4
eγ(t−T )|x|4

+
α

T − t
+

1

2ε

(
|t− ŝε|2 + |x− ŷε|2

)
+

1

2

(
|ŝε − t̂0|2 + |ŷε − x̂0|2

)
,

associated to the subsolution m at the point (t̂ε, x̂ε), we obtain

δ

4
γeγ(t̂ε−T )|x̂ε|4 +

α

(T − t̂ε)2
+

1

ε
(t̂ε − ŝε) ≤ 0 . (6.21) eq:chain rule 2app

By substracting (??) to (??), we obtain

−(ŝε − t̂0) ≥
α

(T − t̂ε)2
+
δ

4
γeγ(t̂ε−T )|x̂ε|4 ≥

α

T 2
.

Passing to the limit ε→ 0, we get a contradiction.

# # Case 2.2: There exists some nonzero v0 ∈ S(u)(t̂0, x̂0).

lem:Oomega eq A Lemma 6.15. Assume ω = Ω, and let v0 ∈ S(u)(t̂0, x̂0) \ {0}. Then,
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1. (t̂0, x̂0, v0) realizes the supremum of χ̃,

2. v0 is a minimum velocity also for u(t̂0, x̂0, ·).

Similarly as in Case 1, we define the following auxiliary function,

χ̃ε(t, x, s, y, v) = u(t, x, v)− u(s, y, v)− δ

4
eγ(t−T )|x̂ε|4

− α

T − t
− 1

2ε

(
|t− s|2 + |x− y|2

)
− 1

2

(
|s− t̂0|2 + |y − x̂0|2

)
− Λ

(
|v|2 −B1|x− tv|2 −R2

)
+
.

Let (t̃ε, x̃ε, s̃ε, ỹε) which realizes the maximum value of χ̃ε(·, v0). We can prove as in Lemma ??,
that the following limit holds true,

lim
ε→0

(t̃ε, x̃ε, s̃ε, ỹε) = (t̂0, x̂0, t̂0, x̂0) .

lem:constraint2 A Lemma 6.16. There exists ε0 > 0 such that for all ε < ε0,

u(s̃ε, ỹε, v0)−m(s̃ε, ỹε)−
|v0|2

2
< 0 .

Therefore, we can use the test function

φ2(s, y, v) = u(t̃ε, x̃ε, v)− δ

4
eγ(t̃ε−T )|x̃ε|4 −

α

T − t̃ε
− 1

2ε

(
|t̃ε − s|2 + |x̃ε − y|2

)
− 1

2

(
|s− t̂0|2 + |y − x̂0|2

)
− Λ

(
|v|2 −B1|x̃ε − t̃εv|2 −R2

)
+
,

associated to the supersolution u at the point (s̃ε, ỹε, v0). Notice that the condition s̃ε > 0 is
verified for ε small enough. This yields

−1

ε
(s̃ε − t̃ε)− (s̃ε − t̂0) + v0 ·

(
−1

ε
(ỹε − x̃ε)− (ỹε − x̂0)

)
− 1 ≥ 0 . (6.22)

On the other hand, using the test function

φ1(t, x, v) = u(s̃ε, ỹε, v) +
δ

4
eγ(t−T )|x|4 +

α

T − t

+
1

2ε

(
|t− s̃ε|2 + |x− ỹε|2

)
+

1

2

(
|s̃ε − t̂0|2 + |ỹε − x̂0|2

)
+ Λ

(
|v|2 −B1|x− tv|2 −R2

)
+
,

associated to the subsolution u at the point (t̃ε, x̃ε, v0), we obtain

δ

4
γeγ(t̃ε−T )|x̃ε|4 +

α

(T − t̃ε)2
+

1

ε
(t̃ε− s̃ε) + v0 ·

(
δeγ(t̃ε−T )|x̃ε|2x̃ε +

1

ε
(x̃ε − ỹε)

)
− 1 ≤ 0 . (6.23)

We conclude as in Case 1, except that the confinement estimate on v0 is given by (??) rather
than Lemma ??. The proof of the comparison principle can be ended exactly as in Section
??.
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Reproducing the same proof as for the proof of Theorem ??, we obtain as a corollary a
comparison principle for the constrained system (??).

Corollary 6.17 (Comparison principle for the constrained system). Let u (resp. u) be
a viscosity sub-solution (resp. super-solution) of (??) on [0, T )×R2n. Assume that u and u are
such that there exist constants A > 1, B > 0, C > 0 such that for all (x, v),

1

A
|v|2 −B|x|2 − C ≤ u(t, x, v), u(t, x, v) ≤ A|v|2 +B|x|2 + C . (6.24) eq:growth condition

Then u ≤ u on [0, T )× R2n.

6.2.2 Quadratic bounds
sec:622

The purpose of this section is to provide crude a priori bounds for both the fundamental solution
in the case r = 0, and the solution of the Cauchy problem (??) for compactly supported initial
data, in the case r ≥ 0. We show that in both cases uε = −ε log f ε is naturally bounded
above by (A/2)v2 + Bx2/(t2) + C. Thus, it would be natural to extend the uniqueness result
(Theorem ??) to such unbounded solutions, in order to prove that the solution of the Cauchy
problem coincides with the solution built from the representation formula. In this direction, we
establish such a uniqueness result for solutions satisfying a uniform quadratic bound involving
(A/2)v2 +Bx2 + C on [0, T ]× R× R.

We deduce immediately from the expression (??) that the fundamental solution φ satisfies

φ(t, x, v;w) ≤ v2

2
+
x2

2t2
+ t. (6.25)

For this, simply choose s2 = t in the minimization problem. Note that a similar bound can be
derived for φr when r > 0.

Equation (??) has the property of infinite speed of propagation. We make this property
quantitative in the next proposition.

For the sake of simplicity, we restrict to initial conditions compactly supported in x, with a
Gaussian velocity distribution,

f ε0 (x, v) =
[
1{G0} (x)

]
.
[
ε1/2Mε(v)

]
, (6.26)

for some is some open interval G0.
The next proposition establishes quantitative estimates of f ε(t, x, v) from below, which yields

some locally uniform upper bound for uε(t, x, v).

prop:uepsestimate Proposition 6.18. For all ε > 0, for all (t, x, v) ∈ R+ × Rn × Rn, one has

v2

2
− ε

2
log(2πε) ≤ uε(t, x, v) ≤ v2

2
+ t+

1

2

(
|x|+ (t/2)|v|+ 1

t/2

)2

.

Proof of Proposition ??. First, we claim that we can restrict to the case without the non-
linear term (r = 0), since the contribution rρ(ε1/2M − f) is nonnegative. From the Duhamel
formula, we deduce that f ε is bounded below by the damped free transport equation,

f ε(t, x, v) ≥ f0(x− tv, v)e−t/ε. (6.27)
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Hence, we have

ρε(t, x) ≥
∫
R
f0(x− tw,w)e−t/εdw

≥ e−t/ε
∫
R
1{G0} (x− tw) exp

(
−w

2

2ε

)
dw

Up to elementary spatial rescaling, we assume that G0 contains the interval (−1, 1). Plugging
this bound into the Duhamel formula with r = 0 , we deduceeq:Duhamel formula

f ε(t, x, v) ≥Mε(v)

∫ t

0

(
e−(t−s)/ε

∫
R
1{G0} (x− sv − (t− s)w) exp

(
−w

2

2ε

)
dw

)
e−s/εds

≥Mε(v)e−t/ε
∫ t

0

∫ x−sv+1
t−s

x−sv−1
t−s

exp

(
−w

2

2ε

)
dw ds

≥Mε(v)e−t/ε
∫ t

0

∫ x−sv+1
t−s

x−sv−1
t−s

exp

(
− 1

2ε
max

((
x− sv − 1

t− s

)2

,

(
x− sv + 1

t− s

)2
))

dw ds

≥Mε(v)e−t/ε
∫ t

2

0

2

t− s
exp

(
− 1

2ε

(
|x|+ s|v|+ 1

t− s

)2
)
ds

≥Mε(v)e−t/ε exp

(
− 1

2ε

(
|x|+ (t/2)|v|+ 1

t/2

)2
)
.

This estimate from below, combined with (??) yields the following estimate on uε,

v2

2
− ε

2
log(2πε) ≤ uε(t, x, v) ≤ v2

2
+ t+

1

2

(
|x|+ (t/2)|v|+ 1

t/2

)2

. (6.28)

6.3 Non-local Freidlin’s condition
subsec:Freidlin

Here, we restrict to dimension n = 1.
We now continue our discussion about the limit system. This limit system appears to be

an obstacle problem, subject to the constraint minu ≥ 0. It is analogous to the following
constrained Hamilton-Jacobi equation,

∀(t, x) ∈ R+ × Rn, min
(
∂tU +D|∇xU |2 + r, U

)
= 0,

which can be derived from the Fisher-KPP equation (??) using the same methodology as de-
scribed above [?] (see also [?] for earlier works using a different framework based on large
deviations).

6.3.1 The case of the Fisher-KPP problem

Assume that the initial data Ũ0 = U0 is an indicator function of some open bounded interval
G0 (as in [?, ?]),

U0 = 0x∈G0 . (6.29)
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The so-called Freidlin condition allows to solve this obstacle problem by the following trun-
cation procedure: First, solve the unconstrained problem

∂tŨ +D|∇xŨ |2 + r = 0 (t, x) ∈ (0,+∞)× R

U(0, x) = 0 x ∈ G0

lim
t→0

U(t, x) = +∞ x ∈ R \G0

(6.30) eq:FKPP U

Then, truncate the solution Ũ by taking into account the constraint minU ≥ 0:

U(t, x) = max
(
Ũ(t, x), 0

)
The solution Ũ can be written using the Hopf-Lax representation formula,

Ũ(t, x) = inf
x∈H1

loc((0,t),Rn)

{∫ t

0

[
|ẋ(s)|2

2
− r
]
ds+ Ũ0(x(0))

∣∣∣ x(t) = x

}
= inf

x∈H1
loc((0,t),Rn)

{∫ t

0

[
|ẋ(s)|2

2
− r
]
ds
∣∣∣ x(0) ∈ G0 , x(t) = x

}
.

The Freidlin condition states that, starting from a final point (t, x) such that Ũ(t, x) > 0, then
tracing backward a minimizing trajectory x(s), it verifies Ũ(s, x(s)) > 0 for all s ∈ (0, t). This
implies the following modification of the Hopf-Lax formula,

Ũ(t, x) = inf
x∈H1

loc((0,t),Rn)

{∫ t

0

[
|ẋ(s)|2

2
− r
]
ds
∣∣∣ x(0) ∈ G0 , x(t) = x , (∀s) Ũ(s, x(s)) > 0

}
,

Alternatively speaking, trajectories ending in the unconstrained area (i.e. Ũ > 0) have gone
through the unconstrained area only. The Freidlin condition holds true for the unconstrained
problem (??).

6.3.2 Formal extension to the kinetic transport-reaction problem

Here, we assume that the initial data ũ0 = u0 is the indicator function of some open interval G0

in the space variable,

u0(x, v) = 0x∈G0 +
v2

2
. (6.31)

For the sake of convenience, we set G0 = (−1, 0).
Variables are changed as previously: (t′, x′, v) = (t′/(1 + r), x′/(1 + r), v).
The following representation formula of the unconstrained problem (??), analogous to the

Hopf-Lax formula, is solution to the non-local Hamilton-Jacobi system,

ũ(t, x, v) = inf
(y,w)∈G0×R

(
φr(t, x− y, v;w) +

w2

2

)
. (6.32) eq:hopf lax cinetique bis

In Section ??, we derived explicit formulas for extremal trajectories. Let define the following
set,

Z+ :=
{

(t, x, v) ∈ R+ × R+ × R
∣∣∣ t ≤ x

v

}
.

An important observation is that extremal trajectories ending in Z+ remain in Z+ in backward
time.
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Figure 4: Extremal trajectories in the zone Z+, superimposed with the possible values of the
function µr(t, x, w): case 1. (blue) and case 2. (magenta).

Let (t, x, v) ∈ Z+. Clearly, y = 0 is an optimal choice in (??). We deduce from Proposition
?? that an extremal trajectory joining (0, w0) and (x, v) is necessarily given by one of the two
following choices,

traj1 1.

x(τ) :=


τx

s
, if 0 ≤ τ ≤ s

x, if s ≤ τ ≤ t,
v(τ) :=


x

s
, if 0 ≤ τ ≤ s

0, if s ≤ τ ≤ t,

where the transition occurs at time

s = min
(
t, (1 + r)−

1
3 |x|

2
3

)
.

traj2 2.

x(τ) :=


w0τ , if 0 ≤ τ ≤ x

w0

x, if
x

w0
≤ τ ≤ t,

v(τ) :=


w0 , if 0 ≤ τ ≤ x

w0

0, if
x

w0
≤ τ ≤ t.

The choice between the first case (referred to as trajectory 1), and the second case (referred
to as trajectory 2) is set up according to Proposition ??, see also Figure ?? for a sketchy diagram.

We propose the following extension of the Freidlin condition: Let (x, v) ∈ H1(0, t) be an
extremal trajectory such that the ending point (t, x(t), v(t)) = (t, x, v) belongs to Z+. Assume
that (t, x, v) is such that minv′ ũ (t, x, v′) > 0, then for all τ ∈ (0, t),

min
v′∈R

ũ
(
τ, x(τ), v′

)
> 0 . (6.33)

We refer to it as a non-local Freidlin condition, as the sign condition is required for all w along
the projected backward trajectory (τ, x(τ)).
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We prove below that this condition holds true. Let (τ, x(τ), v(τ)) be such an extremal trajec-
tory belonging to Z+. We denote by (0, w0) its starting point. The condition minv′ ũ (t, x, v′) > 0
is rewritten using (??)

(∀w) µr(t, x;w) +
w2

2
> 0 , (6.34) eq:hyp w

and the requirement is:

(∀τ ∈ (0, t)) (∀w) µr (τ, x(τ);w) +
w2

2
> 0 , (6.35)

We can conclude, provided that the function τ 7→ µr (τ, x(τ);w) + w2/2 has the following
monotonicity for τ ∈ (0, t): increasing, then decreasing. Indeed, it is nonnegative at τ = 0 and
at τ = t (??). Therefore, it is positive for τ ∈ (0, t).

lem:check Freidlin Lemma 6.19. The function τ 7→ µr (τ, x(τ);w) is increasing, then decreasing for τ ∈ (0, t).

There is some subtlety here, because, the trajectory is associated with some parameter w0,
which is generally different from w. It means that the typical trajectories shown in Figure ??
are not necessarily in phase with background areas delimited by the plain red curves.

Proof of Lemma ??. There is quite a number of cases to discuss. However, we can overcome
the complexity of the picture, by remarking that the trajectory always finish with a constant
part, x(τ) = x. On this part, the function µr (τ, x;w) is clearly decreasing.

To conclude, it remains to prove that the function µ(τ) = µr (τ, x(τ);w) is concave on the
linear part of the trajectory. Let it be x(τ) = cτ , for some positive speed c. On each of the
zones A,B,C, µ is concave: it is linear on A and C, and it is equal to (3/2)(1+ r)2/3|cτ |2/3− rτ
on B. In addition, there are two possible junctions: the one from A to B, and the one from C
to B (see Figure ??).
Junction from A to B (Figure ??a): let τ0 be the time of transition from A to B. It satisfies
cτ0 = (1 + r)1/2τ

3/2
0 . The slope at τ = τ0− is equal to 1. The slope at τ = τ0+ is

(1 + r)2/3c2/3τ
−1/3
0 − r = (1 + r)2/3c2/3

(
c2

1 + r

)−1/3
− r = 1 . (6.36)

There is no slope discontinuity at this junction.
Junction from C to B (Figure ??b): let τ0 be the time of transition from C to B. It satisfies
(1 + r)cτ0 = (3/2)3w3. The slope at τ = τ0− is

(1 + r)
c

w
− r . (6.37)

The slope at τ = τ0+ is

(1 + r)2/3c2/3τ
−1/3
0 − r = (1 + r)2/3c2/3

((
3

2

)3 w3

(1 + r)c

)−1/3
− r =

2

3
(1 + r)

c

w
− r . (6.38)

The slope is necessarily decreasing at this junction.
We conclude that µ is globally concave on the linear part of the trajectory, wherever it goes

through. Then, it is decreasing on the constant part of the trajectory. Consequently, µ has the
required monotonicity.
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Figure 5: Extremal trajectories associated with the initial velocity w0, superimposed with the
possible values of the function µr(t, x, w), for w 6= w0. There are two possible transitions occuring
on the linear part of the trajectory: (a) transition from A to B, and (b) transition from C to
B. The concavity of µr (τ, x(τ);w) accross each of these junctions is proven.fig:junction
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