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Random acoustic metamaterial with a subwavelength dipolar
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2Universit�e de Bordeaux, CNRS, UMR 5798, Laboratoire Ondes et Matière d’Aquitaine (LOMA),
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The effective velocity and attenuation of longitudinal waves through random dispersions of rigid, 
tungsten-carbide beads in an elastic matrix made of epoxy resin in the range of beads volume frac-

tion 2% 10% are determined experimentally. The multiple scattering model proposed by Lupp�e, 
Conoir, and Norris [J. Acoust. Soc. Am. 131(2), 1113 1120 (2012)], which fully takes into account 
the elastic nature of the matrix and the associated mode conversions, accurately describes the mea-

surements. Theoretical calculations show that the rigid particles display a local, dipolar resonance 
which shares several features with Minnaert resonance of bubbly liquids and with the dipolar reso-

nance of core-shell particles. Moreover, for the samples under study, the main cause of smoothing 
of the dipolar resonance of the scatterers and the associated variations of the effective mass density 
of the dispersions is elastic relaxation, i.e., the finite time required for the shear stresses associated 
to the translational motion of the scatterers to propagate through the matrix. It is shown that its 
influence is governed solely by the value of the particle to matrix mass density contrast.

I. INTRODUCTION

As proposed from the very beginning of research on

acoustic metamaterials,1 a successful strategy for obtaining

negative effective density, compressibility, or refractive index

is to exploit the intrinsic (so-called local) resonances of me-

chanical resonators having a subwavelength size and embed-

ded in the propagation medium. Compared to the phononic

crystals strategy, the strategy based on local resonances bene-

fits from mainly two advantages. First, the targeted properties

can a priori be obtained without any crystalline order of the

embedded resonators, although order may play a significant

role. Second, since at resonance the acoustic wavelength in

the embedding medium can be large compared to the resona-

tor size, depending on the resonator design and performances,

the targeted properties can be obtained using extremely thin

samples compared to wavelength. Reported efficient locally

resonant metamaterials (LRM) involve mechanical resonators

with various degrees of sophistication and assembled in one,

two, or three dimensions: Helmholtz resonators,2–4 air bub-

bles in liquids,5 solid membranes, either loaded6 or unloaded,7

liquid films in foams,8 core-shell particles,1 mass-spring sys-

tems,9 “slow” spheres,10 rod-spring resonators,11 hollow

tubes,12 and various combinations of them.11,13,14 In the audi-

ble domain several applications of LRM have already been

implemented, which involve handmade or machined,

resonators with centimeter size. In the ultrasonic domain, sev-

eral applications of LRM are also foreseen. Their practical

implementation raises several issues such as the resonators

miniaturization and assembly,15 or the detailed knowledge of

elastic properties of the materials constituting the resonators

at ultrasonic frequencies.16

We focus on the dense core-soft shell particles, which

have been used in the first LRM1 and have been extensively

studied theoretically. This kind of resonator can be sketched

as a mass-spring resonator where the oscillating mass is the

rigid, dense core and the spring is the compliant shell

deformed by the core displacement.17,18 The high density of

the core ensures that the phase delay of the core motion with

respect to the matrix motion above the resonance frequency

has a noticeable impact on the effective density of the

LRM.17,19 The softness of the shell results in a small reso-

nance frequency, ensuring that the wavelength in the embed-

ding medium is large compared to the resonator size.

Although this kind of resonator has allowed to obtain nega-

tive effective density in the audible domain,1 its complex

structure and the large dissipation in the viscoelastic shell at

ultrasonic frequencies, which dampens the resonance,19

makes them difficult to implement in the ultrasonic domain.

As shown by Kinra et al. in the 1980s,20,21 another kind of

composite material actually displays a solid body translation

resonance, i.e., a similar local resonance, namely, a disper-

sion of dense, hard particles in a less dense, elastic matrix.

Given the prolific worldwide research on metamaterials, it is

surprising that such a simple kind of LRM has, to our knowl-

edge, never been studied by the metamaterials community,
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UMR 7190, Institut Jean Le Rond d’Alembert (@’Alembert), 4, Place

Jussieu, F 75005, Paris, France.
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in particular, regarding its effective properties around its

local resonance. More generally, as pointed in one of the last

reviews on this kind of material,22 there is a lack of experi-

mental data on the acoustic properties of dispersions of

dense, rigid particles. In this article, we provide original,

comprehensive, and accurate data on effective acoustic prop-

erties of random dispersions of dense, tungsten-carbide (TC)

beads in an epoxy matrix around their local resonance fre-

quency in the 0.1 2.5 MHz frequency range. From a theoret-

ical point of view, while acoustic propagation in such

dispersions at frequencies smaller than the local resonance

frequency has been the subject of several works,22 the influ-

ence of the local resonance on acoustic propagation has

actually been much less studied.36 In this article, we com-

pare over the entire investigated frequency range our experi-

mental data with several multiple scattering theories, in

particular, with a recent model42 which takes into account

the effect of longitudinal-transverse wave conversions on the

scattering of waves.

Our article is organized as follows. In Sec. II, we present

the acoustic properties of the beads and matrix and we detail

the samples fabrication protocol. Then, we describe the

acoustic measurements and signal analysis procedures. In

Sec. III, we briefly present the ingredients of the multiple

scattering theories, which we aim to confront to our meas-

urements, and we thoroughly compare our experimental data

to these theories. Finally, in Sec. IV, we provide several

physical insights in the scatterer dynamics and in the acous-

tic propagation in these dispersions. We evidence the strong

similarities of this kind of resonance with Minnaert’s reso-

nance in bubbly liquids. We identify the causes of smoothing

of the dipolar resonance and evaluate their impact on the

behavior of the effective mass density of the dispersions.

II. EXPERIMENTS

A. Materials properties

The composite material under study is a suspension of

dense, TC spherical particles (labeled by p in the following)

with monodisperse diameter, randomly dispersed in a matrix

made of epoxy resin.

We used spherical, submillimetric TC beads supplied by

Marteau-Lemari�e (Pantin, France) and having nominal den-

sity qp ¼ 14:95� 103 kg m 3 and Lam�e constants kp

¼ 2:09� 1011 Pa and lp ¼ 2:66� 1011 Pa. Two bead sizes

have been used, 397 lm and 500 lm nominal diameter 2R,

with small nominal diameter dispersity (62:5 lm).

Epoxy resin, “2-Ton” model supplied by ITW Devcon

(Danver, MA), has nominal density q¼ 1100 kg m 3. It has

been chosen for its rather long curing time (30 min), which

allows for (i) a quiet insertion of the beads, (ii) a reasonable

heat release rate during curing, and (iii) time for enclosed air

bubbles to rise and burst.

Even once cured, epoxy is well known to display a pro-

nounced viscoelastic behavior in the ultrasonic frequency do-

main, as a consequence of its polymeric nature. In order to

access the epoxy viscoelastic properties, frequency-dependent

velocities and attenuations of both longitudinal (compression)

and transverse (shear) waves in cured epoxy have been

measured. The velocity cL and attenuation aL of longitudinal

waves in epoxy have been determined from transmission

measurements pulses with 2.25 MHz central frequency at nor-

mal incidence through a 9.43 mm thick epoxy slab immersed

in water using the same protocol as for the beads dispersion

samples described below. The velocity cT and attenuation aT

of transverse waves in epoxy have been determined from

transmission measurements of longitudinal pulses with

2.25 MHz central frequency through slab immersed in water

and inclined with an incidence angle (h ¼ 55�) larger than the

first critical angle of water epoxy interface in order to sup-

press the transmission of longitudinal waves through the slab

and to exploit the longitudinal-transverse-longitudinal wave

conversion at water epoxy interfaces, according to the

method described in Ref. 23. The measured variations of the

velocities and attenuations of both longitudinal and transverse

waves in epoxy as a function of frequency are plotted in Figs.

1(a) and 1(b), respectively.

The complex Lam�e constants k and l of epoxy are then

determined from the relationships cL ¼ ðkþ 2lÞ=q
p

and

cT ¼ l=q
p

. The frequency-dependence of the Lam�e

FIG. 1. (Color online) (a) Experimental variations of the longitudinal veloc

ity cL (curve decorated with full circles) and the transverse velocity cT

(curve decorated with full squares) as functions of the frequency in epoxy

resin. Dashed curves are best fits to the measurements based on Eq. (1).

Experimental frequency resolution is 5 kHz. (b) Same for attenuations aL

and aT.
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constants, which result from the relaxation of the polymers,

can be accurately described using the classical Zener model

of viscoelastic materials.24,25 As shown in Figs. 1(a) and

1(b), satisfactory fits to the experimental data could be

obtained using only four relaxation times sn, n¼ 1 4, which

are related to the Lam�e constants according to the following

expressions:26

C xð Þ ¼ C0 þ
X4

n¼1

Cn

xsnð Þ2 � ixsn

1þ xsnð Þ2
; (1)

where C stands for k or l, C0 is its low frequency value, and

Cn, n¼ 1 4 are weighting coefficients associated to relaxa-

tion times sn. The values of the relaxation times and associ-

ated coefficients corresponding to these best fits are given in

Table I. Noticeably, the values of relaxation times are in

good agreement with values reported in Ref. 24. For accu-

racy and simplicity purposes, these analytical approxima-

tions of the Lam�e constants of epoxy are used in the

following instead of their measured values.

B. Samples preparation

Despite the large viscosity of uncured epoxy, the beads

density is so large that sedimentation occurs during the cur-

ing, even with more rapidly curing resins. Consequently,

three-dimensional, homogeneous samples could not be

obtained by simply stirring the epoxy-beads mixture before

solidification. Thus, beads dispersions having volume frac-

tions ranging from / ¼ 2% 10% were manufactured layer

by layer according to the following protocol.

The lengthy spreading of the viscous resin poured at

each step, competing with its solidification and the impossi-

bility to steer the resin without enclosing bubbles, imposed a

minimum resin height of 1 mm for each layer for a full and

homogeneous coverage of the sample surface.

Cylindrical, 55 mm diameter Petri dishes were chosen as

molds. Once the sample thickness e and the beads volume

fraction / had been chosen, the corresponding mass of beads

was weighted and the beads set was split into N subsets,

N ¼ e� 1 (with e expressed in millimeters) being the num-

ber of layers which are expected to constitute the sample. In

a horizontal Petri dish previously covered with a mold

release wax (reference 66 333MR-1000P from Finish Care

Products, South El Monte, CA), a reproducibly h¼ 1 mm

thick layer of resin was poured. A subset of beads was ran-

domly dispersed 20 min after, and then curing was achieved

in 10 min. This sequence was repeated N times. Finally, a

layer of epoxy was poured and cured, which allowed the

sample top surface to be planar, and then the sample was

removed from its mold. h is smaller than the average dis-

tance between nearest neighbors in a random dispersion

which is expressed as 0:9R/ 1=3 (Ref. 27) and varies from

650 lm (respectively, 820 lm) to 300 lm (respectively,

380 lm) for 397 lm (respectively, 500 lm) diameter beads

in the investigated range of volume fractions. Consequently,

the resulting beads distribution displays some anisotropy,

whose importance increases with volume fraction.

Noticeably, h is smaller than the smallest wavelength in

resin kmin ¼ 1 mm, met for f¼ 2.5 MHz, which allows us to

ignore phononic effects. The characteristic features of all the

samples produced for this study are given in Table II.

C. Acoustic measurements

The acoustic properties of the samples were determined

by performing underwater longitudinal wave transmission

measurements at normal incidence. The samples, fixed on a

tapped panel having an air gap inside, were immersed in a

water tank. Three pairs of Olympus (Tokyo, Japan) identical

piezoelectric transducers having different central frequencies

ft and diameters (see Table III) were used, which allowed us

to reliably cover the frequency range ½0:1; 2:5� MHz. The

sample was placed in the far field of the emitter [distance

slightly larger than ðD=2Þ2f=c0, where D is the transducer di-

ameter and c0 the sound velocity in water] in order to be

probed with plane waves; see Table III.28 The receiver was

facing the emitter and located close to the sample (i.e.,

20 mm away) in order to avoid possible diffraction effects

by the sample-screen junction.29,30

The emitting transducer was fed with a standard pulser-

receiver (reference 5072 from Olympus). The transmitted sig-

nal detected by the receiving transducer was acquired at a

5� 109 samples per second sampling rate and averaged over

1024 acquisitions using a digital oscilloscope (this resulted in

a frequency resolution of 5 kHz of the Fourier transform of

the signals). Figure 2 displays two sets of 1 MHz and

2.25 MHz central frequency (ft) signals transmitted through

water and a 8.82 mm thick slab of a dispersion of 397 lm

beads with volume fraction / ¼ 5%. Comparing the signals

received after propagation through the beads dispersion (signal

S in Fig. 2) to the signals received after propagation through

water (signal S0) and anticipating the spectral signal analysis,

one can state that: (i) the earlier arrival of the signal is due to

the larger velocity of longitudinal waves, (ii) the signal length-

ening is due to the strong dispersion, (iii) the apparent change

in central frequency of the 1 MHz signal results from the large

attenuation for frequencies larger than 0.5 MHz.

As the acoustic pulse propagates through the suspension,

it is scattered by the beads. The resulting wave propagating

through a sample can be described as the superposition of a

coherent wave independent of the beads distribution and an

incoherent wave which depends on the beads distribution.

The contribution of the incoherent wave to the received signal

TABLE I. Best fit values [based on Eq. (1)] of the parameters defining

Lam�e coefficients of epoxy resin.

k l

C0 ð�109 PaÞ 3.6 1.05

C1 ð�109 PaÞ 0.1 0.2

s1 ð�10�9 sÞ 5000 5000

C2 ð�109 PaÞ 0.3 0.15

s2 ð�10�9 sÞ 500 500

C3 ð�109 PaÞ 0.25 0.1

s3 ð�10�9 sÞ 50 14

C4 ð�109 PaÞ 0.3 0.15

s4 ð�10�9 sÞ 8 50
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depends on the pulse central frequency, which determines the

efficiency of the scattering, on the sample thickness and

acoustic beam diameter, which both determine the number of

irradiated scatterers, but also on the receiver diameter since

the spatial fluctuations of the incoherent wave in the receiver

plane are averaged over the receiver surface. In order to

reduce the contribution of the incoherent wave to the received

signal, the latter is also averaged over 16 acquisitions per-

formed at 16 different sample positions corresponding to the

nodes of a 4� 4, 2 mm step squared grid lying in the sample

plane. By doing this, an averaging over the scatterers distribu-

tion is performed. The contribution of the incoherent wave to

the signals can be evaluated by comparing a signal acquired

at a particular grid node (signal S) and the averaged signal

(signal Sa), both shown in Fig. 2. While this contribution is

barely visible at ft¼ 1 MHz, it is more pronounced at ft

¼ 2:25 MHz. This may be explained as the result of both

larger wave scattering at higher frequency and the smaller di-

ameter of the ft ¼ 2:25 MHz receiver compared to the one of

the ft¼ 1 MHz receiver (see Table III). However, there is no

pronounced delayed signal resulting from multiple scattering.

These observations justify our spatial averaging process for

isolating the contribution of coherent wave in the transmitted

signal.

D. Signal analysis

The longitudinal wave transmission coefficients of the

samples were determined as function of frequency from the

comparison between the averaged signal SaðtÞ (t is time)

transmitted through the beads dispersion sample and the

signal S0ðtÞ transmitted through water, i.e., in absence of

sample, according to the following procedure.

In order to isolate the signal having propagated through

the sample only once, only the part of Sa beginning just before

the main peak and lasting 2e=cmax was retained, the other part

of Sa begin padded with zeroes. cmax ¼ 2600 m s 1 is the

maximum velocity measured in the samples (see below).

More precisely, the end of the rectangular window applied to

Sa was slightly tuned to coincide with a zero of Sa in order to

avoid any signal discontinuity. The same filter was applied to

S0. Then, the Fourier transforms of Sa, Ŝaðf Þ and S0, Ŝ0ðf Þ,
were computed using Python language. With the aim of accu-

rately unwrapping the phase of Ŝa=Ŝ0 later, Ŝa (respectively,

Ŝ0) was multiplied by exp½�ixt1
p� (respectively, exp½�ixt0p�),

where x ¼ 2pf is the angular frequency and t1
p (respectively,

t0
p) is the instant of detection of the main peak of Sa (respec-

tively, S0).31 Finally, the real k0 and imaginary k00 parts of the

complex acoustic wavenumber keff
L in the sample were deter-

mined independently as functions of the frequency by fitting

separately the modulus and the phase of the complex transmis-

sion factor T1T2 exp½iðkeff
L � k0Þe� exp½ixðt1

p � t0
pÞ� to the ratio

TABLE II. Characteristic features of the samples used for this study. The

standard deviation of the sample thickness, computed from a series of ran

dom thickness measurements throughout the entire sample surface, charac

terizes the flatness of the sample and the parallelism of its faces.

Beads volume

fraction / (%)

Beads diameter

2R (lm)

Sample thickness

e 6 standard deviation (mm)

0 9.43 6 0.01

2 397 5.51 6 0.04

397 8.48 6 0.01

397 19.17 6 0.04

500 4.87 6 0.04

5 397 5.10 6 0.09

397 8.82 6 0.02

397 19.16 6 0.04

500 5.15 6 0.09

7.5 500 3.23 6 0.12

10 397 3.36 6 0.06

500 5.68 6 0.03

TABLE III. Characteristic features of the transducers used for the experi

ments and associated working conditions.

Olympus reference V301 V302 V323

Diameter (inch) 1 1 0.25

Central frequency ft (MHz) 0.5 1 2.25

Exploitable frequency range (MHz) 0.1 0.6 0.1 1.2 0.3 2.5

Emitter sample distance (mm) 70 120 40

FIG. 2. (Color online) Typical acoustic signals with central frequency (a)

ft 1 MHz and (b) ft 2:25 MHz transmitted through water (dotted curve,

signal labeled S0) and through a e 8.82 mm thick sample filled with vol

ume fraction / 5% of 397 lm beads (solid curve, signal labeled S
acquired along a given path through the sample; dashed curve, signal labeled

Sa averaged over 16 different paths through the sample). The signals trans

mitted through the sample have been multiplied by a factor of 10 and 35 in

(a) and (b), respectively.

4 J. Acoust. Soc. Am. 139 (6), June 2016



Ŝa=Ŝ0, where k0 ¼ x=c0 is the real, acoustic wavenumber in

water, c0 is the sound velocity in water computed from tem-

perature measurement in the tank,32 q0 ¼ 1000 kg m 3 is the

density of water at room temperature, and T1 ¼ 2ZL=ðZ0

þ ZLÞ and T2 ¼ 2Z0=ðZ0 þ ZLÞ are the pressure transmission

coefficients of water-epoxy and epoxy water interfaces,

respectively, with Zi ¼ qici; i ¼ 0; L. This allowed us to cal-

culate the velocity ceff
L ¼ x=k0 and the attenuation aeff

L ¼ k00 of

longitudinal waves in the sample.33,34 We are aware that ZL

should be ideally computed using the effective impedance of

the composite material and not of epoxy. Since this effective

impedance is actually unknown, this leads to a complicated

implicit problem. This is the reason why we adopted this ap-

proximate definition for ZL.

Since the pulse duration has to be shorter than the

round-trip time in the sample, thin samples are obviously not

adapted to low frequency measurements. Conversely, since

strong attenuation occurs at frequencies larger than 0.5

MHz, thick samples are not adapted to high frequency meas-

urements because acoustic transmission through them is too

much attenuated. Consequently, when samples with several

different thicknesses were available, among all the measure-

ments on the thinnest sample only those corresponding to

ft ¼ 0:5 MHz were retained, while among all the measure-

ments on the thickest sample, only those corresponding to

ft¼ 1 MHz and 2.25 MHz were retained. This selection based

on physical considerations was found to ensure in practice

good consistency between all the selected measurements all

over the investigated frequency range.

III. COMPARISON BETWEEN EXPERIMENT AND
THEORY

A. Theory

It is commonly assumed that the multiple scattering of an

acoustic wave by a random distribution of scatterers may be

described as resulting in a coherent wave being the acoustic

field averaged over all possible scatterer configurations. The

propagation of this coherent wave is characterized by a

complex-valued, effective wavenumber, whose imaginary part

accounts for the energy loss due to scattering in all directions.

The multiple scattering of waves in media through only one

kind of wave can propagate, like fluid media, has been the

object of numerous models in the last decades. Reviews of

these models and their mathematical backgrounds can be

found in Refs. 37 39. By contrast, the multiple scattering of

waves in media where several kinds of waves can propagate

and wave conversion can occur, like elastic media through

which both compression (L) and shear waves (T) can propa-

gate, has been the object of much fewer models (see Refs.

40 42, and references therein). From a mechanical point of

view, the contribution of wave conversion to the coherent

wave originates from the fact that a scatterer put into motion

by an L wave scatters not only an L wave but also a T wave.

When this T wave attains its neighbors, it puts them into

motion. They emit, in turn, L waves, which contribute to the

effective L wave. This explains why the influence of wave

conversion on the coherent wave vanishes (i) in the /! 0

limit, i.e., when neighboring scatterers are distant, and (ii) in

the case of strong T dissipation in the matrix, i.e., when shear

waves are strongly attenuated along their path from a scatterer

to another.

For the case of randomly distributed elastic spheres in

elastic media, explicit models, in which effective wavenum-

ber is given by an explicit formula,42 and self-consistent

models, in which it is the solution of a characteristic equa-

tion,40 have been proposed. In the following, the explicit

model derived in Ref. 42 is preferred because it allows to

clearly identify the contributions of wave conversions

(“coupling terms”). More precisely, the effective wavenum-

bers of coherent L and T waves are derived in the spirit of

Fikioris and Waterman’s approach,43 which is based on the

quasi-crystalline assumption and takes account of the non-

overlap between the scatterers (“hole correction”). In this

model, the parameter b (hole radius) introduced in the course

of the field averaging process satisfies b ¼ 2R. In the follow-

ing, the effective wavenumber of the coherent compression

wave predicted using this model is labeled LCN model.

Interestingly, direct numerical simulations of multiple scat-

tering in concrete44 have confirmed the validity of LCN

model in the case of weak scattering up to densities of 25%.

Note that, in the long wavelength limit, LCN (b! 0)

model identifies with Linton and Martin’s model37 (here-

after, labeled LM model) with an additional contribution due

to wave conversion. This remark will later lead us to con-

clude on the influence of wave conversion on coherent prop-

agation from the benchmarking of LCN and LM models

against experiments.

B. Experimental results

We now confront the above presented theoretical pre-

dictions to the measurements. Figures 3, 4, and 5 display

the experimental variations of the velocity and attenuation

of longitudinal coherent waves together with their predic-

tions using LM and LCN models as functions of f and k0
LR

(k0
L ¼ x=c0

L; c0
L being the zero-frequency value of the lon-

gitudinal velocity in epoxy c0
L ¼ 2276:4 m s 1) in disper-

sions of 397 lm diameter beads in epoxy with volume

fractions / ¼ 2%; 5%, and 10%, respectively. The discrep-

ancy between the superposed experimental curves obtained

using different transducers (see above) can be regarded as

an evaluation of the overall uncertainty associated to the

measurements.

As a preamble, we note that strong dispersion and attenu-

ation, which are the signature of a resonance, occur around

k0
LR ’ 0:3. This demonstrates that this resonance is actually

subwavelength. First, LCN model is observed to fit to the ex-

perimental data globally much better than LM model for all

volume fractions. In particular, the velocity peak predicted by

LM model (and not by LCN model) is not reproduced by the

experimental data. This definitely demonstrates that wave

conversions play a key role in the propagation of coherent

waves in elastic media and that LCN model fairly describes

the influence of wave conversion. Second, for / ¼ 5% and

10%, LCN model is observed to fit to the experimental attenu-

ation better than LCN (b! 0) model. This confirms the rele-

vance of the hole correction in LCN model.
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The agreement between LCN model and experimental

data is found to be excellent for / ¼ 2% and for 5% for fre-

quencies larger than 0.5 MHz. This demonstrates the accu-

racy of LCN model. Conversely, the discrepancy between

LCN model and the experimental data for / ¼ 10% is quite

large. This can be attributed to the loss of accuracy of ana-

lytical models at high volume fractions in the case of strong

scattering due to the sphere resonance. The discrepancy

between theory and experiment observed in this frequency

range could also be due to the anisotropy of the samples,

which could blur this fine behavior. Noticeably, LCN model

displays negative attenuation and simultaneously positive

velocity around 0.4 MHz for / ¼ 5% and 10%, whereas the

experimental velocity and attenuation are both positive in

this frequency range. This unphysical attenuation has al-

ready been observed by different authors38,44,45 without

explanation.

IV. FURTHER THEORETICAL DEVELOPMENTS

As pointed out by Moon and Mow,36 the physical phe-

nomenon responsible for the strong acoustic dispersion and

attenuation observed around 0.5 MHz in elastic dispersions

is the resonance corresponding to the particle deformation

eigenmode labeled n¼ 1, also called the dipolar resonance

of the scatterers. This allows us to call this resonance a local
resonance, in contrast to spatial interferences involving

inter-particle distance, like in phononic crystals.

The physical ground of dipolar scattering is the follow-

ing. When the density (inertia) of the particles differs from

that of the surrounding elastic matrix, the cyclic variations

of the mechanical stress associated with the wave lead to

oscillating motions of the matrix and of the particles having

different amplitudes,46 thus, on an oscillating relative motion

of the particle with respect to the matrix. It follows that the

particle scatters acoustic energy according to a dipolar pat-

tern (associated to the dipolar resonance n¼ 1) if the particle

is small with respect to the incident wavelength. The reso-

nant behavior of the scatterer motion and the associated

acoustic scattering relies on the combination of the particle

FIG. 3. (Color online) Variations of (a) velocity ceff
L and (b) attenuation aeff

L

of the coherent longitudinal wave propagating through dispersions of

397 lm diameter beads in epoxy with volume fraction / 2% as functions

of frequency f and dimensionless wavenumber k0
LR. Solid curves decorated

with symbols, experimental data with 5 kHz frequency resolution obtained

using various samples and transducers (see inset legend and Tables II and

III); bold curves, theoretical predictions using LM model (dotted curve),

LCN (b! 0) model (dashed curve), LCN model (solid curve).

FIG. 4. (Color online) Same as Fig. 3 for / 5%.
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inertia and the elastic force exerted by the deformed matrix

on the oscillating particle.

Although numerous studies have addressed the scatter-

ing of elastic waves by a solid inclusion,47,48 only the pio-

neering work of Moon and Mow36 deals with the effect of

the dipolar resonance of the inclusion on the multiple scatter-

ing of sound. More precisely, in the latter study, the particle

was assumed to be rigid and to undergo only solid body

translation along the direction of propagation of the incident

wave. For this reason, knowledge on the influence of the

elastic properties of the particle on its resonance is lacking.

Given this context, in this section physical interpretations of

LCN model based on analytical calculations and parametric

numerical studies are presented in order to gain a qualitative

insight in this little-known resonance.

A. Resonance frequency in the limit of infinitely rigid
scatterers

In a recently published work,49 it has been shown that in

the long wavelength regime, in the limit of large values of

the shear modulus ratio ~l ¼ lp=l, the elastic properties of

the scatterer excited by an incident longitudinal wave have a

minor influence on the amplitudes of the modes n¼ 1 of the

longitudinal and transverse scattered waves in the matrix

contrary to its mass. Given the large contrast in elastic prop-

erties between TC and epoxy resin (~l � lp=l0 ¼ 253), it is

thus reasonable to consider the scatterer as a moving rigid

particle. In this limit, its dipolar vibration mode can be seen

as a simple oscillatory translation, which is exactly the

motion exploited in core-shell particles based LRM.

LCN model involves the scattering coefficients TLL
n that

describe the scattering of a longitudinal plane wave by a

unique particle in the form of a longitudinal wave, as well as

TLT
n (respectively, TTL

n ) that describes the scattering of a lon-

gitudinal (respectively, transverse) plane wave in the form of

a transverse (respectively, longitudinal) wave, i.e., the scat-

tering coefficient associated to mode conversion L! T
(respectively, T ! L). The effective wavenumber keff

L

depends on these scattering coefficients as follows:

keff
L

kL

� �2

¼ 1� i
3/

kLRð Þ3
X1
n¼0

2nþ 1ð ÞTLL
n

þ /2F TLL
n ; TLT

n ; TTL
n

� �
; (2)

where the function FðTLL
n ; TLT

n ; TTL
n Þ is given in Ref. 42.

Accordingly, L! T and T ! L mode conversions do not

come up at first order in /. This result is predicted by all the

existing multiple scattering models.

We now aim to determine the eigenfrequency associated

to the vibration eigenmode n¼ 1. Since at the dipolar reso-

nance jkLRj < 1, we consider for simplicity purpose the ap-

proximate expression of the dipolar scattering coefficient

TLL
1 in the long wavelength regime jkLRj � 1 (Ref. 49),

TLL
1 ¼

i kLRð Þ3

9
~q � 1ð Þ 3 kTRð Þ2 þ 9ikTR� 9

2~q þ 1ð Þ kTRð Þ2 þ 9ikTR� 9
;

(3)

where the mass density ratio appears as

~q ¼
qp

q
: (4)

Generally speaking, resonances correspond to the poles

of the scattering coefficients. If the matrix is assumed to be

purely elastic, i.e., using for l its zero-frequency, real value

l0 ¼ qðc0
TÞ2, with c0

T ¼ 977 m s 1 the zero-frequency value

of the transverse velocity, one of the poles of the denomina-

tor of Eq. (3) gives the following simple expression for the

resonance frequency fres:

fres ¼
3cT 8~q � 5
p

4pR 2~q þ 1ð Þ (5)

and the quality factor Q of this resonance is given by

Q ¼ 1

3
8~q � 5

p
: (6)

Using these approximate expressions, one finds fres ¼ 425

kHz and Q¼ 3.4 (respectively, fres ¼ 337 kHz and Q¼ 3.4)

FIG. 5. (Color online) Same as Fig. 3 for / 10%.
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for 397 lm (respectively, 500 lm) diameter beads in epoxy

matrix. These approximate values of the resonance fre-

quency differ from their exact values (fres ¼ 465 kHz for

397 lm diameter beads and fres ¼ 366 kHz for 500 lm di-

ameter beads) by <10%, which confirms the relevance of

approximation (5). The approximate values of the quality

factor are even closer to their exact values (Q¼ 3.2 for

397 lm diameter beads and Q¼ 3.1 for 500 lm diameter

beads). It is also worth noting that, in this limit, Q only

depends on the density contrast and is a monotonously

increasing function of ~q from ~q ¼ 5=8. The same conclusion

has already been drawn concerning the resonance of core-

shell particles through numerical investigations.19,50

Finally, we address the influence of the matrix viscoe-

lasticity on the dipolar resonance frequency. Viscoelasticity

is indeed expected to play a noticeable role in the present

case since the resonance frequency is close to the inverse of

the first relaxation time s1. The actual resonance frequency

can be numerically evaluated by solving Eq. (5) recursively:

at the first iteration, the low frequency value of the matrix

shear modulus is used for determining the resonance fre-

quency fres;1; at the second iteration, the value of the matrix

shear modulus at frequency fres;1 is used for determining the

resonance frequency fres;2, etc. One ultimately finds fres

¼ 483 kHz (respectively, fres ¼ 381 kHz) for 397 lm

(respectively, 500 lm) diameter particles in epoxy.

Viscoelasticity induces a relative frequency shift on the

order of 4%.

B. Analogy with Minnaert resonance in bubbly liquids

In the ~q � 1 limit, fres has the following approximate

expression:

fres ’
3 2
p

4p
1

R

l
qp

r
: (7)

This resonance frequency fres depends on the shear modulus

of the matrix, i.e., of the most deformable under shear mate-

rial, and on the inertia of the particle, i.e., of the densest mate-

rial. This hybrid combination of mechanical properties in the

factors determining this dipolar resonance is very similar to

the Minnaert resonance of the volume oscillations (monopolar

resonance) of a gas bubble in a liquid, for which the relevant

stiffness is the one of the most compressible material (the

gas) and the relevant inertia is the one of the densest material

(the liquid). This is precisely the kind of hybridizationof me-

chanical properties of the two-components material which

makes both the Minnaert resonance of bubbly liquids and the

dipolar resonance of dense particles dispersed in an elastic

matrix subwavelength.

C. Influence of the density contrast on resonance

Finally, we aim to numerically determine the influence of

particle density and shear modulus on the propagation of the

coherent wave. For simplicity purposes, the matrix is assumed

to be purely elastic and has the epoxy density q
¼ 1100 kg m 3 and the Lam�e constants k¼k0¼3:6�109 Pa

and l¼l0¼1:05�109 Pa. The beads diameter and volume

fraction are fixed equal to 500 lm and /¼2%. First, a numer-

ical study is performed by varying the bead density qp

between 5500kgm 3 and 22000kgm 3 (~q ranging from 5 to

20) for fixed values of the bead Lam�e constants kp

¼2:09�1011 Pa and lp¼2:66�1011 Pa, so that ~l¼253. The

frequency dependences of the dimensionless velocity ceff
L =c0

L

and dimensionless attenuation aeff
L R of the longitudinal coher-

ent wave are plotted in Figs. 6(a) and 6(b), respectively, for

four different values of ~q, together with the corresponding res-

onance frequencies fi, i¼1 4, computed using Eq. (5). First,

we note that, as in the case of Minnaert resonance of bubbly

liquids, the resonance frequency coincides with the inflection

of attenuation and with the minimum of velocity. Moreover,

the larger ~q is, the larger are the variations of velocity and the

attenuation at resonance, as expected from the predicted

increase of the quality factor of the resonance with ~q. These

observations complete the analytical study presented

hereinabove.

D. Link between particle dynamics and effective
acoustic properties

As analyzed in Refs. 36, 51, and 52, under the hypothe-

ses of linear, Hookean elasticity Newton’s principle applied

to a single rigid particle moving in a viscoelastic matrix

leads to the following differential equation that couples the

particle displacement up and the matrix displacement u asso-

ciated to the coherent wave at the particle location:

4

3
pR3qp €up ¼ 6pRl u� upð Þ þ 6pRl

R

cT
_u � _upð Þ

þ 2

3
pR3q €u � €upð Þ þ

4

3
pR3q€u: (8)

Physical interpretation of the terms appearing in this differen-

tial equation is not present in the literature in the case of a

solid matrix, contrary to the case of a fluid matrix. In this con-

text, we compare the terms of the right-hand side (RHS) of

Eq. (8) to those for the case of a viscous fluid matrix, i.e.,

Stokes viscous drag, Basset-Boussinesq history force, the

added mass effect, and Archimedes force.49 The first term of

the RHS of Eq. (8) is an elastic spring force exerted by the

matrix on the moving particle.53,54 This spring force is associ-

ated to the matrix deformation which extends over a distance

comparable to R and adapts to the particle displacement

through the propagation of shear waves. The fourth term of

the RHS can be interpreted as a time-dependent buoyancy

(Archimedes-like force) associated to the matrix acceleration.

In the low frequency kLR� 1 regime considered here, adap-

tation of the matrix acceleration to the incident stress wave is

instantaneous so that this time-dependent buoyancy is in

phase with the matrix acceleration. On the contrary, since

cT< cL, the spring force exerted by the matrix on the moving

particle is expected to adapt to the particle displacement with

a time delay on the order of R=cT highlighting a relaxation

process of the spring force over the characteristic timescale

R=cT . The third term of the RHS is the so-called added mass

effect which has a noticeable influence on the resonance fre-

quency although it has been neglected in Ref. 36. We note
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that an additional source of time delay of the spring force

originates from the viscoelastic properties of the matrix. Thus,

the damping of the particle motion has two origins: the delay

of propagation through the matrix close to the particle of

shear stresses associated to its displacement, called hereafter

elastic relaxation, which occurs without energy dissipation,

and the viscoelastic nature of the matrix shear modulus l,

which involves energy dissipation, called hereafter visco-

elastic relaxation. As shown in Ref. 55, damping of the parti-

cle motion due to elastic relaxation occurs through acoustic

radiation.

The solution of Eq. (8) in the harmonic regime can be

expressed as up ¼ tpu where49

tp ¼
9 ~q � 1ð Þ
i kLRð Þ3

TLL
1 : (9)

This expression evidences the link between the translational

motion of the particle, the particle vibration mode n¼ 1, and

associated acoustic scattering.49

E. Influence of relaxation on effective acoustic
properties

We now aim to analyze the impact of both elastic and

viscoelastic relaxations on the dispersion equation and on

effective acoustic properties of the dispersion. For simplicity

purpose, we adopt Foldy’s approximation for the dispersion

equation, i.e., we consider Eq. (2) without the second-order

term in concentration. In the low frequency regime jkLRj
� 1 considered here, the multipolar expansion in Eq. (2)

can be safely restricted to the two first vibration eigenmodes

(n¼ 0 and n¼ 1). The simplified dispersion equation we

now consider is thus

keff
L

kL

� �2

¼ 1� i
3/

kLRð Þ3
TLL

0 þ 3TLL
1

� �
; (10)

where TLL
0 ¼ �iðkLRÞ3=3 for a rigid particle.49

In both the numerator and denominator of Eq. (3), the

imaginary number 9ikTR represents the contribution of elas-

tic relaxation on the phase shift of up with respect to u.

Neglecting both elastic and viscoelastic relaxations, i.e.,

dropping 9ikTR in Eq. (3) and using for l its zero-frequency,

real value l0, leads to the following expression for the effec-

tive wavenumber

keff
L

kL

� �2

¼ 1� /þ / ~q � 1ð Þ½ kTRð Þ2 � 3�
2~q þ 1ð Þ kTRð Þ2 � 9

: (11)

Under these assumptions, ðkeff
L Þ

2
is real. Thus, depending on

its sign, keff
L is either real or pure imaginary, i.e., the coherent

wave is either progressive or evanescent. Analysis of Eq.

(11) leads to identify a stop band, i.e., a frequency range for

which evanescence occurs (Re½keff
L � ¼ 0; Im½keff

L � 6¼ 0). The

lower boundary of the stop band is the resonance frequency

f 0
res ¼ 3cT=2pR 2~q þ 1

p
, which differs from fres as given by

Eq. (5) as a consequence of the further simplifications

applied to the propagation model. Its upper frequency is a

cutoff frequency which has the following expression:

fc ¼ f 0
res 1þ 2/ ~q � 1ð Þ2

/ ~q � 4ð Þ þ 2~q þ 1

s
: (12)

Note that such an expression for the upper boundary of stop

band has been previously derived by Moon and Mow36 and

has been found to fit experimental measurements on disper-

sions of lead spheres in epoxy resin.35

This stop band is visible in Figs. 7(a) and 7(b), which

display, respectively, the variations of the real and imaginary

parts of keff
L as defined by Eq. (11) for the TC-epoxy disper-

sion as function of frequency for several values of /. We

now compare in Figs. 7(a) and 7(b) the frequency variations

of keff
L without relaxation, i.e., as given by Eq. (11), to the

ones of keff
L with elastic relaxation and with or without visco-

elastic relaxation, i.e., as given by Eq. (10). The values cho-

sen for the mechanical properties of the materials are those

of TC-epoxy dispersion. Strikingly, elastic relaxation results

in a considerable smoothing of the variations of Re½keff
L � and

FIG. 6. (Color online) Variations of (a) dimensionless effective longitudinal

velocity and (b) dimensionless effective longitudinal attenuation as function

of frequency for various values of the mass density contrast q for a fixed

value of the elasticity ratio l 253. The resonance frequencies correspond

ing to each value of q are also indicated.
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Im½keff
L �. In particular, the stop band disappears, i.e., Re½keff

L �
is positive for all frequencies. Adding viscoelastic relaxation

only slightly increases the frequency at which Re½keff
L � is

maximum and slightly decreases the maximum value of

Im½keff
L � compared to the case with elastic relaxation only.

We conclude that the main cause of smoothing of the dipolar
resonance of the TC-epoxy dispersions studied here is elastic
relaxation and not viscoelastic dissipation.

Finally, we address the question of the impact of relaxa-

tion on effective mass density, which is expected to be

affected by the dipolar resonance of the scatterers and is of

particular interest in the context of acoustic metamaterials.

In the frame of Foldy’s model, the effective mass density of

the dispersion qeff is defined as56

qeff

q
¼ 1� 3i/

2 kLRð Þ3
X1
n¼0

2nþ 1ð Þ 1� �1ð Þn
� �

TLL
n : (13)

In the low frequency regime jkLRj � 1 considered here, the

multipolar expansion in Eq. (13) can, here, also be safely

restricted to the two first vibration eigenmodes, which results

in the following approximate expression for qeff :

qeff

q
� 1� 9i/

kLRð Þ3
TLL

1 ; (14)

and using Eq. (10), it yields

qeff

q
’ /þ keff

L

kL

� �2

: (15)

Consequently, in the case of a steep resonance, we expect

the stop band to approximately coincide with a frequency

band of negative effective mass density. The real and imagi-

nary parts of qeff are plotted as functions of frequency,

respectively, in Figs. 8(a) and 8(b) for several values of /
and for three cases: (i) absence of relaxation, (ii) elastic

relaxation only, (iii) elastic and viscoelastic relaxation. The

values chosen for the mechanical properties of the materials

are, here, also those of TC-epoxy dispersion. As expected, in

FIG. 7. (Color online) Variations of (a) the real part and (b) the imaginary

part of the effective wavenumber as functions of frequency for several val

ues of the beads volume fraction /. Dotted curve, without elastic nor visco

elastic relaxation; solid curve, with elastic and viscoelastic relaxation;

dashed curve, with elastic relaxation, without viscoelastic relaxation. The

upper frequency of the stop band fc is indicated in (a) for each value of /.

FIG. 8. (Color online) Variations of (a) the real part and (b) the imaginary

part of the dimensionless effective mass density as functions of frequency

for several values of the beads volume fraction /. Dotted curve, without

elastic nor viscoelastic relaxation; dashed curve, with elastic relaxation,

without viscoelastic relaxation; solid curve, with elastic and viscoelastic

relaxation.
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absence of relaxation, qeff is purely real and actually displays

a frequency band of negative effective mass density. Taking

into account elastic relaxation considerably smooths the var-

iations of qeff . In particular, the frequency band of negative

mass density disappears, i.e., Re½qeff � is positive for all fre-

quencies. Adding viscoelastic relaxation only slightly

increases the frequency at which Re½qeff � and Im½qeff � are

maximum and slightly decreases the maximum values of

Re½qeff � and Im½qeff � compared to the case with elastic relax-

ation only. We conclude that the main cause of smoothing of

the resonant behavior of the effective mass density of the

TC-epoxy dispersion studied here is elastic relaxation.

Given these conclusions, the key phenomenon to be

minimized for emphasizing the dipolar resonance is thus

elastic relaxation around the resonance frequency, i.e., kTR
has to be minimized at f 	 fres. Given Eq. (5), kTR
¼ ½3 8~q � 5
p

�=½2ð2~q þ 1Þ� at f ¼ fres, i.e., at resonance, kTR
depends only on ~q and not on ~l. This is in agreement with

the independence versus ~l of the quality factor of the reso-

nance as given by Eq. (6). Thus, the larger the mass density

contrast between the particle and the matrix, the steeper is

the dipolar resonance.

We nevertheless recall that these conclusions have been

drawn using Foldy’s model. An open question is whether

these conclusions hold in the frame of LCN model, which

has been shown to precisely fit experimental data because it

takes wave conversions into account. We note that there is

presently no realistic model expressing the effective mass

density in the case of an elastic matrix. Thus, investigation

of the behavior of the effective mass density of such disper-

sions in which wave conversion noticeably affects acoustic

propagation requires further theoretical developments.

V. CONCLUSION

Our experimental study of the acoustic transmission

through random dispersions of rigid spheres in an elastic ma-

trix in the vicinity of their subwavelength dipolar resonance,

and its comparison with a recent model of effective propaga-

tion that fully accounts for the elastic nature of the matrix,42

have allowed us to unambiguously demonstrate that wave

conversion has a noticeable influence on the propagation of

coherent longitudinal waves through such composite materi-

als. Analyzing the dynamics of the scatterers has allowed us

to evidence that the main cause of smoothing of the dipolar

resonance is elastic relaxation, i.e., the finite time required

for the shear stresses associated to the translational motion

of the scatterers to propagate through the matrix. According

to Foldy’s multiple scattering model, we have shown that the

only parameter that determines the dipolar resonance steep-

ness is the particle to matrix mass density ratio. We have

also shown that the effective mass density is affected by

elastic relaxation in the same way as the dipolar resonance.

This leads us to refine the benchmarking of rigid particles in

an elastic matrix against dense core-soft shell particles

regarding their ability to display negative effective mass

density. We note that a possible asset of core-shell particles

is a lesser impact of elastic relaxation on their dipolar reso-

nance as the consequence of the confinement of elastic

deformations in the thin shell. The phase delay associated to

the propagation of shear stresses over the shell thickness e,

kTe is indeed expected to be less than kTR provided that

e<R. But at the same time, the confinement of elastic defor-

mations in the thin shell is expected to lead to larger visco-

elastic dissipation as compared to rigid particles in an elastic

matrix, where deformations extend over a distance on the

order of R. Thus, relaxation has an equivocal influence on

the performances of both composite materials. This causes

rather easy-to-make dispersions of rigid spheres in an elastic

matrix appealing candidates as metamaterials.
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