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Abstract

There has been an ever-increasing interest in multi-disciplinary research on representing

and reasoning with imperfect data. Possibilistic networks present one of the powerful frame-

works of interest for representing uncertain and imprecise information. This paper covers the

problem of their parameters learning from imprecise datasets, i.e., containing multi-valued

data. We propose in the first part of this paper a possibilistic networks sampling process. In

the second part, we propose a likelihood function which explores the link between random

sets theory and possibility theory. This function is then deployed to parametrize possibilistic

networks.

1 Introduction

Possibilistic networks [7] are graphical representations of independence relationships between a
set of variables described by uncertain and imprecise information. Despite the multitude of re-
search endeavors devoted to applying possibilistic networks in real domains or to propagating
information, their learning from data remains a real challenge. Only few works address this
problem and existing ones [1, 16] are direct adaptations of Bayesian networks learning methods
without any awareness of specificities of the possibilistic framework which made them theoret-
ically unsound. The main limitation of existing works is that they try to learn separately the
parameters, i.e. possibility distributions coding variables uncertainty, and the structure i.e. the
graph of the possibilistic network. Moreover, existing methods suffer from the lack of an accurate
and standard validation procedure.

Working on parameters in the possibilistic framework highlights several difficulties when
dealing with the learning task, in particular, when we handle uncertain and imprecise data.
This is due to the fact that learning leads commonly to additive assessment while the possibility
theory is, by definition, maxitive i.e. the possibility of a disjunction of events is the maximum of
the possibilities of each event in this disjunction. Thereby, if we want to learn parameters from
data in the possibilistic framework, two steps are primordial: the first one focuses in counting
the occurrence of observations in the dataset to estimate non-normalized distributions. While
the second aims to approximate the latter by possibility distributions.

This paper rigorously addresses this problem by first proposition of a new possibilistic net-
works sampling method used to evaluate learning algorithms in which we control the imprecision
degree in the generated datasets. In the final part of this paper, we propose a likelihood function
exploring the link between random sets theory (additive) and possibility theory (maxitive) which
will be deployed to learn possibilistic networks parameters.

This paper is organized as follows: Section 2 gives a brief introduction to possibility theory
and presents possibilistic networks and their learning from data. Section 3 proposes a possibilistic
networks sampling algorithms. Section 4 defines a new possibilistic likelihood function and
proposes a possibilistic networks parameters learning approach.

2 Basic concepts and possibilistic networks

Possibilistic networks [7] represent the possibilistic counterpart of Bayesian networks [15] in the
possibilistic framework coined by Zadeh [18] and developed by Dubois and Prade [4, 6]. This
section first presents basic notations used throughout the paper and introduces possibility theory.
Then, it defines possibilistic networks and discusses existing learning methods.
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2.1 Basic concepts of possibility theory

2.1.1 Notations and definitions

Let V = {X1, ...,Xn} be a set of variables such that Di denotes the domain of Xi and xik denotes
an instance of Xi, i.e. each xik ∈ Di corresponds to a state (a possible value) of Xi. The agents
knowledge (state set) of Xi can be encoded by a possibility distribution π(Xi) corresponding to
a mapping from the universe of discourse Di to the unit interval [0,1]. For any state xik ∈ Di,
π(xik) = 1 means that xik realization is totally possible π(xik) = 0 means that xik is an impossible
state. It is generally assumed that at least one state xik is totally possible and π is then said to
be normalized.

Extreme cases of knowledge are presented by complete knowledge, i.e. ∃xik ∈ Di s.t. π(xik) =
1 and ∀xij ∈ Di s.t. xij 6= xik, π(xij) = 0 and total ignorance, i.e. ∀xik ∈ Di, π(xik) = 1 (all
values in Di are possible). The definition of a possibility distribution could be generalized to
a set of variables V defined on the universe of discourse Ω = D1 × ... × Dn encoded by π. π

corresponds to a mapping from Ω to the unit interval [0,1]. ω is called interpretation or event
and is denoted by a tuple (x1k, ..., xnl). Given a possibility distribution π, we can define for
any subset A ⊆ Di two dual measures: possibility measure Π(A) = max

xik∈A
π(xik) and necessity

measure N(A) = 1 − Π(Ā) where Π assesses at what level A is consistent with our knowledge
represented by π whereas N evaluates at what level Ā is impossible.

The particularity of the possibilistic scale is that it can be interpreted in two ways: (i) an
ordinal manner which means that possibility degrees reflect only a specific order between possible
values. (ii) a numerical way meaning that possibility degrees make sense in the ranking scale.
These two interpretations induce two definitions of possibilistic conditioning which consists in
reviewing a possibility distribution by a new certain information A, an interpretation of A ⊆ Ω.
The product-based conditioning is defined as follows:

π(ω|A) =

{

π(ω)
Π(A) if ω ∈ A

0 otherwise.
(1)

The min-based conditioning is defined as follows:

π(ω |m A) =







1 si π(ω) = Π(A) and ω ∈ A

π(ω) if π(ω) < Π(A) and ω ∈ A

0 otherwise.
(2)

2.1.2 Possibility theory and random sets theory

One view of possibility theory is to consider a possibility distribution π on Xi as a counter
function of a random set [17] pertaining to Di. A random set in Di is a random variable which
takes its values on subsets of Di. More formally, let Di be a finite domain. A basic probability
assignment or mass function is a mapping m : 2Di 7−→ [0, 1] such that

∑

Aik⊆Di
(m(Aik)) = 1

and m(∅) = 0). A set Aik ⊆ Di such that m(Aik) > 0 is called a focal set.
The possibility degree of an event xik is the probability of the possibility of the event i.e. the

probability of the disjunction of all events (focal sets) in which this event is included [1]:

π(xik) =
∑

Aik|xik∈Aik

m(Aik) (3)

A random set is said to be consistent if there is at least one element xik contained in all focal sets
Aik and the possibility distribution induced by a consistent random set is, thereby, normalized.
Exploring this link between possibility theory and random sets theory has been extensively
studied, in particular, in learning tasks, we cite for instance [1, 13].

2.1.3 Variable sampling

The variable sampling corresponds to the generation of a dataset representative of its possibility
distribution. In the numerical interpretation, two approaches [2, 8] have been proposed to sample
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a variable. These methods are based on α-cut notion: α-cut(Xi) = {xik ∈ Di s.t. π(xik) ≥ α}
where α is randomly generated from [0,1]. The method proposed by Guyonnet et al. in [8]
focuses on the generation of imprecise data by returning all values of α-cut(Xi) for any variable
Xi. Chanas and Nowakowski proposed another method in [2] which is dedicated to the generation
of precise data by returning a single value uniformly chosen from α-cut(Xi).

2.2 Possibilistic networks

2.2.1 Definition

Possibilistic networks [7] are the possibilistic counterpart of Bayesian networks [15, 12] sharing
the same graphical component i.e. a directed acyclic graph (DAG) which encodes a set of in-
dependence relations between V = {X1, ...,Xn} where each variable Xi ∈ V is conditionally
independent of its non-descendent given its parents. The numerical component substitutes the
probabilistic framework by the possibilistic one by assigning a conditional possibility distribution
to each node Xi ∈ V in the context of its parents (denoted by Pa(Xi)), i.e. π(Xi|Pa(Xi)). The
two definitions of the possibilistic conditioning lead naturally to two different ways to define
possibilistic networks [7, 1]: product-based possibilistic networks based on the product-based con-
ditioning expressed by Equation 1. These models are theoretically and algorithmically close to
Bayesian networks. In fact, these two models share the graphical component, i.e. the DAG and
the product operator in the computational process. This is not the case of min-based possibilis-
tic networks based on min-based conditioning defined by Equation 2 that represents a different
semantic.

In both cases, possibilistic networks are a compact representation of possibility distributions.
More precisely, the joint possibility distribution could be computed by the possibilistic chain rule
expressed as follows:

π⊗(X1, ...,Xn) = ⊗i=1..nπ(Xi |⊗ Pa(Xi)) (4)

where ⊗ corresponds to the minimum operator (min) for min-based possibilistic networks and
to the product operator (*) for product-based possibilistic networks.

2.2.2 Learning from data

Few attempts have been proposed to learn possibilistic networks from data. In fact, Sangüesa et
al. [16] have proposed two hybrid methods handling precise data: the first one learns trees and
the second one learns the more general structure of DAGs. Borgelt et al. [1] have adapted two
methods initially proposed to learn Bayesian networks: K2 and maximum weight spanning tree
[3] to learn possibilistic networks from imprecise data. These attempts concern mainly the struc-
ture learning and ignore parameters learning problem. Indeed, Sangüesa et al. learn probability
distributions and transform them into possibility ones. Borgelt et al. methods estimate a possi-
bility distribution using possibilistic histograms i.e. based of number of occurrence of different

values of Xi in the dataset. Let Di = {d
(l)
i } be a dataset relative to a variable Xi, d

(l)
i ∈ Di (resp.

d
(l)
i ⊆ Di) if data are precise (resp. imprecise). The number of occurrences of each xik ∈ Di,

denoted by Nik, is the number of times xik appears in Di: Nik = card({l s.t. xik ∈ d
(l)
i }). The

sub-normalized estimation π̂(xik) is expressed by:

π̂(xik) =
Nik

N
(5)

where N is the number of observations in Di. N is equal (resp. lower or equal) to the sum of
Nik if data are precise (resp. imprecise).

Equation 5 could be defined on a set of variables Xi,Xj , ...Xw. In this case, Nik becomes
Nik,jl,...,wp = N({xikxjl...xwp} ⊆ Dijw).

3 Evaluation process for possibilistic networks learning algorithms

In the probabilistic case, evaluating Bayesian networks learning algorithms is ensured using the
following process: we select an arbitrary Bayesian network either a synthetic one or a gold
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standard from which we generate a dataset using Forward Sampling algorithm [11]. Then, we
try to recover the initial network using a learning algorithm and we compare the initial network
with the learned one.

In [9], we have proposed to transpose the evaluation strategy proposed in the probabilistic
case to the possibilistic one. In what follows, will mainly concentrate on sampling possibilistic
networks which consists in generating a dataset representative of their joint distributions. The
sampling process constructs a database of N (predefined) observations by instantiating all vari-
ables in V w.r.t. their possibility distributions. Obviously, variables are most easily processed
w.r.t. a topological order, since this ensures that all parents are instantiated. Instantiating a
parentless variable corresponds to computing its α-cut. Instantiating a conditioned variable cor-
responds to computing also its α-cut given its sampled parents values. This could not be directly
applied to conditional possibility distribution which is composed of more than one distribution
depending on the number of the values of its sampled parents. So, to instantiate a conditioned
variable Xi s.t. Pa(Xi = A), we compute α-cut from Π(Xi|Pa(Xi) = A), computed as follows:

Π(Xi|Pa(Xi) = A) = max
ai∈A

π(Xi|ai)π(ai) (6)

The main limitation of this sampling process is that it generates a particular case of imprecise
datasets i.e. obtained data relative to a variable Xi are conditionally consonant with respect to
the sampled values of its parents. This is due the fact that the sampling process is based on the
α-cut notion which returns generally most possible values as observed ones. In what follows, we
propose to parametrize this sampling process in order to generate more generic imprecise data
by controlling the imprecision degree in generated datasets. In fact, we propose an extension
to the sampling process proposed in [9] in which we control the imprecision degree of generated
data.

The aim of controlling the imprecision degree in generated datasets is to create different
forms of imprecision around the most possible value i.e. varying the values in the dataset
but we conserve the most possible combination of Ω. Given an imprecision degree θimp and
a variable Xi such that the α-cut(Xi) presents values returned by the sampling process, we
generate all subsets pertaining to this α-cut including the most possible value and we as-
sign a probability equal to θimp to α-cut(Xi) and a probability equal to each subset SXi

,

θ
card(SXi

)−1

imp ∗ (1 − θimp)
card(α-cut(Xi))−card(SXi

) to remaining subsets. Finally, we sample this
probability distribution and we replace α-cut(Xi) by the sampled subset in the dataset.

The proposed sampling process is formally described by Algorithm 1.

Algorithm 1 Sampling process (imprecision control)

Input: Possibilistic network
Output: Observation
begin

% Process nodes in a topological order foreach Xi ∈ V do

if Xi is parentless then
observation(Xi)=α-cut(Xi)

else
Compute Π(Xi|Pa(Xi) =observed) using Equation 6
observation(Xi)= α-cut(Xi) from Π(Xi|Pa(Xi) =observed)

end

end

p(α-cut(Xi))=θimp

foreach SXi
⊆ cut do

p(SXi
) = θ

card(SXi
)−1

imp ∗ (1− θimp)
card(α-cut(Xi))−card(SXi

)

end

observation(Xi)=sample(p)
Return observation

end
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4 Parameters learning of possibilistic networks

4.1 New possibilistic likelihood function

The formulation of our likelihood function is made in two steps: first, we propose a likelihood
function defined on random sets. Then, we propose an approximation of this likelihood function
which leads to the definition of our possibilistic likelihood.

Definition 1 Let G be a DAG and {m1,m2, ...,mn} be the parameters relative to {X1,X2, ...,Xn}

to be estimated and Dij = {d
(l)
ij } be a dataset relative to a variable Xi and its parents Pa(Xi) = j,

d
(l)
ij ⊆ Dij . The number of occurrences of each Aik ⊆ Di such that Pa(Xi) = j (j ⊆ Dj), denoted

by Nijk, is the number of times Aijk appears in Dij : Nijk = card({l s.t. Aijk = d
(l)
ij }). We express

the likelihood function as follows:

mL(m,G,D) =
n
∏

i=1

qi
∏

j=1

ri
∏

k=1

Nijk logmijk (7)

where mL is expressed by random sets of domains variables i.e. for each Xi, qi is card(2Pa(Xi))
and ri is card(2Di), mijk is the parameter to be estimated when Xi = Aik and Pa(Xi) = j.

For numerical stability reasons, we propose the log-likelihood function. Equation 7 becomes:

mLL(m,G,D) =

n
∑

i=1

qi
∑

j=1

ri
∑

k=1

Nijk logmijk (8)

Note that mass functions associated to random sets is a probability distribution, the partial
derivative of the mLL(m,G,D) follows the same principle of the partial derivative of the prob-

abilistic likelihood function [14] and reaches its maximum in m̂ijk =
Nijk∑ri

k=1
Nijk

.

Note that if mass functions are defined on singletons, i.e, available data are precise, the like-
lihood function defined in Equation 8 recovers the probabilistic one. However, in the opposite
case, computing the likelihood functions is computationally expensive. In fact, a random set
relative to a variable Xi is defined on 2Di and its cardinality grows exponentially with the the
number of values in Di [5]. Consequently, we propose to investigate the link between possibility
distributions and mass functions presented in Equation 3 and to define an approximation of ran-
dom sets likelihood function, i.e. a possibilistic likelihood expressed by possibility distributions
defined on singletons. More formally, we express the possibilistic likelihood function as follows:

Definition 2 Let G be a DAG and {π1, π2, ..., πn} be the parameters relative to {X1,X2, ...,Xn}

to be estimated and Dij = {d
(l)
ij } be a dataset relative to a variable Xi and its parents Pa(Xi) = j,

d
(l)
ij ⊆ Dij . The number of occurrences of each xik ∈ Di such that such that Pa(Xi) = j, denoted

by Nijk, is the number of times xijk appears in Dij: Nijk = card({l s.t. xijk ⊆ d
(l)
ij }). We express

the possibilistic likelihood as follows:

πLL(π,G,D) =
n
∑

i=1

qi
∑

j=1

ri
∑

k=1

Nijk log πijk (9)

where for each Xi qi is card(Pa(Xi)) and card(ri = |Di), πijk is the parameter to be estimated
when Xi = xik and Pa(Xi) = j.

4.2 Possibilistic-likelihood-based parameters learning algorithm

In the probabilistic case, learning Bayesian networks parameters is performed satisfying maximum
likelihood principle [10] which evaluates at what level learned parameters fit the dataset. As
far as we know, such a measure has not been proposed in the possibilistic framework. The
absence of a learning possibilistic networks parameters method could be justified by the fact
that the learning is usually viewed as an objective task i.e. based on computing frequency of
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observations while possibility theory has been almost based on the subjective opinions. This
is to some extent true, especially, when we deal with measurement devices leading to precise
observations (one possible value per variable). In this case, probability theory remains the
most adequate alternative. However, when measurement devices provide imprecise data and we
want to model data as they have been collected i.e. including imprecision due to the physical
measurement itself, non-classical uncertainty theories stand out as best alternatives. In our case,
we choose to use possibility theory since it is able to offer a natural and simple formal framework
representing imprecise and uncertain information. The latter refers to the study of maxitive and
minitive set-functions and can be interpreted as an approximation of upper and lower frequentist
set probabilities in the presence of imprecise observations and this link will be explored in the
following. In fact, we use the possibilistic likelihood in Definition 2 to learn possibilistic networks
parameters.

Proposition 1 Given a DAG, a fixed parameter πijk and an imprecision degree Si (prefixed
value) relative to the variable Xi the maximum possibilistic likelihood estimates are the param-
eter values that maximize πLL(π,G,D). We assume that

∑ri
k=1 πijk is a constant equal to Si,

πLL(π,G,D) reaches it maximum in π̂ijk = argmax(πLL(π,G,D)) =
Nijk∑ri

k=1
Nijk

∗ Si.

Proof 1 Let Si be
∑ri

k=1 πijk. So, the parameters πijk are related by the following formula:

πijri = Si −
∑ri−1

k=1 πijk. Then, πLL(π,GD) could also be rewritten as follows:

πLL(π,G,D) =

n
∑

i=1

qi
∑

j=1

((

ri−1
∑

k=1

Nijkπijk) +Nijri log(Si −
ri−1
∑

k=1

πijk)) (10)

So, its derivative w.r.t a parameter πijk is:

∂πLL(π,G,D)
∂πijk

=
Nijk

πijk
=

Nijri

S−
∑ri−1

k=1
πijk

=
Nijk

πijk
−

Nijri

πijri

So, the value π̂ijk of the parameter of πijk maximizing the possibilistic likelihood sets this
derivative equal to 0 and satisfies thereby:

Nijk

π̂ijk
=

Nijri

π̂ijri

We have:

Nij1

π̂ij1
=

Nij2

π̂ij2
= ... =

Nijri−1

π̂ijri−1

=
Nijri

π̂ijri

=
∑ri

k=1
Nijk∑ri

k=1
π̂ijk

=
∑ri

k=1
Nijk

Si

So, π̂ijk =
Nijk∑ri

k=1
Nijk

*Si.

Note that Si corresponds to the imprecision degree relative to a variable Xi and could be fixed
by an expert, inferred from the dataset to learn from or based on variables description. To obtain
normalized possibility distributions, we divide every obtained distribution by its maximum. This
operation will eliminate the effect of the imprecision degree and let us to be objective in the
learning task. However, it remains possible to fix an imprecision degree per value of variables of
the studied domain. Note that if obtaining possibility distributions are equal to zeros, we add
an initial count (1) to all instances Nijk whose number are then added to the total number of
instances.

5 Conclusion

In this paper, we propose an evaluation strategy to possibilistic networks parameters learning
algorithms. A sampling method has been proposed to generate an imprecise dataset from a pos-
sibilistic network. In the second part of this paper, we propose a new product-based possibilistic
networks parameters learning algorithm based on a possibilistic likelihood function exploring the
link between random sets theory and possibility theory.
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