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Abstract—Generally, compiler users apply different optimiza-
tions to generate efficient code with respect to non-functional
properties such as energy consumption, execution time, etc.
However, due to the huge number of optimizations provided
by modern compilers, finding the best optimization sequence
for a specific objective and a given program is more and more
challenging.

This paper proposes NOTICE, a component-based framework
for non-functional testing of compilers through the monitoring
of generated code in a controlled sand-boxing environment.
We evaluate the effectiveness of our approach by verifying the
optimizations performed by the GCC compiler. Our experimental
results show that our approach is able to auto-tune compilers
according to user requirements and construct optimizations that
yield to better performance results than standard optimization
levels. We also demonstrate that NOTICE can be used to
automatically construct optimization levels that represent optimal
trade-offs between multiple non-functional properties such as
execution time and resource usage requirements.

Keywords- software quality; non-functional properties; com-
pilers; testing.

I. INTRODUCTION

Compiler users tend to improve software programs in a
safe and profitable way. Modern compilers provide a broad
collection of optimizations that can be applied during the
code generation process. For functional testing of compilers,
software testers generally use to run a set of test suites
on different optimized software versions and compare the
functional outcome that can be either pass (correct behavior)
or fail (incorrect behavior, crashes, or bugs) [1]–[3].

For non-functional testing, improvement of source code
programs in terms of performance can refer to several dif-
ferent non-functional properties of the produced code such as
code size, resource or energy consumption, execution time,
among others [4], [5]. Testing non-functional properties is
more challenging because compilers may have a huge number
of potential optimization combinations, making it hard and
time-consuming for software developers to find/construct the
sequence of optimizations that satisfies user specific key
objectives and criteria. It also requires a comprehensive un-
derstanding of the underlying system architecture, the target
application, and the available optimizations of the compiler.

In some cases, these optimizations may negatively decrease
the quality of the software and deteriorate application per-
formance over time [6]. As a consequence, compiler creators

usually define fixed and program-independent sequence opti-
mizations, which are based on their experiences and heuristics.
For example, in GCC, we can distinguish optimization levels
from O1 to O3. Each optimization level involves a fixed list
of compiler optimization options and provides different trade-
offs in terms of non-functional properties. Nevertheless, there
is no guarantee that these optimization levels will perform well
on untested architectures or for unseen applications. Thus, it
is necessary to detect possible issues caused by source code
changes such as performance regressions and help users to
validate optimizations that induce performance improvement.

We also note that when trying to optimize software perfor-
mance, many non-functional properties and design constraints
must be involved and satisfied simultaneously to better opti-
mize code. Several research efforts try to optimize a single
criterion (usually the execution time) [7]–[9] and ignore other
important non-functional properties, more precisely resource
consumption properties (e.g., memory or CPU usage) that must
be taken into consideration and can be equally important in
relation to the performance. Sometimes, improving program
execution time can result in a high resource usage which may
decrease system performance. For example, embedded systems
for which code is generated often have limited resources. Thus,
optimization techniques must be applied whenever possible to
generate efficient code and improve performance (in terms of
execution time) with respect to available resources (CPU or
memory usage) [10]. Therefore, it is important to construct
optimization levels that represent multiple trade-offs between
non-functional properties, enabling the software designer to
choose among different optimal solutions which best suit the
system specifications.

In this paper, we propose NOTICE (as NOn-functional
TestIng of CompilErs), a component-based framework for
non-functional testing of compilers through the monitoring
of generated code in a controlled sand-boxing environment.
Our approach is based on micro-services to automate the
deployment and monitoring of different variants of optimized
code. NOTICE is an on-demand tool that employs mono and
multi-objective evolutionary search algorithms to construct op-
timization sequences that satisfy user key objectives (execution
time, code size, compilation time, CPU or memory usage,
etc.). In this paper, we make the following contributions:

• We introduce a novel formulation of the compiler opti-
mization problem using Novelty Search [11]. We eval-



uate the effectiveness of our approach by verifying the
optimizations performed by the GCC compiler. Our ex-
perimental results show that NOTICE is able to auto-
tune compilers according to user choices (heuristics,
objectives, programs, etc.) and construct optimizations
that yield to better performance results than standard
optimization levels.

• We propose a micro-service infrastructure to ensure
the deployment and monitoring of different variants of
optimized code. In this paper, we focus more on the
relationship between runtime execution of optimized code
and resource consumption profiles (CPU and memory
usage) by providing a fine-grained understanding and
analysis of compilers behavior regarding optimizations.

• We also demonstrate that NOTICE can be used to
automatically construct optimization levels that repre-
sent optimal trade-offs between multiple non-functional
properties, such as execution time, memory usage, CPU
consumption, etc.

The paper is organized as follows. Section II describes the
motivation behind this work. A search-based technique for
compiler optimization exploration is presented in Section III.
We present in Section IV our infrastructure for non-functional
testing using micro-services. The evaluation and results of our
experiments are discussed in Section V. Finally, related work,
concluding remarks, and future work are provided in Sections
VI and VII.

II. MOTIVATION

A. Compiler Optimizations

In the past, researchers have shown that the choice of opti-
mization sequences may influence software performance [4],
[8]. As a consequence, software-performance optimization
becomes a key objective for both, software industries and
developers, which are often willing to pay additional costs
to meet specific performance goals, especially for resource-
constrained systems.

Universal and predefined sequences, e. g., O1 to O3 in
GCC, may not always produce good performance results
and may be highly dependent on the benchmark and the
source code they have been tested on [2], [12], [13]. Indeed,
each one of these optimizations interacts with the code and
in turn, with all other optimizations in complicated ways.
Similarly, code transformations can either create or eliminate
opportunities for other transformations and it is quite difficult
for users to predict the effectiveness of optimizations on their
source code program. As a result, most software engineering
programmers that are not familiar with compiler optimizations
find difficulties to select effective optimization sequences [4].

To explore the large optimization space, users have to
evaluate the effect of optimizations according to a specific
performance objective (see Figure 1). Performance can depend
on different properties such as execution time, compilation
time, resource consumption, code size, etc. Thus, finding
the optimal optimization combination for an input source

code is a challenging and time-consuming problem. Many
approaches [2], [14] have attempted to solve this optimization
selection problem using techniques such as Genetic Algo-
rithms (GAs), machine learning techniques, etc.

It is important to notice that performing optimizations to
source code can be so expensive at resource usage that it
may induce compiler bugs or crashes. Indeed, in a resource-
constrained environment and because of insufficient resources,
compiler optimizations can lead to memory leaks or execution
crashes [15]. Thus, it becomes necessary to test the non-
functional properties of optimized code and check its behavior
regarding optimizations that can lead to performance improve-
ment or regression.
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Fig. 1. Process of compiler optimization exploration

B. Example: GCC Compiler

The GNU Compiler Collection, GCC, is a very popular
collection of programming compilers, available for different
platforms. GCC exposes its various optimizations via a number
of flags that can be turned on or off through command-line
compiler switches.

For instance, version 4.8.4 provides a wide range of
command-line options that can be enabled or disabled, in-
cluding more than 150 options for optimization. The diversity
of available optimization options makes the design space for
optimization level very huge, increasing the need for heuristics
to explore the search space of feasible optimization sequences.
For instance, we count 76 optimization flags that are enabled
by the four default optimization levels (O1, O2, O3, Ofast).
In fact, O1 reduces the code size and execution time without
performing any optimization that reduces the compilation time.
It turns on 32 flags. O2 increases the compilation time and
reduces the execution time of generated code. It turns on all
optimization flags specified by O1 plus 35 other options. O3 is
more aggressive level which enables all O2 options plus eight
more optimizations. Finally, Ofast is the most aggressive level
which enables optimizations that are not valid for all standard-
compliant programs. It turns on all O3 optimizations plus one
more aggressive optimization. This results in a huge space
with 276 possible optimization combinations. The full list of
optimizations is available here [16]. Optimization flags in GCC
can be turned off by using ”fno-”+flag instead of ”f”+flag in
the beginning of each optimization. We use this technique to
play with compiler switches.



III. EVOLUTIONARY EXPLORATION OF COMPILER
OPTIMIZATIONS

Many techniques (meta-heuristics, constraint programming,
etc.) can be used to explore the large set of optimization
combinations of modern compilers. In our approach, we study
the use of the Novelty Search (NS) technique to identify the
set of compiler optimization options that optimize the non-
functional properties of code.

A. Novelty Search Adaptation

In this work, we aim at providing a new alternative for
choosing effective compiler optimization options compared
to the state of the art approaches. In fact, since the search
space of possible combinations is too large, we aim at using
a new search-based technique called Novelty Search [11] to
tackle this issue. The idea of this technique is to explore the
search space of possible compiler flag options by considering
sequence diversity as a single objective. Instead of having
a fitness-based selection that maximizes one of the non-
functional objectives, we select optimization sequences based
on a novelty score showing how different they are compared
to all other combinations evaluated so far. We claim that
the search towards effective optimization sequences is not
straightforward since the interactions between optimizations is
too complex and difficult to define. For instance, in a previous
work [8], Chen et al. showed that handful optimizations
may lead to higher performance than other techniques of
iterative optimization. In fact, the fitness-based search may
be trapped into some local optima that cannot escape. This
phenomenon is known as ”diversity loss”. For example, if
the most effective optimization sequence that induces less
execution time lies far from the search space defined by the
gradient of the fitness function, then some promising search
areas may not be reached. The issue of premature convergence
to local optima has been a common problem in evolutionary
algorithms. Many methods are proposed to overcome this
problem [17]. However, all these efforts use a fitness-based
selection to guide the search. Considering diversity as the
unique objective function to be optimized may be a key
solution to this problem. Therefore, during the evolutionary
process, we select optimization sequences that remain in sparse
regions of the search space in order to guide the search towards
novelty. In the meantime, we choose to gather non-functional
metrics of explored sequences such as memory consumption.
We describe in more details the way we are collecting these
non-functional metrics in section 4.

Generally, NS acts like GAs (Example of GA use in [18]).
However, NS needs extra changes. First, a new novelty metric
is required to replace the fitness function. Then, an archive
must be added to the algorithm, which is a kind of a database
that remembers individuals that were highly novel when they
were discovered in past generations. Algorithm 1 describes the
overall idea of our NS adaptation. The algorithm takes as input
a source code program and a list of optimizations. We initialize
first the novelty parameters and create a new archive with limit
size L (lines 1 & 2). In this example, we gather information

about memory consumption. In lines 3 & 4, we compile and
execute the input program without any optimization (O0).
Then, we measure the resulting memory consumption. By
doing so, we will be able to compare it to the memory con-
sumption of new generated solutions. The best solution is the
one that yields to the lowest memory consumption compared
to O0 usage. Before starting the evolutionary process, we
generate an initial population with random sequences. Line
6-21 encode the main NS loop, which searches for the best
sequence in terms of memory consumption. For each sequence
in the population, we compile the input program, execute it and
evaluate the solution by calculating the average distance from
its k-nearest neighbors. Sequences that get a novelty metric
higher than the novelty threshold T are added to the archive.
T defines the threshold for how novel a sequence has to be
before it is added to the archive. In the meantime, we check
if the optimization sequence yields to the lowest memory
consumption so that, we can consider it as the best solution.
Finally, genetic operators (mutation and crossover) are applied
afterwards to fulfill the next population. This process is iterated
until reaching the maximum number of evaluations.

Algorithm 1: Novelty search algorithm for compiler op-
timization exploration

Require: Optimization options O
Require: Program C
Require: Novelty threshold T
Require: Limit L
Require: Nearest neighbors K
Require: Number of evaluations N
Ensure: Best optimization sequence best sequence

1: initialize parameters(L, T ,N ,K)
2: create archive(L)
3: generated code← compile(”-O0”, C)
4: minimum usage← execute(generated code)
5: population← random sequences(O)
6: repeat
7: for sequence ∈ population do
8: generated code← compile(sequence, C)
9: memory usage← execute(generated code)

10: novelty metric(sequence)←
distFromKnearest(archive, population,K)

11: if novelty metric > T then
12: archive← archive ∪ sequence
13: end if
14: if memory usage < minimum usage then
15: best sequence← sequence
16: minimum usage← memory usage
17: end if
18: end for
19: new population← generate new population(population)
20: generation← generation+ 1
21: until generation = N
22: return best sequence

1) Optimization Sequence Representation: For our case
study, a candidate solution represents all compiler switches
that are used in the four standard optimization levels (O1,
O2, O3 and Ofast). Thereby, we represent this solution as a
vector where each dimension is a compiler flag. The variables
that represent compiler options are represented as genes in a
chromosome. Thus, a solution represents the CFLAGS value
used by GCC to compile programs. A solution has always the



same size, which corresponds to the total number of involved
flags. However, during the evolutionary process, these flags
are turned on or off depending on the mutation and crossover
operators (see example in Figure 2). As well, we keep the same
order of invoking compiler flags since that does not affect the
optimization process and it is handled internally by GCC.

Fig. 2. Solution representation

2) Novelty Metric: The Novelty metric expresses the
sparseness of an input optimization sequence. It measures
its distance to all other sequences in the current population
and to all sequences that were discovered in the past (i. e.,
sequences in the archive). We can quantify the sparseness of
a solution as the average distance to the k-nearest neighbors.
If the average distance to a given point’s nearest neighbors is
large then it belongs to a sparse area and will get a high novelty
score. Otherwise, if the average distance is small so it belongs
certainly to a dense region then it will get a low novelty
score. The distance between two sequences is computed as
the total number of symmetric differences among optimization
sequences. Formally, we define this distance as follows :

distance(S1, S2) = |S14 S2| (1)

where S1 and S2 are two selected optimization sequences
(solutions). The distance value is equal to 0 if the two
optimization sequences are similar and higher than 0 if there
is at least one optimization difference. The maximum distance
value is equal to the total number of input flags.

To measure the sparseness of a solution, we use the previ-
ously defined distance to compute the average distance of a
sequence to its k-nearest neighbors. In this context, we define
the novelty metric of a particular solution as follows:

NM(S) =
1

k

k∑
i=1

distance(S, µi) (2)

where µi is the ith nearest neighbor of the solution S within
the population and the archive of novel individuals.

B. Novelty Search For Multi-objective Optimization

A multi-objective approach provides a trade-off between
two objectives where the developers can select their desired
solution from the Pareto-optimal front. The idea of this
approach is to use multi-objective algorithms to find trade-
offs between non-functional properties of generated code such
as <ExecutionTime–MemoryUsage>. The correlations we are
trying to investigate are more related to the trade-offs between
resource consumption and execution time.

For instance, NS can be easily adapted to multi-objective
problems. In this adaptation, the SBSE formulation remains
the same as described in Algorithm 1. However, in order to

evaluate the new discovered solutions, we have to consider
two main objectives and add the non-dominated solutions to
the Pareto non-dominated set. We apply the Pareto dominance
relation to find solutions that are not Pareto dominated by any
other solution discovered so far, like in NSGA-II [19], [20].
Then, this Pareto non-dominated set is returned as a result.
There is typically more than one optimal solution at the end
of NS. The maximum size of the final Pareto set cannot exceed
the size of the initial population.

IV. AN INFRASTRUCTURE FOR NON-FUNCTIONAL
TESTING USING SYSTEM CONTAINERS

In general, there are many non-functional properties that can
be influenced by compiler optimizations, e. g., performance
(execution time), code quality, robustness, etc. In this paper,
we focus on the efficiency of optimized code in terms of
resource consumption (memory and CPU). To assess the
performance of optimized code many configurations, i.e.,
optimizations, must be applied to software programs. Running
different applications with different configurations on one
single machine is complicated because a single system has
limited resources and it can lead to performance regressions.
Therefore, we need to deploy the test harness, i. e., the software
artifacts needed to perform a test, on an elastic infrastructure
that provides to compiler user facilities to ensure the deploy-
ment and monitoring of different configurations of optimized
code. For this purpose, we propose NOTICE, a non-functional
testing infrastructure based on System Container techniques
such as the Docker1 environment. This framework automates
the deployment and execution of applications inside software
containers by allowing multiple program configurations to
run autonomously on different servers (i. e., a cloud servers).
It also provides a distributed environment where system re-
sources can be finely managed and limited according to the
needs. We rely on this component-based infrastructure and
benefit from all its advantages to:

1) Deploy generated code within containers.
2) Automate optimization sequence generation.
3) Execute and monitor service containers.
4) Gather performance metrics (CPU, Memory, I/O, etc.).
Before starting to monitor and test generated code, we have

to describe the deployment environment of NOTICE.

A. System Containers as Deployment Environment

NOTICE represents a component-based infrastructure based
on Docker Linux containers to monitor the execution of
produced binaries by compilers in terms of resource usage.
Docker is an open source engine that automates the deploy-
ment of any application as a lightweight, portable, and self-
sufficient container that runs virtually on a host machine.
Using Docker, we can define preconfigured applications and
servers to host as virtual images. We can also define the way
the service should be deployed in the host machine using

1https://www.docker.com



configuration files called Dockerfiles. We use the Docker Hub2

for building, saving, and managing all our Docker images.
We can then instantiate different containers from these Docker
images.

Therefore, to run our experiments, each optimized program
is executed individually inside an isolated Linux container.
By doing so, we ensure that each executed program runs in
isolation without being affected by the host machine or any
other processes. Moreover, since a container is cheap to create,
we are able to create too many containers as long as we
have new programs to execute. Since each program execution
requires a new container to be created, it is crucial to remove
and kill containers that have finished their job to eliminate the
load on the system. In fact, containers/programs are running
sequentially without defining any resource constraints. So once
execution is done, resources reserved for the container are
automatically released to enable spawning next containers.
Therefore, the host machine will not suffer too much from
performance trade-offs.

In short, the main advantages of this approach are:
• The use of containers induces less performance overhead

and resource isolation compared to using a full stack
virtualization solution. Indeed, instrumentation tools for
memory profiling like Valgrind [21] can induce too much
overhead.

• Thanks to the use of Dockerfile, NOTICE can be easily
configured by compiler users to define the target compiler
to test (e. g., GCC compiler version), the container OS,
the input program under test and the optimization options,
etc. Thus, NOTICE uses the same configured Docker
image to execute different instances of generated code.
For hardware architecture, containers share the same
platform architecture as the host machine (e.g., x86, x64,
ARM, etc.).

• Docker uses Linux control groups (cgroups) to group
processes running in the container. This allows us to
manage the resources of a group of processes, which
is very valuable. This approach increases the flexibility
when we want to manage resources, since we can manage
every group individually.

• Although containers run in isolation, they can share data
with the host machine and other running containers. Thus,
non-functional data relative to resource consumption can
be easily gathered and managed by other containers (i. e.,
for storage purpose, visualization)

B. Runtime Testing Components
In order to test our running applications within Docker

containers, we aim to use a set of Docker components to ease
the extraction of non-functional properties related to resource
usage.

1) Monitoring Component: This container provides an un-
derstanding of the resource usage and performance charac-
teristics of our running containers. Generally, Docker con-
tainers rely on cgroups file systems to expose a lot of

2https://hub.docker.com/

metrics about accumulated CPU cycles, memory, block I/O
usage, etc. Therefore, our monitoring component automates
the extraction of runtime performance metrics using cgroups.
For example, we access live resource consumption of each
container available at the cgroup file system via stats found in
/sys/fs/cgroup/cpu/docker/(longid)/ (for CPU consump-
tion) and /sys/fs/cgroup/memory/docker/(longid)/ (for
stats related to memory consumption). This component will
automate the process of service discovery and metrics aggre-
gation. Thus, instead of gathering manually metrics located
in cgroups file systems, it extracts automatically the runtime
resource usage statistics relative to running components. We
note that resource usage information is collected in raw data.
This process may induce a little overhead because it does
very fine-grained accounting of resource usage on running
container. Fortunately, this may not affect the gathered perfor-
mance values since NOTICE run only one optimized version
of code within each container.

To ease the monitoring process, NOTICE integrates cAd-
visor, a Container Advisor3. It is a tool that monitors service
containers at runtime. The cAdvisor Docker image does not
need any configuration on the host machine. We have just
to run it on our host machine. It will then have access to
resource usage and performance characteristics of all running
containers. This image uses the cgroups mechanism described
above to collect, aggregate, process, and export ephemeral
real-time information about running containers. Then, it re-
ports all statistics via web UI (http : //localhost : 8080) to
view live resource consumption of each container. cAdvisor
has been widely used in different projects such as Heapster4

and Google Cloud Platform5.
However, cAdvisor monitors and aggregates live data over

only 60 seconds interval. Therefore, we would like to record all
data over time since container’s creation. This is useful to run
queries and define non-functional metrics from historical data.
Thereby, to make gathered data truly valuable for resource
usage monitoring, it becomes necessary to log it into a
database at runtime. Thus, we link our monitoring component
to a back-end database.

2) Back-end Database Component: This component rep-
resents a time-series database back-end. It is plugged with
the previously described monitoring component to save the
non-functional data for long-term retention, analytics and vi-
sualization. Hence, we define its corresponding ip port into the
monitoring component so that, container statistics are sent over
TCP port (e.g., 8083) exposed by the database component.

During the execution of generated code, resource usage stats
are continuously sent to this component. When a container is
killed, NOTICE is able to access to its relative resource usage
metrics through the database. We choose a time series database
because we are collecting time series data that correspond to
the resource utilization profiles of programs execution.

3https://github.com/google/cadvisor
4https://github.com/kubernetes/heapster
5https://cloud.google.com/



We use InfluxDB6, an open source distributed time-series
database as a back-end to record data. InfluxDB allows the
user to execute SQL-like queries on the database. For example,
the following query reports the maximum memory usage of
container ”generated code v1” since its creation:

select max (memory usage) from stats
where container name=’generated code v1’

To give an idea about data stored in InfluxDB, Table 1
describes the different stored metrics:

Metric Description
Name Container Name
T Elapsed time since container’s creation
Network Stats for network bytes and packets in an out of the container
Disk IO Disk I/O stats
Memory Memory usage
CPU CPU usage

TABLE I
RESOURCE USAGE METRICS RECORDED IN INFLUXDB

Apart from that, NOTICE provides also information about
the size of generated binaries and the compilation time needed
to produced code. For instance, resource usage statistics are
collected and stored using NOTICE. It is relevant to show
resource usage profiles of running programs overtime. To
do so, we present a front-end visualization component for
performance profiling.

3) Front-end Visualization Component: NOTICE provides
a dashboard to run queries and view different profiles of
resource consumption of running components through web
UI. Thanks to this component, we can compare visually the
profiles of resource consumption.

To do so, we choose Grafana7, a time-series visualization
tool available for Docker. It is a web application running
within a container. We run Grafana and we link it to InfluxDB
by setting up the data source port 8086 so that, it can easily
request data from the database. We recall that InfluxDB
also provides a web UI to query the database and show
graphs. But, Grafana let us display live results over time in
much pretty looking graphs. Same as InfluxDB, we use SQL
queries to extract non-functional metrics from the database for
visualization.

C. Wrapping Everything Together: Architecture Overview

To summarize, we present, in Figure 3, an overall overview
of the different components involved within NOTICE.

Our testing infrastructure will run different jobs within
Docker containers. First, in the top level layer, we use NOTICE
to generate different configurations of code using compiler
optimizations (e.g., GCC compiler). Then, we wrap generated
code within multiple instances of our preconfigured Docker
image. Each container will execute a specific job. For our case,
a job represents a program compiled with a new optimization

6https://github.com/influxdata/influxdb
7https://github.com/grafana/grafana
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Fig. 3. NOTICE architecture overview

sequence (e.g., using NS). Meanwhile, we start our runtime
testing components (e.g., cAdvisor, InfluxDB and Grafana).
The monitoring component collects usage statistics of all
running containers and save them at runtime in the time series
database component. The visualization component comes later
to allow end users to define performance metrics and draw
up charts. The use of the front-end visualization component
is optional and NOTICE can directly access to information
stored in the database through REST API calls.

Remark. We would notice that this testing infrastructure can
be generalized and adapted to other case studies other than
compilers (e.g., testing model-based code generators). Using
Docker technology, any software application/generated code
can be easily deployed within containers (i.e., by configuring
the Docker image). It will be later executed and monitored
using NOTICE monitoring components.

V. EVALUATION

So far, we have presented a sound procedure and automated
component-based framework for extracting the non-functional
properties of generated code. In this section, we evaluate the
implementation of our approach by explaining the design of
our empirical study; the research questions we set out to
answer and different methods we used to answer these ques-
tions. The experimental material is available for replication
purposes8.

A. Research Questions

Our experiments aim at answering the following research
questions:

RQ1: Mono-objective SBSE Validation. How does the
proposed diversity-based exploration of optimization se-
quences perform compared to other mono-objective algorithms

8https://noticegcc.wordpress.com/



in terms of memory and CPU consumption, execution time,
etc.?

RQ2: Sensitivity. How sensitive are input programs to
compiler optimization options?

RQ3: Impact of optimizations on resource consumption.
How compiler optimizations impact on the non-functional
properties of generated programs?

RQ4: Trade-offs between non-functional properties. How
can multi-objective approaches be useful to find trade-offs
between non-functional properties?

To answer these questions, we conduct several experiments
using NOTICE to validate our global approach for non-
functional testing of compilers using system containers.

B. Experimental Setup

1) Programs Used in the Empirical Study: To explore the
impact of compiler optimizations a set of input programs are
needed. To this end, we use a random C program generator
called Csmith [15]. Csmith is a tool that can generate random
C programs that statically and dynamically conform to the
C99 standard. It has been widely used to perform functional
testing of compilers [1], [3], [22] but not the case for checking
non-functional requirements. Csmith can generate C programs
that use a much wider range of C features including complex
control flow and data structures such as pointers, arrays,
and structs. Csmith programs come with their test suites
that explore the structure of generated programs. Authors
argue that Csmith is an effective bug-finding tool because
it generates tests that explore atypical combinations of C
language features. They also argue that larger programs are
more effective for functional testing. Thus, we run Csmith
for 24 hours and gathered the largest generated programs. We
depicted 111 C programs with an average number of source
lines of 12K. 10 programs are used as training set for RQ1,
100 other programs to answer RQ2 and one last program to
run RQ4 experiment. Selected Csmith programs are described
in more details at [16].

2) Parameters Tuning: An important aspect for meta-
heuristic search algorithms lies in the parameters tuning and
selection, which are necessary to ensure not only fair compar-
ison, but also for potential replication. NOTICE implements
three mono-objective search algorithms (Random Search (RS),
NS, and GA [18]) and two multi-objective optimizations (NS
and NSGA-II [20]). Each initial population/solution of differ-
ent algorithms is completely random. The stopping criterion is
when the maximum number of fitness evaluations is reached.
The resulting parameter values are listed in Table 2. The
same parameter settings are applied to all algorithms under
comparison.

NS, which is our main concern in this work, is implemented
as described in Section 3. During the evolutionary process,
each solution is evaluated using the novelty metric. Novelty is
calculated for each solution by taking the mean of its 15 near-
est optimization sequences in terms of similarity (considering
all sequences in the current population and in the archive).
Initially, the archive is empty. Novelty distance is normalized

TABLE II
ALGORITHM PARAMETERS

Parameter Value Parameter Value
Novelty nearest-k 15 Tournament size 2
Novelty threshold 30 Mutation prob. 0.1
Max archive size 500 Crossover 0.5
Population size 50 Nb generations 100
Individual length 76 Elitism 10
Scaling archive prob. 0.05 Solutions added to archive 3

in the range [0-100]. Then, to create next populations, an elite
of the 10 most novel organisms is copied unchanged, after
which the rest of the new population is created by tournament
selection according to novelty (tournament size = 2). Standard
genetic programming crossover and mutation operators are
applied to these novel sequences in order to produce offspring
individuals and fulfill the next population (crossover = 0.5,
mutation = 0.1). In the meantime, individuals that get a score
higher than 30 (threshold T), they are automatically added to
the archive as well. In fact, this threshold is dynamic. Every
200 evaluations, we check how many individuals have been
copied into the archive. If this number is below 3, the threshold
is increased by multiplying it by 0.95, whereas if solutions
added to archive are above 3, the threshold is decreased by
multiplying it by 1.05. Moreover, as the size of the archive
grows, the nearest-neighbor calculation that determines the
novelty scores for individuals becomes more computationally
demanding. So, to avoid having low accuracy of novelty, we
choose to limit the size of the archive (archive size = 500).
Hence, it follows a first-in first-out data structure which means
that when a new solution gets added, the oldest solution in the
novelty archive will be discarded. Thus, we ensure individual
diversity by removing old sequences that may no longer be
reachable from the current population.

Algorithm parameters were tuned individually in prelimi-
nary experiments. For each parameter, a set of values was
tested. The parameter values chosen are the mostly used in the
literature [23]. The value that yielded the highest performance
score was chosen.

3) Evaluation Metrics Used: For mono-objective algo-
rithms, we use to evaluate solutions using the following
metrics:

-Memory Consumption Reduction (MR): corresponds to
the percentage ratio of memory usage reduction of running
container over the baseline. The baseline in our experiments
is O0 level, which means a non-optimized code. Larger values
for this metric mean better performance. Memory usage is
measured in bytes.

-CPU Consumption Reduction (CR): corresponds to the
percentage ratio of CPU usage reduction over the baseline.
Larger values for this metric mean better performance. The
CPU consumption is measured in seconds, as the CPU time.

-Speedup (S): corresponds to the percentage improvement
in execution speed of an optimized code compared to the
execution time of the baseline version. Program execution time
is measured in seconds.



4) Setting up Infrastructure: To answer the previous re-
search questions, we configure NOTICE to run different
experiments. Figure 4 shows a big picture of the testing
and monitoring infrastructure considered in these experiments.
First, a meta-heuristic (mono or multi-objective) is applied to
generate specific optimization sequences for the GCC compiler
(step 1). During all experiments, we use GCC 4.8.4, as it is
introduced in the motivation section, although it is possible
to choose another compiler version using NOTICE since the
process of optimizations extraction is done automatically.
Then, we generate a new optimized code and deploy the
output binary within a new instance of our preconfigured
Docker image (step 2). While executing the optimized code
inside the container, we collect runtime performance data (step
4) and record it in a new time-series database using our
InfluxDB back-end container (step 5). Next, NOTICE accesses
remotely to stored data in InfluxDB using REST API calls and
assigns new performance values to the current solution (step
6). The choice of performance metrics depends on experiment
objectives (Memory improvement, speedup, etc.).
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Fig. 4. NOTICE experimental infrastructure

To obtain comparable and reproducible results, we use the
same hardware across all experiments: an AMD A10-7700K
APU Radeon(TM) R7 Graphics processor with 4 CPU cores
(2.0 GHz), running Linux with a 64 bit kernel and 16 GB of
system memory.

C. Experimental Methodology and Results

In the following paragraphs, we report the methodology and
results of our experiments.

1) RQ1. Mono-objective SBSE Validation:
a) Method: To answer the first research question RQ1,

we conduct a mono-objective search for compiler optimization
exploration in order to evaluate the non-functional properties
of optimized code. Thus, we generate optimization sequences
using three search-based techniques (RS, GA, and NS) and
compare their performance results to standard GCC optimiza-
tion levels (O1, O2, O3, and Ofast). In this experiment, we
choose to optimize for execution time (S), memory usage
(MR), and CPU consumption (CR). Each non-functional prop-
erty is improved separately and independently of other metrics.
We recall that other properties can be also optimized using

NOTICE (e.g., code size, compilation time, etc.), but in this
experiment, we focus only on three properties.

Non-functional
Improvement

Optimizations best 
sequence

Training set
programs

Search for best 
optimization 
sequenceNon-functional 

Metric

Unseen
programs

Fig. 5. Evaluation strategy to answer RQ1 and RQ2

As it is shown on the left side of Figure 5, given a
list of optimizations and a non-functional objective, we use
NOTICE to search for the best optimization sequence across
a set of input programs that we call ”the training set”.
This ”training set” is composed of random Csmith programs
(10 programs). We apply then generated sequences to these
programs. Therefore, the code quality metric, in this setting,
is equal to the average performance improvement (S, MR, or
CR) and that, for all programs under test.

TABLE III
RESULTS OF MONO-OBJECTIVE OPTIMIZATIONS

O1 O2 O3 Ofast RS GA NS
S 1.051 1.107 1.107 1.103 1.121 1.143 1.365
MR(%) 4.8 -8.4 4.2 6.1 10.70 15.2 15.6
CR(%) -1.3 -5 3.4 -5 18.2 22.2 23.5

b) Results: Table 3 reports the comparison results of
three non-functional properties CR, MR, and S. At the first
glance, we can clearly see that all search-based algorithms
outperform standard GCC levels with minimum improvement
of 10% for memory usage and 18% for CPU time (when
applying RS). Our proposed NS approach has the best im-
provement results for three metrics with 1.365 of speedup,
15.6% of memory reduction and 23.5% of CPU time reduction
across all programs under test. NS is clearly better than GA
in terms of speedup. However, for MR and CR, NS is slightly
better than GA with 0.4% improvement for MR and 1.3% for
CR. RS has almost the lowest optimization performance but
is still better than standard GCC levels.

We remark as well that applying standard optimizations has
an impact on the execution time with a speedup of 1.107 for
O2 and O3. Ofast has the same impact as O2 and O3 for
the execution speed. However, the impact of GCC levels on
resource consumption is not always efficient. O2, for example,
increases resource consumption compared to O0 (-8.4% for
MR and -5% for CR). This can be explained by the fact that
standard GCC levels apply some aggressive optimizations that
increase the performance of generated code and deteriorate
system resources.
Key findings for RQ1.
– Best discovered optimization sequences using mono-
objective search techniques always provide better results than
standard GCC optimization levels.
– Novelty Search is a good candidate to improve code in
terms of non-functional properties since it is able to discover
optimization combinations that outperform RS and GA.



2) RQ2. Sensitivity:
a) Method: Another interesting experiment is to test the

sensitivity of input programs to compiler optimizations and
evaluate the general applicability of best optimal optimiza-
tion sets, previously discovered in RQ1. These sequences
correspond to the best generated sequences using NS for the
three non-functional properties S, MR and CR (i.e., sequences
obtained in column 8 of Table 3). Thus, we apply best
discovered optimizations in RQ1 to new unseen Csmith (100
new random programs) and we compare then, the performance
improvement across these programs (see right side of Figure
5). We also apply standard optimizations, O2 and O3, to new
Csmith programs in order to compare the performance results.
The idea of this experiment is to test whether new gener-
ated Csmith programs are sensitive to previously discovered
optimizations or not. If so, this will be useful for compiler
users and researchers to use NOTICE in order to build general
optimization sequences from their representative training set
programs.

Fig. 6. Boxplots of the obtained performance results across 100 unseen
Csmith programs, for each non-functional property: Speedup (S), memory
(MR) and CPU (CR) and for each optimization strategy: O2, O3 and NS

b) Results: Figure 6 shows the distribution of memory,
CPU and speedup improvement across new Csmith programs.
For each non-functional property, we apply O2, O3 and best
NS sequences. Speedup results show that the three optimiza-
tion strategies lead to almost the same distribution with a
median value of 1.12 for speedup. This can be explained by
the fact that NS might need more time to find the sequence
that best optimizes the execution speed. Meanwhile, O2 and
O3 have also the same impact on CR and MR which is
almost the same for both levels (CR median value is 8% and
around 5% for MR). However, the impact of applying best
generated sequences using NS clearly outperforms O2 and O3
with almost 10% of CPU improvement and 7% of memory
improvement. This proves that NS sequences are efficient and
can be used to optimize resource consumption of new Csmith
programs. This result also proves that Csmith code generator
applies the same rules and structures to generate C code.
For this reason, applied optimization sequences always have a
positive impact on the non-functional properties.
Key findings for RQ2.
– It is possible to build general optimization sequences that
perform better than standard optimization levels
– Best discovered sequences in RQ1 can be mostly used
to improve the memory and CPU consumption of Csmith
programs. To answer RQ2, Csmith programs are sensitive to
compiler optimizations.

3) RQ3. Impact of optimizations on resource usage:
a) Method: In this experiment, we use NOTICE to pro-

vide an understanding of optimizations behavior, in terms of
resource consumption, when trying to optimize for execution
time. Thus, we choose one instance of obtained results in RQ1
related to the best speedup improvement (i.e., results obtained
in line 1 of Table 3) and we study the impact of speedup
improvement on memory and CPU consumption. We also
compare resource usage data to standard GCC levels as they
were presented in Table 3. Improvements are always calculated
over the non-optimized version. The idea of this experiment is
to: (1) prove, or not, the usefulness of involving resource usage
metrics as key objectives for performance improvement; (2)
the need, or not, of multi-objective search strategy to handle
both resource usage and performance properties.

b) Results: Figure 7 shows the impact of speedup opti-
mization on resource consumption. For instance, O2 and O3
that led to the best speedup improvement among standard op-
timization levels in RQ1, present opposite impact on resource
usage. Applying O2 induces -8.4% of MR and -5% of CR.
However, applying O3 improves MR and CR respectively by
3.4% and 4.2%. Hence, we note that when applying standard
levels, there is no clear correlation between speedup and
resource usage since compiler optimizations are generally used
to optimize the execution speed and never evaluated to reduce
system resources. On the other hand, the outcome of applying
different mono-objective algorithms for speedup optimization
also proves that resource consumption is always in conflict
with execution speed. The highest MR and CR is reached
using NS with respectively 1.2% and 5.4%. This improvement
is considerably low compared to scores reached when we have
applied resource usage metrics as key objectives in RQ1 (i.e.,
15.6% for MR and 23.5% for CR). Furthermore, we note that
generated sequences using RS and GA have a high impact
on system resources since all resource usage values are worse
than the baseline. These results agree to the idea that compiler
optimizations do not put too much emphasis on the trade-off
between execution time and resource consumption.
Key findings for RQ3.
– Optimizing software performance can induce undesirable
effects on system resources.
– A trade-off is needed to find a correlation between software
performance and resource usage.

4) RQ4. Trade-offs between non-functional properties:
a) Method: Finally, to answer RQ4, we use NOTICE

again to find trade-offs between non-functional properties.
In this experiment, we choose to focus on the trade-off
<ExecutionTime–MemoryUsage>. In addition to our NS
adaptation for multi-objective optimization, we implement
a commonly used multi-objective approach namely NSGA-
II [20]. We denote our NS adaptation by NS-II. We recall
that NS-II is not a multi-objective approach as NSGA-II. It
uses the same NS algorithm. However, in this experiment, it
returns the optimal Pareto front solutions instead of returning
one optimal solution relative to one goal. Apart from that, we
apply different optimization strategies to assess our approach.
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Fig. 7. Impact of speedup improvement on memory and CPU consumption
for each optimization strategy

First, we apply standard GCC levels. Second, we apply
best generated sequences relative to memory and speedup
optimization (the same sequences that we have used in RQ2).
Thus, we denote by NS-MR the sequence that yields to the best
memory improvement MR and NS-S to the sequence that leads
to the best speedup. This is useful to compare mono-objective
solutions to new generated ones.

In this experiment, we assess the efficiency of generated
sequences using only one Csmith program. We evaluate the
quality of the obtained Pareto optimal optimization based
on raw data values of memory and execution time. Then,
we compare qualitatively the results by visual inspection of
the Pareto frontiers. The goal of this experiment is to check
whether it exists, or not, a sequence that can reduce both
execution time and memory usage.

b) Results: Figure 8 shows the Pareto optimal solutions
that achieved the best performance assessment for the trade-
off <ExecutionTime–MemoryUsage>. The horizontal axis in-
dicates the memory usage in raw data (in Bytes) as it is
collected using NOTICE. In similar fashion, the vertical axis
shows the execution time in seconds. Furthermore, the figure
shows the impact of applying standard GCC options and best
NS sequences on memory and execution time. Based on these
results, we can see that NSGA-II performs better than NS-II.
In fact, NSGA-II yields to the best set of solutions that presents
the optimal trade-off between the two objectives. Then, it is up
to the compiler user to use one solution from this Pareto front
that satisfies his non-functional requirements (six solutions for
NSGA-II and five for NS-II). For example, he could choose
one solution that maximizes the execution speed in favor of
memory reduction. On the other side, NS-II is capable to
generate only one non-dominated solution. For NS-MR, it
reduces as expected the memory consumption compared to
other optimization levels. The same effect on execution time
when applying the best speedup sequence NS-S. We also note
that all standard GCC levels are dominated by our different
heuristics NS-II, NSGA-II, NS-S and NS-MR. This agrees
to the claim that standard compiler levels do not present a
suitable trade-off between execution time and memory usage.

Fig. 8. Comparison results of obtained Pareto fronts using NSGA-II and
NS-II

Key findings for RQ4.
– NOTICE is able to construct optimization levels that rep-
resent optimal trade-offs between non-functional properties.
– NS is more effective when it is applied for mono-objective
search.
– NSGA-II performs better than our NS adaptation for multi-
objective optimization. However, NS-II performs clearly
better than standard GCC optimizations and previously dis-
covered sequences in RQ1.

D. Discussions
Through these experiments, we showed that NOTICE is able

to provide facilities to compiler users to test the non-functional
properties of generated code. It provides also a support to
search for the best optimization sequences through mono-
objective and multi-objective search algorithms. NOTICE in-
frastructure has shown its capability and scalability to satisfy
user requirements and key objectives in order to produce
efficient code in terms of non-functional properties. During
all experiments, standard optimization levels have been fairly
outperformed by our different heuristics. Moreover, we have
also shown (in RQ1 and RQ3) that optimizing for performance
may be, in some cases, greedy in terms of resource usage.
For example, the impact of standard optimization levels on
resource usage is not always efficient even though it leads to
performance improvement. Thus, compiler users would use
NOTICE to test the impact of optimizations on the non-
functional properties and build their specific sequences by
trying to find trade-offs among these non-functional properties
(RQ4). We would notice that for RQ1, experiments take about
21 days to run all algorithms. This run time might seem long
but, it should be noted that this search can be conducted only
once, since in RQ2 we showed that best gathered optimizations
can be used with unseen programs of the same category as
the training set, used to generate optimizations. This has to be
proved with other case studies. As an alternative, it would be
great to test model-based code generators. In the same fashion
as Csmith, code generators apply to same rules to generate
new software programs. Thus, we can use NOTICE to define
general-purpose optimizations from a set of generated code
artifacts. Multi-objective search as conducted in RQ4, takes
about 48 hours, which we believe is acceptable for practical



use. Nevertheless, speeding up the search speed may be an
interesting feature for future research.

E. Threats to Validity

Any automated approach has limitations. We resume, in the
following paragraphs, external and internal threats that can be
raised:

External validity refers to the generalizability of our find-
ings. In this study, we perform experiments on random pro-
grams using Csmith and we use iterative compilation tech-
niques to produce best optimization sequences. We believe
that the use of Csmith programs as input programs is very
relevant because compilers have been widely tested across
Csmith programs [1], [15]. Csmith programs have been used
only for functional testing, but not for non-functional testing.
However, we cannot assert that the best discovered set of
optimizations can be generalized to industrial applications
since optimizations are highly dependent on input programs
and on the target architecture. In fact, experiments conducted
on RQ1 and RQ2 should be replicated to other case studies to
confirm our findings; and build general optimization sequences
from other representative training set programs chosen by
compiler users.

Internal validity is concerned with the causal relationship
between the treatment and the outcome. Meta-heuristic algo-
rithms are stochastic optimizers, they can provide different
results for the same problem instance from one run to another.
Are we providing a statistically sound method or it is just a
random result? Due to time constraints, we run all experi-
ments only once. Following the state-of-the-art approaches in
iterative compilation, previous research efforts [2], [24] did
not provide statistical tests to prove the effectiveness of their
approaches. This is because experiments are time-consuming.
However, we can deal with these internal threats to validity by
performing at least five independent simulation runs for each
problem instance.

VI. RELATED WORK

Our work is related to iterative compilation research field.
The basic idea of iterative compilation is to explore the
compiler optimization space by measuring the impact of op-
timizations on software performance. Several research efforts
have investigated this optimization problem using search-based
techniques (SBSE) to guide the search towards relevant opti-
mizations regrading performance, energy consumption, code
size, compilation time, etc. Experimental results have been
usually compared to standard compiler optimization levels.
The vast majority of the work on iterative compilation focuses
on increasing the speedup of new optimized code compared to
standard compiler optimization levels [2], [4], [5], [8], [14],
[24]–[26]. It has been proven that optimizations are highly
dependent on target platform and input program. Compared
to our proposal, none of the previous work has studied the
impact of compiler optimizations on resource usage. In this
work, we rather focus on compiler optimizations related to

resource consumption, while bearing in mind the performance
improvement.

Novelty Search has never been applied in the field of
iterative compilation. Our work presents the first attempt to
introduce diversity in the compiler optimization problem. The
idea of NS has been introduced by Lehman et al. [11]. It has
been often evaluated in deceptive tasks and especially applied
to evolutionary robotics [27], [28] (in the context of neuroevo-
lution). NS can be easily adapted to different research fields.
In a previous work [29], we have adapted the general idea of
NS to the test data generation problem where novelty score
was calculated as the Manhattan distance between the different
vectors representing the test data. The evaluation metric of
generated test suites is the structural coverage of code. In
this paper, the evaluation metric represents the non-functional
improvements and we are calculating the novelty score as the
symmetric difference between optimization sequences.

For multi-objective optimizations, we are not the first to
address this problem. New approaches have emerged recently
to find trade-offs between non-functional properties [2], [19],
[24]. Hoste et al. [2], which is the most related work to our
proposal, propose COLE, an automated tool for optimization
generation using a multi-objective approach namely SPEA2.
In their work, they try to find Pareto optimal optimization
levels that present a trade-off between execution and compila-
tion time of generated code. Their experimental results show
that the obtained optimization sequences perform better than
standard GCC optimization levels. NOTICE provides also a
fully automated approach to extract non-functional properties.
However, NOTICE differs from COLE because first, our
proposed container-based infrastructure is more generic and
can be adapted to other case studies (i.e., compilers, code
generators, etc.). Second, we provide facilities to compiler
users to extract resource usage metrics using our monitoring
components. Finally, our empirical study investigates different
trade-offs compared to previous work in iterative compilation.

VII. CONCLUSION AND FUTURE WORK

Modern compilers come with huge number of optimizations,
making complicated for compiler users to find best optimiza-
tion sequences. Furthermore, auto-tuning compilers to meet
user requirements is a difficult task since optimizations may
depend on different properties (e.g., platform architecture, soft-
ware programs, target compiler, optimization objective, etc.).
Hence, compiler users merely use standard optimization levels
(O1, O2, O3 and Ofast) to enhance the code quality without
taking too much care about the impact of optimizations on
system resources.

In this paper, we have introduced first a novel formulation of
the compiler optimization problem based on Novelty Search.
The idea of this approach is to drive the search for best opti-
mizations toward novelty. Our work presents the first attempt
to introduce diversity in iterative compilation. Experiments
have shown that Novelty Search can be easily applied to mono
and multi-objective search problems. In addition, we have
reported the results of an empirical study of our approach



compared to different state-of-the-art approaches, and the
obtained results have provided evidence to support the claim
that Novelty Search is able to generate effective optimizations.
Second, we have presented an automated tool for automatic
extraction of non-functional properties of optimized code,
called NOTICE. NOTICE applies different heuristics (includ-
ing Novelty Search) and performs non-functional testing of
compilers through the monitoring of generated code in a
controlled sand-boxing environment. In fact, NOTICE uses a
set of micro-services to provide a fine-grained understanding
of optimization effects on resource consumption. We evaluated
the effectiveness of our approach by verifying the optimiza-
tions performed by GCC compiler. Results showed that our
approach is able to automatically extract information about
memory and CPU consumption. We were also able to find
better optimization sequences than standard GCC optimization
levels.

As a future work, we plan to explore more trade-offs among
resource usage metrics e. g., the correlation between CPU con-
sumption and platform architectures. We also intend to provide
more facilities to NOTICE users in order to test optimizations
performed by modern compilers such as Clang, LLVM, etc.
Finally, NOTICE can be easily adapted and integrated to new
case studies. As an example, we would inspect the behavior
of model-based code generators since different optimizations
can be performed to generate code from models [30]. Thus,
we aim to use the same approach to find non-functional issues
during the code generation process.
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[28] P. Krčah, “Solving deceptive tasks in robot body-brain co-evolution by
searching for behavioral novelty,” in Advances in Robotics and Virtual
Reality. Springer, 2012, pp. 167–186.

[29] M. Boussaa, O. Barais, G. Sunyé, and B. Baudry, “A novelty search
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