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Generally, compiler users apply different optimizations to generate efficient code with respect to non-functional properties such as energy consumption, execution time, etc. However, due to the huge number of optimizations provided by modern compilers, finding the best optimization sequence for a specific objective and a given program is more and more challenging.

This paper proposes NOTICE, a component-based framework for non-functional testing of compilers through the monitoring of generated code in a controlled sand-boxing environment. We evaluate the effectiveness of our approach by verifying the optimizations performed by the GCC compiler. Our experimental results show that our approach is able to auto-tune compilers according to user requirements and construct optimizations that yield to better performance results than standard optimization levels. We also demonstrate that NOTICE can be used to automatically construct optimization levels that represent optimal trade-offs between multiple non-functional properties such as execution time and resource usage requirements.

I. INTRODUCTION

Compiler users tend to improve software programs in a safe and profitable way. Modern compilers provide a broad collection of optimizations that can be applied during the code generation process. For functional testing of compilers, software testers generally use to run a set of test suites on different optimized software versions and compare the functional outcome that can be either pass (correct behavior) or fail (incorrect behavior, crashes, or bugs) [START_REF] Chen | An empirical comparison of compiler testing techniques[END_REF]- [START_REF] Le | Compiler validation via equivalence modulo inputs[END_REF].

For non-functional testing, improvement of source code programs in terms of performance can refer to several different non-functional properties of the produced code such as code size, resource or energy consumption, execution time, among others [START_REF] Almagor | Finding effective compilation sequences[END_REF], [START_REF] Pan | Fast and effective orchestration of compiler optimizations for automatic performance tuning[END_REF]. Testing non-functional properties is more challenging because compilers may have a huge number of potential optimization combinations, making it hard and time-consuming for software developers to find/construct the sequence of optimizations that satisfies user specific key objectives and criteria. It also requires a comprehensive understanding of the underlying system architecture, the target application, and the available optimizations of the compiler.

In some cases, these optimizations may negatively decrease the quality of the software and deteriorate application performance over time [START_REF] Molyneaux | The Art of Application Performance Testing: Help for Programmers and Quality Assurance[END_REF]. As a consequence, compiler creators usually define fixed and program-independent sequence optimizations, which are based on their experiences and heuristics. For example, in GCC, we can distinguish optimization levels from O1 to O3. Each optimization level involves a fixed list of compiler optimization options and provides different tradeoffs in terms of non-functional properties. Nevertheless, there is no guarantee that these optimization levels will perform well on untested architectures or for unseen applications. Thus, it is necessary to detect possible issues caused by source code changes such as performance regressions and help users to validate optimizations that induce performance improvement.

We also note that when trying to optimize software performance, many non-functional properties and design constraints must be involved and satisfied simultaneously to better optimize code. Several research efforts try to optimize a single criterion (usually the execution time) [START_REF] Ballal | Compiler optimization: A genetic algorithm approach[END_REF]- [START_REF] Demertzi | Analyzing the effects of compiler optimizations on application reliability[END_REF] and ignore other important non-functional properties, more precisely resource consumption properties (e.g., memory or CPU usage) that must be taken into consideration and can be equally important in relation to the performance. Sometimes, improving program execution time can result in a high resource usage which may decrease system performance. For example, embedded systems for which code is generated often have limited resources. Thus, optimization techniques must be applied whenever possible to generate efficient code and improve performance (in terms of execution time) with respect to available resources (CPU or memory usage) [START_REF] Nagiub | Automatic selection of compiler options using genetic techniques for embedded software design[END_REF]. Therefore, it is important to construct optimization levels that represent multiple trade-offs between non-functional properties, enabling the software designer to choose among different optimal solutions which best suit the system specifications.

In this paper, we propose NOTICE (as NOn-functional TestIng of CompilErs), a component-based framework for non-functional testing of compilers through the monitoring of generated code in a controlled sand-boxing environment. Our approach is based on micro-services to automate the deployment and monitoring of different variants of optimized code. NOTICE is an on-demand tool that employs mono and multi-objective evolutionary search algorithms to construct optimization sequences that satisfy user key objectives (execution time, code size, compilation time, CPU or memory usage, etc.). In this paper, we make the following contributions:

• We introduce a novel formulation of the compiler optimization problem using Novelty Search [START_REF] Lehman | Exploiting open-endedness to solve problems through the search for novelty[END_REF]. We eval-uate the effectiveness of our approach by verifying the optimizations performed by the GCC compiler. Our experimental results show that NOTICE is able to autotune compilers according to user choices (heuristics, objectives, programs, etc.) and construct optimizations that yield to better performance results than standard optimization levels. • We propose a micro-service infrastructure to ensure the deployment and monitoring of different variants of optimized code. In this paper, we focus more on the relationship between runtime execution of optimized code and resource consumption profiles (CPU and memory usage) by providing a fine-grained understanding and analysis of compilers behavior regarding optimizations. • We also demonstrate that NOTICE can be used to automatically construct optimization levels that represent optimal trade-offs between multiple non-functional properties, such as execution time, memory usage, CPU consumption, etc. The paper is organized as follows. Section II describes the motivation behind this work. A search-based technique for compiler optimization exploration is presented in Section III. We present in Section IV our infrastructure for non-functional testing using micro-services. The evaluation and results of our experiments are discussed in Section V. Finally, related work, concluding remarks, and future work are provided in Sections VI and VII.

II. MOTIVATION

A. Compiler Optimizations

In the past, researchers have shown that the choice of optimization sequences may influence software performance [START_REF] Almagor | Finding effective compilation sequences[END_REF], [START_REF] Chen | Deconstructing iterative optimization[END_REF]. As a consequence, software-performance optimization becomes a key objective for both, software industries and developers, which are often willing to pay additional costs to meet specific performance goals, especially for resourceconstrained systems.

Universal and predefined sequences, e. g., O1 to O3 in GCC, may not always produce good performance results and may be highly dependent on the benchmark and the source code they have been tested on [START_REF] Hoste | Cole: compiler optimization level exploration[END_REF], [START_REF] Chen | Evaluating iterative optimization across 1000 datasets[END_REF], [START_REF] Escobar | Evaluation of gcc optimization parameters[END_REF]. Indeed, each one of these optimizations interacts with the code and in turn, with all other optimizations in complicated ways. Similarly, code transformations can either create or eliminate opportunities for other transformations and it is quite difficult for users to predict the effectiveness of optimizations on their source code program. As a result, most software engineering programmers that are not familiar with compiler optimizations find difficulties to select effective optimization sequences [START_REF] Almagor | Finding effective compilation sequences[END_REF].

To explore the large optimization space, users have to evaluate the effect of optimizations according to a specific performance objective (see Figure 1). Performance can depend on different properties such as execution time, compilation time, resource consumption, code size, etc. Thus, finding the optimal optimization combination for an input source code is a challenging and time-consuming problem. Many approaches [START_REF] Hoste | Cole: compiler optimization level exploration[END_REF], [START_REF] Martins | Exploration of compiler optimization sequences using clustering-based selection[END_REF] have attempted to solve this optimization selection problem using techniques such as Genetic Algorithms (GAs), machine learning techniques, etc.

It is important to notice that performing optimizations to source code can be so expensive at resource usage that it may induce compiler bugs or crashes. Indeed, in a resourceconstrained environment and because of insufficient resources, compiler optimizations can lead to memory leaks or execution crashes [START_REF] Yang | Finding and understanding bugs in c compilers[END_REF]. Thus, it becomes necessary to test the nonfunctional properties of optimized code and check its behavior regarding optimizations that can lead to performance improvement or regression. 

B. Example: GCC Compiler

The GNU Compiler Collection, GCC, is a very popular collection of programming compilers, available for different platforms. GCC exposes its various optimizations via a number of flags that can be turned on or off through command-line compiler switches.

For instance, version 4.8.4 provides a wide range of command-line options that can be enabled or disabled, including more than 150 options for optimization. The diversity of available optimization options makes the design space for optimization level very huge, increasing the need for heuristics to explore the search space of feasible optimization sequences. For instance, we count 76 optimization flags that are enabled by the four default optimization levels (O1, O2, O3, Ofast). In fact, O1 reduces the code size and execution time without performing any optimization that reduces the compilation time. It turns on 32 flags. O2 increases the compilation time and reduces the execution time of generated code. It turns on all optimization flags specified by O1 plus 35 other options. O3 is more aggressive level which enables all O2 options plus eight more optimizations. Finally, Ofast is the most aggressive level which enables optimizations that are not valid for all standardcompliant programs. It turns on all O3 optimizations plus one more aggressive optimization. This results in a huge space with 2 76 possible optimization combinations. The full list of optimizations is available here [START_REF]Notice settings[END_REF]. Optimization flags in GCC can be turned off by using "fno-"+flag instead of "f"+flag in the beginning of each optimization. We use this technique to play with compiler switches.

III. EVOLUTIONARY EXPLORATION OF COMPILER OPTIMIZATIONS

Many techniques (meta-heuristics, constraint programming, etc.) can be used to explore the large set of optimization combinations of modern compilers. In our approach, we study the use of the Novelty Search (NS) technique to identify the set of compiler optimization options that optimize the nonfunctional properties of code.

A. Novelty Search Adaptation

In this work, we aim at providing a new alternative for choosing effective compiler optimization options compared to the state of the art approaches. In fact, since the search space of possible combinations is too large, we aim at using a new search-based technique called Novelty Search [START_REF] Lehman | Exploiting open-endedness to solve problems through the search for novelty[END_REF] to tackle this issue. The idea of this technique is to explore the search space of possible compiler flag options by considering sequence diversity as a single objective. Instead of having a fitness-based selection that maximizes one of the nonfunctional objectives, we select optimization sequences based on a novelty score showing how different they are compared to all other combinations evaluated so far. We claim that the search towards effective optimization sequences is not straightforward since the interactions between optimizations is too complex and difficult to define. For instance, in a previous work [START_REF] Chen | Deconstructing iterative optimization[END_REF], Chen et al. showed that handful optimizations may lead to higher performance than other techniques of iterative optimization. In fact, the fitness-based search may be trapped into some local optima that cannot escape. This phenomenon is known as "diversity loss". For example, if the most effective optimization sequence that induces less execution time lies far from the search space defined by the gradient of the fitness function, then some promising search areas may not be reached. The issue of premature convergence to local optima has been a common problem in evolutionary algorithms. Many methods are proposed to overcome this problem [START_REF] Banzhaf | The effect of extensive use of the mutation operator on generalization in genetic programming using sparse data sets[END_REF]. However, all these efforts use a fitness-based selection to guide the search. Considering diversity as the unique objective function to be optimized may be a key solution to this problem. Therefore, during the evolutionary process, we select optimization sequences that remain in sparse regions of the search space in order to guide the search towards novelty. In the meantime, we choose to gather non-functional metrics of explored sequences such as memory consumption. We describe in more details the way we are collecting these non-functional metrics in section 4.

Generally, NS acts like GAs (Example of GA use in [START_REF] Cooper | Adaptive optimizing compilers for the 21st century[END_REF]). However, NS needs extra changes. First, a new novelty metric is required to replace the fitness function. Then, an archive must be added to the algorithm, which is a kind of a database that remembers individuals that were highly novel when they were discovered in past generations. Algorithm 1 describes the overall idea of our NS adaptation. The algorithm takes as input a source code program and a list of optimizations. We initialize first the novelty parameters and create a new archive with limit size L (lines 1 & 2). In this example, we gather information about memory consumption. In lines 3 & 4, we compile and execute the input program without any optimization (O0). Then, we measure the resulting memory consumption. By doing so, we will be able to compare it to the memory consumption of new generated solutions. The best solution is the one that yields to the lowest memory consumption compared to O0 usage. Before starting the evolutionary process, we generate an initial population with random sequences. Line 6-21 encode the main NS loop, which searches for the best sequence in terms of memory consumption. For each sequence in the population, we compile the input program, execute it and evaluate the solution by calculating the average distance from its k-nearest neighbors. Sequences that get a novelty metric higher than the novelty threshold T are added to the archive. T defines the threshold for how novel a sequence has to be before it is added to the archive. In the meantime, we check if the optimization sequence yields to the lowest memory consumption so that, we can consider it as the best solution. Finally, genetic operators (mutation and crossover) are applied afterwards to fulfill the next population. This process is iterated until reaching the maximum number of evaluations. generation ← generation + 1 21: until generation = N 22: return best sequence 1) Optimization Sequence Representation: For our case study, a candidate solution represents all compiler switches that are used in the four standard optimization levels (O1, O2, O3 and Ofast). Thereby, we represent this solution as a vector where each dimension is a compiler flag. The variables that represent compiler options are represented as genes in a chromosome. Thus, a solution represents the CFLAGS value used by GCC to compile programs. A solution has always the same size, which corresponds to the total number of involved flags. However, during the evolutionary process, these flags are turned on or off depending on the mutation and crossover operators (see example in Figure 2). As well, we keep the same order of invoking compiler flags since that does not affect the optimization process and it is handled internally by GCC. 2) Novelty Metric: The Novelty metric expresses the sparseness of an input optimization sequence. It measures its distance to all other sequences in the current population and to all sequences that were discovered in the past (i. e., sequences in the archive). We can quantify the sparseness of a solution as the average distance to the k-nearest neighbors. If the average distance to a given point's nearest neighbors is large then it belongs to a sparse area and will get a high novelty score. Otherwise, if the average distance is small so it belongs certainly to a dense region then it will get a low novelty score. The distance between two sequences is computed as the total number of symmetric differences among optimization sequences. Formally, we define this distance as follows :

distance(S1, S2) = |S1 S2| (1) 
where S1 and S2 are two selected optimization sequences (solutions). The distance value is equal to 0 if the two optimization sequences are similar and higher than 0 if there is at least one optimization difference. The maximum distance value is equal to the total number of input flags.

To measure the sparseness of a solution, we use the previously defined distance to compute the average distance of a sequence to its k-nearest neighbors. In this context, we define the novelty metric of a particular solution as follows:

N M (S) = 1 k k i=1 distance(S, µ i ) (2) 
where µ i is the i th nearest neighbor of the solution S within the population and the archive of novel individuals.

B. Novelty Search For Multi-objective Optimization

A multi-objective approach provides a trade-off between two objectives where the developers can select their desired solution from the Pareto-optimal front. The idea of this approach is to use multi-objective algorithms to find tradeoffs between non-functional properties of generated code such as <ExecutionTime-MemoryUsage>. The correlations we are trying to investigate are more related to the trade-offs between resource consumption and execution time.

For instance, NS can be easily adapted to multi-objective problems. In this adaptation, the SBSE formulation remains the same as described in Algorithm 1. However, in order to evaluate the new discovered solutions, we have to consider two main objectives and add the non-dominated solutions to the Pareto non-dominated set. We apply the Pareto dominance relation to find solutions that are not Pareto dominated by any other solution discovered so far, like in NSGA-II [START_REF] Lokuciejewski | Multiobjective exploration of compiler optimizations for real-time systems[END_REF], [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: Nsga-ii[END_REF]. Then, this Pareto non-dominated set is returned as a result. There is typically more than one optimal solution at the end of NS. The maximum size of the final Pareto set cannot exceed the size of the initial population.

IV. AN INFRASTRUCTURE FOR NON-FUNCTIONAL TESTING USING SYSTEM CONTAINERS

In general, there are many non-functional properties that can be influenced by compiler optimizations, e. g., performance (execution time), code quality, robustness, etc. In this paper, we focus on the efficiency of optimized code in terms of resource consumption (memory and CPU). To assess the performance of optimized code many configurations, i.e., optimizations, must be applied to software programs. Running different applications with different configurations on one single machine is complicated because a single system has limited resources and it can lead to performance regressions. Therefore, we need to deploy the test harness, i. e., the software artifacts needed to perform a test, on an elastic infrastructure that provides to compiler user facilities to ensure the deployment and monitoring of different configurations of optimized code. For this purpose, we propose NOTICE, a non-functional testing infrastructure based on System Container techniques such as the Docker1 environment. This framework automates the deployment and execution of applications inside software containers by allowing multiple program configurations to run autonomously on different servers (i. e., a cloud servers). It also provides a distributed environment where system resources can be finely managed and limited according to the needs. We rely on this component-based infrastructure and benefit from all its advantages to:

1) Deploy generated code within containers.

2) Automate optimization sequence generation.

3) Execute and monitor service containers. 4) Gather performance metrics (CPU, Memory, I/O, etc.). Before starting to monitor and test generated code, we have to describe the deployment environment of NOTICE.

A. System Containers as Deployment Environment

NOTICE represents a component-based infrastructure based on Docker Linux containers to monitor the execution of produced binaries by compilers in terms of resource usage.

Docker is an open source engine that automates the deployment of any application as a lightweight, portable, and selfsufficient container that runs virtually on a host machine. Using Docker, we can define preconfigured applications and servers to host as virtual images. We can also define the way the service should be deployed in the host machine using configuration files called Dockerfiles. We use the Docker Hub 2 for building, saving, and managing all our Docker images. We can then instantiate different containers from these Docker images.

Therefore, to run our experiments, each optimized program is executed individually inside an isolated Linux container. By doing so, we ensure that each executed program runs in isolation without being affected by the host machine or any other processes. Moreover, since a container is cheap to create, we are able to create too many containers as long as we have new programs to execute. Since each program execution requires a new container to be created, it is crucial to remove and kill containers that have finished their job to eliminate the load on the system. In fact, containers/programs are running sequentially without defining any resource constraints. So once execution is done, resources reserved for the container are automatically released to enable spawning next containers. Therefore, the host machine will not suffer too much from performance trade-offs.

In short, the main advantages of this approach are:

• The use of containers induces less performance overhead and resource isolation compared to using a full stack virtualization solution. Indeed, instrumentation tools for memory profiling like Valgrind [START_REF] Nethercote | Valgrind: a framework for heavyweight dynamic binary instrumentation[END_REF] can induce too much overhead.

• Thanks to the use of Dockerfile, NOTICE can be easily configured by compiler users to define the target compiler to test (e. g., GCC compiler version), the container OS, the input program under test and the optimization options, etc. Thus, NOTICE uses the same configured Docker image to execute different instances of generated code. For hardware architecture, containers share the same platform architecture as the host machine (e.g., x86, x64, ARM, etc.). • Docker uses Linux control groups (cgroups) to group processes running in the container. This allows us to manage the resources of a group of processes, which is very valuable. This approach increases the flexibility when we want to manage resources, since we can manage every group individually. • Although containers run in isolation, they can share data with the host machine and other running containers. Thus, non-functional data relative to resource consumption can be easily gathered and managed by other containers (i. e., for storage purpose, visualization)

B. Runtime Testing Components

In order to test our running applications within Docker containers, we aim to use a set of Docker components to ease the extraction of non-functional properties related to resource usage.

1) Monitoring Component: This container provides an understanding of the resource usage and performance characteristics of our running containers. Generally, Docker containers rely on cgroups file systems to expose a lot of 2 https://hub.docker.com/ metrics about accumulated CPU cycles, memory, block I/O usage, etc. Therefore, our monitoring component automates the extraction of runtime performance metrics using cgroups. For example, we access live resource consumption of each container available at the cgroup file system via stats found in /sys/f s/cgroup/cpu/docker/(longid)/ (for CPU consumption) and /sys/f s/cgroup/memory/docker/(longid)/ (for stats related to memory consumption). This component will automate the process of service discovery and metrics aggregation. Thus, instead of gathering manually metrics located in cgroups file systems, it extracts automatically the runtime resource usage statistics relative to running components. We note that resource usage information is collected in raw data. This process may induce a little overhead because it does very fine-grained accounting of resource usage on running container. Fortunately, this may not affect the gathered performance values since NOTICE run only one optimized version of code within each container.

To ease the monitoring process, NOTICE integrates cAdvisor, a Container Advisor3 . It is a tool that monitors service containers at runtime. The cAdvisor Docker image does not need any configuration on the host machine. We have just to run it on our host machine. It will then have access to resource usage and performance characteristics of all running containers. This image uses the cgroups mechanism described above to collect, aggregate, process, and export ephemeral real-time information about running containers. Then, it reports all statistics via web UI (http : //localhost : 8080) to view live resource consumption of each container. cAdvisor has been widely used in different projects such as Heapster 4and Google Cloud Platform 5 .

However, cAdvisor monitors and aggregates live data over only 60 seconds interval. Therefore, we would like to record all data over time since container's creation. This is useful to run queries and define non-functional metrics from historical data. Thereby, to make gathered data truly valuable for resource usage monitoring, it becomes necessary to log it into a database at runtime. Thus, we link our monitoring component to a back-end database.

2) Back-end Database Component: This component represents a time-series database back-end. It is plugged with the previously described monitoring component to save the non-functional data for long-term retention, analytics and visualization. Hence, we define its corresponding ip port into the monitoring component so that, container statistics are sent over TCP port (e.g., 8083) exposed by the database component.

During the execution of generated code, resource usage stats are continuously sent to this component. When a container is killed, NOTICE is able to access to its relative resource usage metrics through the database. We choose a time series database because we are collecting time series data that correspond to the resource utilization profiles of programs execution.

We use InfluxDB 6 , an open source distributed time-series database as a back-end to record data. InfluxDB allows the user to execute SQL-like queries on the database. For example, the following query reports the maximum memory usage of container "generated code v1" since its creation: select max (memory usage) from stats where container name='generated code v1'

To give an idea about data stored in InfluxDB, Apart from that, NOTICE provides also information about the size of generated binaries and the compilation time needed to produced code. For instance, resource usage statistics are collected and stored using NOTICE. It is relevant to show resource usage profiles of running programs overtime. To do so, we present a front-end visualization component for performance profiling.

3) Front-end Visualization Component: NOTICE provides a dashboard to run queries and view different profiles of resource consumption of running components through web UI. Thanks to this component, we can compare visually the profiles of resource consumption.

To do so, we choose Grafana 7 , a time-series visualization tool available for Docker. It is a web application running within a container. We run Grafana and we link it to InfluxDB by setting up the data source port 8086 so that, it can easily request data from the database. We recall that InfluxDB also provides a web UI to query the database and show graphs. But, Grafana let us display live results over time in much pretty looking graphs. Same as InfluxDB, we use SQL queries to extract non-functional metrics from the database for visualization.

C. Wrapping Everything Together: Architecture Overview

To summarize, we present, in Figure 3, an overall overview of the different components involved within NOTICE.

Our testing infrastructure will run different jobs within Docker containers. First, in the top level layer, we use NOTICE to generate different configurations of code using compiler optimizations (e.g., GCC compiler). Then, we wrap generated code within multiple instances of our preconfigured Docker image. Each container will execute a specific job. For our case, a job represents a program compiled with a new optimization Remark. We would notice that this testing infrastructure can be generalized and adapted to other case studies other than compilers (e.g., testing model-based code generators). Using Docker technology, any software application/generated code can be easily deployed within containers (i.e., by configuring the Docker image). It will be later executed and monitored using NOTICE monitoring components.

V. EVALUATION

So far, we have presented a sound procedure and automated component-based framework for extracting the non-functional properties of generated code. In this section, we evaluate the implementation of our approach by explaining the design of our empirical study; the research questions we set out to answer and different methods we used to answer these questions. The experimental material is available for replication purposes 8 .

A. Research Questions

Our experiments aim at answering the following research questions:

RQ1: Mono-objective SBSE Validation. How does the proposed diversity-based exploration of optimization sequences perform compared to other mono-objective algorithms in terms of memory and CPU consumption, execution time, etc.? RQ2: Sensitivity. How sensitive are input programs to compiler optimization options?

RQ3: Impact of optimizations on resource consumption. How compiler optimizations impact on the non-functional properties of generated programs?

RQ4: Trade-offs between non-functional properties. How can multi-objective approaches be useful to find trade-offs between non-functional properties?

To answer these questions, we conduct several experiments using NOTICE to validate our global approach for nonfunctional testing of compilers using system containers.

B. Experimental Setup 1) Programs Used in the Empirical Study:

To explore the impact of compiler optimizations a set of input programs are needed. To this end, we use a random C program generator called Csmith [START_REF] Yang | Finding and understanding bugs in c compilers[END_REF]. Csmith is a tool that can generate random C programs that statically and dynamically conform to the C99 standard. It has been widely used to perform functional testing of compilers [START_REF] Chen | An empirical comparison of compiler testing techniques[END_REF], [START_REF] Le | Compiler validation via equivalence modulo inputs[END_REF], [START_REF] Nagai | Scaling up size and number of expressions in random testing of arithmetic optimization of c compilers[END_REF] but not the case for checking non-functional requirements. Csmith can generate C programs that use a much wider range of C features including complex control flow and data structures such as pointers, arrays, and structs. Csmith programs come with their test suites that explore the structure of generated programs. Authors argue that Csmith is an effective bug-finding tool because it generates tests that explore atypical combinations of C language features. They also argue that larger programs are more effective for functional testing. Thus, we run Csmith for 24 hours and gathered the largest generated programs. We depicted 111 C programs with an average number of source lines of 12K. 10 programs are used as training set for RQ1, 100 other programs to answer RQ2 and one last program to run RQ4 experiment. Selected Csmith programs are described in more details at [START_REF]Notice settings[END_REF].

2) Parameters Tuning: An important aspect for metaheuristic search algorithms lies in the parameters tuning and selection, which are necessary to ensure not only fair comparison, but also for potential replication. NOTICE implements three mono-objective search algorithms (Random Search (RS), NS, and GA [START_REF] Cooper | Adaptive optimizing compilers for the 21st century[END_REF]) and two multi-objective optimizations (NS and NSGA-II [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: Nsga-ii[END_REF]). Each initial population/solution of different algorithms is completely random. The stopping criterion is when the maximum number of fitness evaluations is reached. The resulting parameter values are listed in Table 2. The same parameter settings are applied to all algorithms under comparison.

NS, which is our main concern in this work, is implemented as described in Section 3. During the evolutionary process, each solution is evaluated using the novelty metric. Novelty is calculated for each solution by taking the mean of its 15 nearest optimization sequences in terms of similarity (considering all sequences in the current population and in the archive). Initially, the archive is empty. Novelty distance is normalized in the range [0-100]. Then, to create next populations, an elite of the 10 most novel organisms is copied unchanged, after which the rest of the new population is created by tournament selection according to novelty (tournament size = 2). Standard genetic programming crossover and mutation operators are applied to these novel sequences in order to produce offspring individuals and fulfill the next population (crossover = 0.5, mutation = 0.1). In the meantime, individuals that get a score higher than 30 (threshold T), they are automatically added to the archive as well. In fact, this threshold is dynamic. Every 200 evaluations, we check how many individuals have been copied into the archive. If this number is below 3, the threshold is increased by multiplying it by 0.95, whereas if solutions added to archive are above 3, the threshold is decreased by multiplying it by 1.05. Moreover, as the size of the archive grows, the nearest-neighbor calculation that determines the novelty scores for individuals becomes more computationally demanding. So, to avoid having low accuracy of novelty, we choose to limit the size of the archive (archive size = 500).

Hence, it follows a first-in first-out data structure which means that when a new solution gets added, the oldest solution in the novelty archive will be discarded. Thus, we ensure individual diversity by removing old sequences that may no longer be reachable from the current population.

Algorithm parameters were tuned individually in preliminary experiments. For each parameter, a set of values was tested. The parameter values chosen are the mostly used in the literature [START_REF] Inden | An examination of different fitness and novelty based selection methods for the evolution of neural networks[END_REF]. The value that yielded the highest performance score was chosen.

3) Evaluation Metrics Used: For mono-objective algorithms, we use to evaluate solutions using the following metrics:

-Memory Consumption Reduction (MR): corresponds to the percentage ratio of memory usage reduction of running container over the baseline. The baseline in our experiments is O0 level, which means a non-optimized code. Larger values for this metric mean better performance. Memory usage is measured in bytes.

-CPU Consumption Reduction (CR): corresponds to the percentage ratio of CPU usage reduction over the baseline. Larger values for this metric mean better performance. The CPU consumption is measured in seconds, as the CPU time.

-Speedup (S): corresponds to the percentage improvement in execution speed of an optimized code compared to the execution time of the baseline version. Program execution time is measured in seconds.

4) Setting up

Infrastructure: To answer the previous research questions, we configure NOTICE to run different experiments. Figure 4 shows a big picture of the testing and monitoring infrastructure considered in these experiments. First, a meta-heuristic (mono or multi-objective) is applied to generate specific optimization sequences for the GCC compiler (step 1). During all experiments, we use GCC 4.8.4, as it is introduced in the motivation section, although it is possible to choose another compiler version using NOTICE since the process of optimizations extraction is done automatically. Then, we generate a new optimized code and deploy the output binary within a new instance of our preconfigured Docker image (step 2). While executing the optimized code inside the container, we collect runtime performance data (step 4) and record it in a new time-series database using our InfluxDB back-end container (step 5). Next, NOTICE accesses remotely to stored data in InfluxDB using REST API calls and assigns new performance values to the current solution (step 6). The choice of performance metrics depends on experiment objectives (Memory improvement, speedup, etc.). To obtain comparable and reproducible results, we use the same hardware across all experiments: an AMD A10-7700K APU Radeon(TM) R7 Graphics processor with 4 CPU cores (2.0 GHz), running Linux with a 64 bit kernel and 16 GB of system memory.

C. Experimental Methodology and Results

In the following paragraphs, we report the methodology and results of our experiments.

1) RQ1. Mono-objective SBSE Validation: a)

Method: To answer the first research question RQ1, we conduct a mono-objective search for compiler optimization exploration in order to evaluate the non-functional properties of optimized code. Thus, we generate optimization sequences using three search-based techniques (RS, GA, and NS) and compare their performance results to standard GCC optimization levels (O1, O2, O3, and Ofast). In this experiment, we choose to optimize for execution time (S), memory usage (MR), and CPU consumption (CR). Each non-functional property is improved separately and independently of other metrics. We recall that other properties can be also optimized using NOTICE (e.g., code size, compilation time, etc.), but in this experiment, we focus only on three properties.

Non-functional Improvement

Optimizations best sequence

Training set programs

Search for best optimization sequence

Non-functional Metric Unseen programs Fig. 5. Evaluation strategy to answer RQ1 and RQ2

As it is shown on the left side of Figure 5, given a list of optimizations and a non-functional objective, we use NOTICE to search for the best optimization sequence across a set of input programs that we call "the training set". This "training set" is composed of random Csmith programs (10 programs). We apply then generated sequences to these programs. Therefore, the code quality metric, in this setting, is equal to the average performance improvement (S, MR, or CR) and that, for all programs under test. b) Results: Table 3 reports the comparison results of three non-functional properties CR, MR, and S. At the first glance, we can clearly see that all search-based algorithms outperform standard GCC levels with minimum improvement of 10% for memory usage and 18% for CPU time (when applying RS). Our proposed NS approach has the best improvement results for three metrics with 1.365 of speedup, 15.6% of memory reduction and 23.5% of CPU time reduction across all programs under test. NS is clearly better than GA in terms of speedup. However, for MR and CR, NS is slightly better than GA with 0.4% improvement for MR and 1.3% for CR. RS has almost the lowest optimization performance but is still better than standard GCC levels.

We remark as well that applying standard optimizations has an impact on the execution time with a speedup of 1.107 for O2 and O3. Ofast has the same impact as O2 and O3 for the execution speed. However, the impact of GCC levels on resource consumption is not always efficient. O2, for example, increases resource consumption compared to O0 (-8.4% for MR and -5% for CR). This can be explained by the fact that standard GCC levels apply some aggressive optimizations that increase the performance of generated code and deteriorate system resources. Key findings for RQ1.

-Best discovered optimization sequences using monoobjective search techniques always provide better results than standard GCC optimization levels.

-Novelty Search is a good candidate to improve code in terms of non-functional properties since it is able to discover optimization combinations that outperform RS and GA.

2) RQ2. Sensitivity: a) Method: Another interesting experiment is to test the sensitivity of input programs to compiler optimizations and evaluate the general applicability of best optimal optimization sets, previously discovered in RQ1. These sequences correspond to the best generated sequences using NS for the three non-functional properties S, MR and CR (i.e., sequences obtained in column 8 of Table 3). Thus, we apply best discovered optimizations in RQ1 to new unseen Csmith (100 new random programs) and we compare then, the performance improvement across these programs (see right side of Figure 5). We also apply standard optimizations, O2 and O3, to new Csmith programs in order to compare the performance results. The idea of this experiment is to test whether new generated Csmith programs are sensitive to previously discovered optimizations or not. If so, this will be useful for compiler users and researchers to use NOTICE in order to build general optimization sequences from their representative training set programs. For each non-functional property, we apply O2, O3 and best NS sequences. Speedup results show that the three optimization strategies lead to almost the same distribution with a median value of 1.12 for speedup. This can be explained by the fact that NS might need more time to find the sequence that best optimizes the execution speed. Meanwhile, O2 and O3 have also the same impact on CR and MR which is almost the same for both levels (CR median value is 8% and around 5% for MR). However, the impact of applying best generated sequences using NS clearly outperforms O2 and O3 with almost 10% of CPU improvement and 7% of memory improvement. This proves that NS sequences are efficient and can be used to optimize resource consumption of new Csmith programs. This result also proves that Csmith code generator applies the same rules and structures to generate C code. For this reason, applied optimization sequences always have a positive impact on the non-functional properties. Key findings for RQ2.

-It is possible to build general optimization sequences that perform better than standard optimization levels -Best discovered sequences in RQ1 can be mostly used to improve the memory and CPU consumption of Csmith programs. To answer RQ2, Csmith programs are sensitive to compiler optimizations.

3) RQ3. Impact of optimizations on resource usage: a) Method: In this experiment, we use NOTICE to provide an understanding of optimizations behavior, in terms of resource consumption, when trying to optimize for execution time. Thus, we choose one instance of obtained results in RQ1 related to the best speedup improvement (i.e., results obtained in line 1 of Table 3) and we study the impact of speedup improvement on memory and CPU consumption. We also compare resource usage data to standard GCC levels as they were presented in Table 3. Improvements are always calculated over the non-optimized version. The idea of this experiment is to: (1) prove, or not, the usefulness of involving resource usage metrics as key objectives for performance improvement; (2) the need, or not, of multi-objective search strategy to handle both resource usage and performance properties.

b) Results: Figure 7 shows the impact of speedup optimization on resource consumption. For instance, O2 and O3 that led to the best speedup improvement among standard optimization levels in RQ1, present opposite impact on resource usage. Applying O2 induces -8.4% of MR and -5% of CR. However, applying O3 improves MR and CR respectively by 3.4% and 4.2%. Hence, we note that when applying standard levels, there is no clear correlation between speedup and resource usage since compiler optimizations are generally used to optimize the execution speed and never evaluated to reduce system resources. On the other hand, the outcome of applying different mono-objective algorithms for speedup optimization also proves that resource consumption is always in conflict with execution speed. The highest MR and CR is reached using NS with respectively 1.2% and 5.4%. This improvement is considerably low compared to scores reached when we have applied resource usage metrics as key objectives in RQ1 (i.e., 15.6% for MR and 23.5% for CR). Furthermore, we note that generated sequences using RS and GA have a high impact on system resources since all resource usage values are worse than the baseline. These results agree to the idea that compiler optimizations do not put too much emphasis on the trade-off between execution time and resource consumption. Key findings for RQ3.

-Optimizing software performance can induce undesirable effects on system resources. -A trade-off is needed to find a correlation between software performance and resource usage.

4) RQ4. Trade-offs between non-functional properties: a) Method: Finally, to answer RQ4, we use NOTICE again to find trade-offs between non-functional properties. In this experiment, we choose to focus on the trade-off <ExecutionTime-MemoryUsage>. In addition to our NS adaptation for multi-objective optimization, we implement a commonly used multi-objective approach namely NSGA-II [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: Nsga-ii[END_REF]. We denote our NS adaptation by NS-II. We recall that NS-II is not a multi-objective approach as NSGA-II. It uses the same NS algorithm. However, in this experiment, it returns the optimal Pareto front solutions instead of returning one optimal solution relative to one goal. Apart from that, we apply different optimization strategies to assess our approach. First, we apply standard GCC levels. Second, we apply best generated sequences relative to memory and speedup optimization (the same sequences that we have used in RQ2). Thus, we denote by NS-MR the sequence that yields to the best memory improvement MR and NS-S to the sequence that leads to the best speedup. This is useful to compare mono-objective solutions to new generated ones.

In this experiment, we assess the efficiency of generated sequences using only one Csmith program. We evaluate the quality of the obtained Pareto optimal optimization based on raw data values of memory and execution time. Then, we compare qualitatively the results by visual inspection of the Pareto frontiers. The goal of this experiment is to check whether it exists, or not, a sequence that can reduce both execution time and memory usage. b) Results: Figure 8 shows the Pareto optimal solutions that achieved the best performance assessment for the tradeoff <ExecutionTime-MemoryUsage>. The horizontal axis indicates the memory usage in raw data (in Bytes) as it is collected using NOTICE. In similar fashion, the vertical axis shows the execution time in seconds. Furthermore, the figure shows the impact of applying standard GCC options and best NS sequences on memory and execution time. Based on these results, we can see that NSGA-II performs better than NS-II. In fact, NSGA-II yields to the best set of solutions that presents the optimal trade-off between the two objectives. Then, it is up to the compiler user to use one solution from this Pareto front that satisfies his non-functional requirements (six solutions for NSGA-II and five for NS-II). For example, he could choose one solution that maximizes the execution speed in favor of memory reduction. On the other side, NS-II is capable to generate only one non-dominated solution. For NS-MR, it reduces as expected the memory consumption compared to other optimization levels. The same effect on execution time when applying the best speedup sequence NS-S. We also note that all standard GCC levels are dominated by our different heuristics NS-II, NSGA-II, NS-S and NS-MR. This agrees to the claim that standard compiler levels do not present a suitable trade-off between execution time and memory usage. -NOTICE is able to construct optimization levels that represent optimal trade-offs between non-functional properties.

-NS is more effective when it is applied for mono-objective search.

-NSGA-II performs better than our NS adaptation for multiobjective optimization. However, NS-II performs clearly better than standard GCC optimizations and previously discovered sequences in RQ1.

D. Discussions

Through these experiments, we showed that NOTICE is able to provide facilities to compiler users to test the non-functional properties of generated code. It provides also a support to search for the best optimization sequences through monoobjective and multi-objective search algorithms. NOTICE infrastructure has shown its capability and scalability to satisfy user requirements and key objectives in order to produce efficient code in terms of non-functional properties. During all experiments, standard optimization levels have been fairly outperformed by our different heuristics. Moreover, we have also shown (in RQ1 and RQ3) that optimizing for performance may be, in some cases, greedy in terms of resource usage. For example, the impact of standard optimization levels on resource usage is not always efficient even though it leads to performance improvement. Thus, compiler users would use NOTICE to test the impact of optimizations on the nonfunctional properties and build their specific sequences by trying to find trade-offs among these non-functional properties (RQ4). We would notice that for RQ1, experiments take about 21 days to run all algorithms. This run time might seem long but, it should be noted that this search can be conducted only once, since in RQ2 we showed that best gathered optimizations can be used with unseen programs of the same category as the training set, used to generate optimizations. This has to be proved with other case studies. As an alternative, it would be great to test model-based code generators. In the same fashion as Csmith, code generators apply to same rules to generate new software programs. Thus, we can use NOTICE to define general-purpose optimizations from a set of generated code artifacts. Multi-objective search as conducted in RQ4, takes about 48 hours, which we believe is acceptable for practical use. Nevertheless, speeding up the search speed may be an interesting feature for future research.

E. Threats to Validity

Any automated approach has limitations. We resume, in the following paragraphs, external and internal threats that can be raised:

External validity refers to the generalizability of our findings. In this study, we perform experiments on random programs using Csmith and we use iterative compilation techniques to produce best optimization sequences. We believe that the use of Csmith programs as input programs is very relevant because compilers have been widely tested across Csmith programs [START_REF] Chen | An empirical comparison of compiler testing techniques[END_REF], [START_REF] Yang | Finding and understanding bugs in c compilers[END_REF]. Csmith programs have been used only for functional testing, but not for non-functional testing. However, we cannot assert that the best discovered set of optimizations can be generalized to industrial applications since optimizations are highly dependent on input programs and on the target architecture. In fact, experiments conducted on RQ1 and RQ2 should be replicated to other case studies to confirm our findings; and build general optimization sequences from other representative training set programs chosen by compiler users.

Internal validity is concerned with the causal relationship between the treatment and the outcome. Meta-heuristic algorithms are stochastic optimizers, they can provide different results for the same problem instance from one run to another. Are we providing a statistically sound method or it is just a random result? Due to time constraints, we run all experiments only once. Following the state-of-the-art approaches in iterative compilation, previous research efforts [START_REF] Hoste | Cole: compiler optimization level exploration[END_REF], [START_REF] Martínez-Álvarez | Multi-objective adaptive evolutionary strategy for tuning compilations[END_REF] did not provide statistical tests to prove the effectiveness of their approaches. This is because experiments are time-consuming. However, we can deal with these internal threats to validity by performing at least five independent simulation runs for each problem instance.

VI. RELATED WORK

Our work is related to iterative compilation research field. The basic idea of iterative compilation is to explore the compiler optimization space by measuring the impact of optimizations on software performance. Several research efforts have investigated this optimization problem using search-based techniques (SBSE) to guide the search towards relevant optimizations regrading performance, energy consumption, code size, compilation time, etc. Experimental results have been usually compared to standard compiler optimization levels. The vast majority of the work on iterative compilation focuses on increasing the speedup of new optimized code compared to standard compiler optimization levels [START_REF] Hoste | Cole: compiler optimization level exploration[END_REF], [START_REF] Almagor | Finding effective compilation sequences[END_REF], [START_REF] Pan | Fast and effective orchestration of compiler optimizations for automatic performance tuning[END_REF], [START_REF] Chen | Deconstructing iterative optimization[END_REF], [START_REF] Martins | Exploration of compiler optimization sequences using clustering-based selection[END_REF], [START_REF] Martínez-Álvarez | Multi-objective adaptive evolutionary strategy for tuning compilations[END_REF]- [START_REF] Lin | Automatic selection of gcc optimization options using a gene weighted genetic algorithm[END_REF]. It has been proven that optimizations are highly dependent on target platform and input program. Compared to our proposal, none of the previous work has studied the impact of compiler optimizations on resource usage. In this work, we rather focus on compiler optimizations related to resource consumption, while bearing in mind the performance improvement.

Novelty Search has never been applied in the field of iterative compilation. Our work presents the first attempt to introduce diversity in the compiler optimization problem. The idea of NS has been introduced by Lehman et al. [START_REF] Lehman | Exploiting open-endedness to solve problems through the search for novelty[END_REF]. It has been often evaluated in deceptive tasks and especially applied to evolutionary robotics [START_REF] Risi | Evolving plastic neural networks with novelty search[END_REF], [START_REF] Krčah | Solving deceptive tasks in robot body-brain co-evolution by searching for behavioral novelty[END_REF] (in the context of neuroevolution). NS can be easily adapted to different research fields. In a previous work [START_REF] Boussaa | A novelty search approach for automatic test data generation[END_REF], we have adapted the general idea of NS to the test data generation problem where novelty score was calculated as the Manhattan distance between the different vectors representing the test data. The evaluation metric of generated test suites is the structural coverage of code. In this paper, the evaluation metric represents the non-functional improvements and we are calculating the novelty score as the symmetric difference between optimization sequences.

For multi-objective optimizations, we are not the first to address this problem. New approaches have emerged recently to find trade-offs between non-functional properties [START_REF] Hoste | Cole: compiler optimization level exploration[END_REF], [START_REF] Lokuciejewski | Multiobjective exploration of compiler optimizations for real-time systems[END_REF], [START_REF] Martínez-Álvarez | Multi-objective adaptive evolutionary strategy for tuning compilations[END_REF]. Hoste et al. [START_REF] Hoste | Cole: compiler optimization level exploration[END_REF], which is the most related work to our proposal, propose COLE, an automated tool for optimization generation using a multi-objective approach namely SPEA2. In their work, they try to find Pareto optimal optimization levels that present a trade-off between execution and compilation time of generated code. Their experimental results show that the obtained optimization sequences perform better than standard GCC optimization levels. NOTICE provides also a fully automated approach to extract non-functional properties. However, NOTICE differs from COLE because first, our proposed container-based infrastructure is more generic and can be adapted to other case studies (i.e., compilers, code generators, etc.). Second, we provide facilities to compiler users to extract resource usage metrics using our monitoring components. Finally, our empirical study investigates different trade-offs compared to previous work in iterative compilation.

VII. CONCLUSION AND FUTURE WORK

Modern compilers come with huge number of optimizations, making complicated for compiler users to find best optimization sequences. Furthermore, auto-tuning compilers to meet user requirements is a difficult task since optimizations may depend on different properties (e.g., platform architecture, software programs, target compiler, optimization objective, etc.). Hence, compiler users merely use standard optimization levels (O1, O2, O3 and Ofast) to enhance the code quality without taking too much care about the impact of optimizations on system resources.

In this paper, we have introduced first a novel formulation of the compiler optimization problem based on Novelty Search. The idea of this approach is to drive the search for best optimizations toward novelty. Our work presents the first attempt to introduce diversity in iterative compilation. Experiments have shown that Novelty Search can be easily applied to mono and multi-objective search problems. In addition, we have reported the results of an empirical study of our approach compared to different state-of-the-art approaches, and the obtained results have provided evidence to support the claim that Novelty Search is able to generate effective optimizations. Second, we have presented an automated tool for automatic extraction of non-functional properties of optimized code, called NOTICE. NOTICE applies different heuristics (including Novelty Search) and performs non-functional testing of compilers through the monitoring of generated code in a controlled sand-boxing environment. In fact, NOTICE uses a set of micro-services to provide a fine-grained understanding of optimization effects on resource consumption. We evaluated the effectiveness of our approach by verifying the optimizations performed by GCC compiler. Results showed that our approach is able to automatically extract information about memory and CPU consumption. We were also able to find better optimization sequences than standard GCC optimization levels.

As a future work, we plan to explore more trade-offs among resource usage metrics e. g., the correlation between CPU consumption and platform architectures. We also intend to provide more facilities to NOTICE users in order to test optimizations performed by modern compilers such as Clang, LLVM, etc. Finally, NOTICE can be easily adapted and integrated to new case studies. As an example, we would inspect the behavior of model-based code generators since different optimizations can be performed to generate code from models [START_REF] Stuermer | Systematic testing of model-based code generators[END_REF]. Thus, we aim to use the same approach to find non-functional issues during the code generation process.
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Table 1

 1 describes the different stored metrics:

	Metric	Description
	Name	Container Name
	T	Elapsed time since container's creation
	Network	Stats for network bytes and packets in an out of the container
	Disk IO	Disk I/O stats
	Memory	Memory usage
	CPU	CPU usage

TABLE I RESOURCE

 I USAGE METRICS RECORDED IN INFLUXDB
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