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In net neutral systems correlations between charge fluctuations generate strong attractive thermal
Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge.
We show how the normal and lateral thermal Casimir forces between two plates containing Brownian
charges can be modulated by decorrelating the system through the application of an electric field, which
generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing
fluctuation generated normal force while at the same time generating a lateral drag force. This hypothesis is
confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density
functional theory.

Electromagnetic (EM) fluctuation-induced interactions
are dominant in micro-electro-mechanical systems
(MEMS) [1], and their presence is often viewed as undesir-
able as they engender stiction between the micron-sized
components of theMEMS devices. Controlling, or engineer-
ing, these forces is, however, difficult as although they are all
of electromagnetic origin, they have contributions from both
thermal and quantum fluctuations as well as from different
microscopic charge multipoles, e.g., ubiquitous dipoles [2]
and sometimes also free monopoles [3].
Lifshitz [4] reformulated and generalized the original

zero-point electromagnetic field theory of idealized con-
ducting plates, proposed by Casimir [2,5–7], in terms of
the dielectric and magnetic permeabilities of real materials
sampled at all Matsubara frequencies including a thermal
zero frequency contribution. The Lifshitz formula for EM
field fluctuation-induced forces in symmetric interaction
configurations between standard materials reveals this
interaction is generically attractive [8]. Since the interaction
depends on frequency dependent material response proper-
ties, it also suggests an immediate means of modulating or
even designing the Casimir force by appropriate changes in
the material’s properties. While this line of reasoning has
been followed successfully in metamaterials, it may be
more useful to have a means of switching EM fluctuation
induced interactions directly in situ. A switchlike induced
change in the optical properties of a material indeed yields
experimentally measurable differences in the interaction
between bodies in a number of cases, e.g., light or laser
sources can modify the charge carrier densities in
semiconductors [9,10], or induce phase changes [11].
Theoretically, it has been shown that the quantum Hall
effect modified conductivity can also be used to modify
Casimir forces between graphene sheets [12]. Holding

interacting materials at different temperatures also allows
modifications of Casimir interactions [13–21].

An alternative to the Lifshitz field-based formulation is
presented by the Schwinger matter-based approach where
the Casimir force originates in interactions between fluctu-
ating charges and currents [6,22,23]. Within this conceptual
framework the attraction between materials can be under-
stood as being due to correlations between microscopic EM
source charge fluctuations that in general reduce their (free)
energy. This implies that the effect of nonequilibriumdriving
the sources with an external electric or magnetic field will
scramble the system’s ability to develop charge correlations
and could thus in general reduce the attraction between the
materials. The scenario of engineering the EM fluctuation
interactions by applying external driving fields to MEMS
is relatively easily implemented compared to the switching
mechanisms based on material properties modifications
discussed above, and thus may be a promising technological
direction worth pursuing in detail.
In order to test the nonequilibrium driving hypothesis and

assess its ramifications,we analyze the systemof two parallel
conducting plates, where only one of them is subjected to a
current-inducing applied external electric field in a closed
circuit configuration. For systems with currents the usual
methods of equilibrium statistical mechanics do not apply.
We propose a methodology to study the effect of an imposed
current in the nonequilibrium steady state configuration on
both the normal and lateral forces. The response of these
forces to driving is surprisingly rich and this study thus opens
up new perspectives for direct in situ control of the EM
fluctuation interactions.
We analyze a well-defined classical 2D jellium model,

which can be studied out of equilibrium both numerically
and analytically, composed of two parallel plates with
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mobile charged Brownian particles embedded within a
uniform background charge sheet [24–26]; see Fig. 1. In
equilibrium, at high temperatures in the weak coupling
limit, the two plates exhibit the universal thermal Casimir
force F⊥ ¼ −½TSζð3Þ=8πL3� at large interplate separations
L, with S denoting the area of the plates, ζ the Riemann zeta
function, and T the temperature of the two plates, assumed
to be the same for both. To explore the effect of an electric
field on one of the plates we need to specify the dynamics
of the charges and we adopt a Langevin model [21,28],
where a charge in the plate α at the point X obeys the
overdamped Langevin equation

dX
dt

¼ βDαqαE∥αðXÞ þ 2Dα

p
ηα; ð1Þ

where ηα is a zero-mean Gaussian white noise with
correlation function hηαiðtÞηα0jðt0Þi ¼ δαα0δijδðt − t0Þ and
E∥αðXÞ is the local in-plane electric field in the plate α,
generated by the electric charge distributions in both plates
as well as any externally applied electric field. In addition,
Dα denotes the diffusion constant of the charges and β [29]
the inverse temperature so that βDα is the local mobility, as
deduced from the Einstein relation. Finally, qα is the charge
of the mobile Brownian particles in the plate α and if nα
denotes the average density of charge carriers in plate α; the
the uniform neutralizing surface charge density is thus
σα ¼ −nαqα. The idealized model above is amenable to
both detailed numerical as well as analytical developments,
confirming our basic hypothesis that the driving field
modifies the charge correlation between the plates, thus
leading to a modified thermal Casimir force in direction
normal as well as lateral to the plates.
Numerical simulations.—The two-plate system was

simulated by integrating the Langevin equations (1) for

Brownian particles [30]; the electrostatic forces due to the
charges are computed via Ewald summation. We use a
noncubic box of dimensions H ×H × 3H. with periodic
boundary conditions in each direction. We studied several
separations between the plates up to a maximum distance of
L ¼ 0.12H; beyond this distance the interaction between
plates can be shown to cross over to an exponential form
due to the discrete Fourier modes within the simulation
box. In this noncubic geometry the undesired interactions
between images of plates in the z direction are known to be
negligible [35]. We worked with a variable total number of
particles, N ¼ 1000, N ¼ 2000, N ¼ 4000 in order to
control finite size errors in the simulation. Apart from
the applied electric field E01, causing a current to flow
within plate 1, the two plates are identical (the charges are
identical and of the same number N=2 in each plate, the
diffusion constants and temperatures are also the same).
Plate separations are taken such that we find the far field
universal Casimir effect at zero applied field.
The normal and lateral force acting on the plate α are

computed from the formulas

F⊥;∥αðLÞ ¼ qα

Z
Sα

d2xE⊥;∥αðxÞΔnαðxÞ; ð2Þ

where nαðxÞ ¼
P

iδðXi − xÞ is the density of mobile charge
carriers andΔnαðxÞ ¼ nαðxÞ − nα is the fluctuation about its
spatially averaged value nα, which is the same as that of the
neutralizing uniform background charge. In Eq. (2) ⊥, ∥
indicate the directionwith respect to the boundingplates. The
electrostatic potential ϕðxÞ in plate α has contributions both
from plate α as well as plate α0 (opposite) mediated by the
standard Coulomb interaction, while the dielectric constant ϵ
is assumed to be homogeneous.
The numerical results for the average of the two forces

are plotted in Fig. 2. They are both fluctuational in nature,
and, in principle, the statistics of the force can be measured.
For small driving fields the normal Casimir force saturates
to the equilibrium thermal Casimir force, while the lateral
force vanishes in equilibrium. As the field increases there is
a monotonic decrease in the amplitude of the normal force,
that eventually asymptotes to zero, and a nonmonotonic
variation of the lateral force that is zero for small as well as
large values of the driving field.
Dynamical density functional theory.—The density

fields nαðx; tÞ in each plate evolve according to the exact
stochastic partial differential equation [36,37]

∂nαðx; tÞ
∂t ¼ Dα∇∥ · ½∇∥nαðx; tÞ − βαqαE∥αnαðx; tÞ�

þ∇∥ · ½ 2Dαnαðx; tÞ
p

ηαðx; tÞ�: ð3Þ

In this density representation of the dynamics, the noise
ηαðx; tÞ is a spatiotemporal Gaussian white noise vector

FIG. 1. Schematic depiction of plates (1 and 2) containing
mobile charges, with an external electric fieldE01 applied to plate
1 in a closed circuit configuration, driving a current flow in the
plate setup using a battery. The circuit of both plates [27] is open
so charge flows through the system rather than accumulating at
the edges of the plates.
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field of mean zero and with correlation function
hηαiðx; tÞηα0jðx0; tÞi ¼ δαα0δijδðt − t0Þδðx − x0Þ.
To make analytical progress we expand the deterministic

term in Eq. (3) to linear order in the density fluctuations nα
and the noise term to zeroth order (since it is of zero mean
this is consistent with the first order expansion of the
deterministic terms). This approximation has already been
used to examine interactions between plates out of equi-
librium in, e.g., evolution to the equilibrium force for
initially out-of-equilibrium plates [28], as well as for the
nonequilibrium force between plates held at different
temperatures [21]. This small density expansion was
recently shown to reproduce Onsager’s classical results
on the conductivity of strong electrolyte solutions [38] in a
very straightforward and compact manner [39]. Within the
small density fluctuation approximation the two dimen-
sional Fourier transform of the density fluctuations, defined
as Δ ~nαðQ; tÞ ¼ R

Sα
d2x expð−iQ · xÞΔnαðx; tÞ, has a

steady state correlation function hΔ ~nαðQÞΔ ~nα0 ðQ0Þi ¼
ð2πÞ2δðQþQ0ÞCαα0 ðQÞ, which obeys [40]

MαγðQÞCγα0 ðQÞ þ CαγðQÞMT
γα0 ð−QÞ ¼ 2δαα0DαnαQ2:

ð4Þ

The matrix MðQÞ is given by

MαγðQÞ ¼ Q2ð ~Dαδαγ þ βqαqγnγDα
~GðQ; zαγÞÞ; ð5Þ

where ~Dα ¼ Dαð1 − iβqαnαQ̂ · E0α=QÞ, zαγ ¼ zα − zγ ,

and Q̂ is the unit wave vector. The term ~GðQ; zαγÞ denotes

the in-plane Fourier transform of the Coulomb interaction
Gðx; zÞ (without the charge factors) and is given by
~GðQ; zÞ ¼ expð−QjzjÞ=2ϵQ. The components of the fluc-
tuation force in Eq. (2) can be expressed as

hF⊥i ¼ −q1q2
Z
S1

dx
Z
S2

dyhΔn1ðxÞΔn2ðyÞi
∂Gðx − y; LÞ

∂L
ð6Þ

and

hF∥i ¼ −q1q2
Z
S1

dx
Z
S2

dyhΔn1ðxÞΔn2ðyÞi∇∥Gðx − y; LÞ:

ð7Þ

The Fourier transform of hΔnαðxÞΔnβðyÞi can then be
obtained from Eq. (4), which together with the definitions
Eqs. (6), (7) yield the average normal and lateral force.
Defining,

fðQ;LÞ ¼ log

�
1þ Δðv1; v2Þ2 −

m1m2exp 2QL

ðm1 þ 2QÞðm2 þ 2QÞ
�
;

ð8Þ

with vα ¼ βqαDαE0α the average velocity of the mobile
charges in the plate α, mα ¼ βnαq2α=ϵ is the inverse
screening length for a 2D Coulomb gas of mobile
charges in equilibrium, and Δðv1;v2Þ¼2½Q̂·ðv1−v2Þ�=
½D1m1þD2m2þ2ðD1þD2ÞQ�, we can write [30]
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FIG. 2. (a) Evolution of the amplitude of the perpendicular and transverse components of the Casimir force with the driving field,
normalized by the thermal Casimir force, FC ¼ −TSζð3Þ=8πL3. For ease of comparison, we have displayed the component of the
normalized tangential force that is parallel to the driving field, with a sign opposite to that of the normalized perpendicular force.
Simulation results are taken from systems with N ¼ 1000 (red squares), N ¼ 2000 (green diamonds), and N ¼ 4000 (blue circles). For
each value of N the interaction is evaluated for four separations: L ¼ 0.02H, L ¼ 0.05H, L ¼ 0.08H, L ¼ 0.12H. The vertical data
spread corresponds to residual systematic, finite size errors in the simulations. The theoretical predictions, Eqs. (9), (10) for L ×m ¼
2000 are shown by black solid curves. (b) Evolution of the amplitude of the perpendicular and transverse components of the Casimir
force between identical plates (D1 ¼ D2 ¼ D,m1 ¼ m2 ¼ m) with the driving field, normalized by the universal thermal Casimir force.
Theoretical predictions, Eqs. (9), (10) for Lm ¼ 2000 are shown by blue dashed curves, while the corresponding small field and large
field asymptotes, Eqs. (11), (12), (13), (14), are shown as the red, dotted curves.
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hF⊥ðLÞi ¼ −
1

2
TS

Z
d2Q
ð2πÞ2

∂fðQ;LÞ
∂L ; ð9Þ

and

hF∥ðLÞi ¼ TS
Z

d2Q
ð2πÞ2

∂fðQ;LÞ
∂L Q̂Δðv1; v2Þ: ð10Þ

We note that when v1 − v2 ¼ 0 we recover the expres-
sion for the equilibrium thermal Casimir force for hF⊥ðLÞi,
while the lateral force is zero, since in the common rest
frame of the moving charges the system is in equilibrium.
The normal force is monotonic in its variation with

respect to the relative difference of the bare velocity of the
charges in each plate. In the far field limit, where L ≫ m 1

1 ,
m 1

2 and when, in addition, jv1 − v2j ≪ u1, u2, where uα ¼
Dαmα define an intrinsic velocity scale in each plate, the
average force simplifies to give

hF⊥ðLÞi ≈ −
TS
8πL3

�
ζð3Þ − π2jv1 − v2j2

3ðu1 þ u2Þ2
�
: ð11Þ

The effect of the applied field can thus be seen as
renormalizing the effective Hamaker constant associated
with the 1=L3 power law. The far field fluctuation induced
attraction between the plates thus monotonically decreases
upon increasing the relative velocity. In the opposite limit
of large relative velocity, we find that the force decays as

hF⊥ðLÞi ≈ −
TS

32πL3

ðu1 þ u2Þ
jv1 − v2j

�
8 −

π2

3
− 8 ln 2þ 4ln22

�
:

ð12Þ

Contrary to the normal force, the lateral force is not
monotonic in the relative velocity and shows a well-defined
maximum. On the two sides of this minimum the lateral
force behaves as

hF∥ðLÞi ≈ −
TS

16πL3

ðu1 þ u2Þ
jv1 − v2j

ð13Þ

in the large field limit, and for small fields as

hF∥ðLÞi ≈ −
TSjv1 − v2j

8πL3ðu1 þ u2Þ
�
ζð3Þ − π2jv1 − v2j2

128ðu1 þ u2Þ2
�
:

ð14Þ

A similar nonmonotonic drag force has recently been
predicted for single particles coupled to thermally fluctuat-
ing classical fields [41,42].
In Fig. 2(a) we compare the theoretical predictions,

Eqs. (9), (10), for the normal and lateral forces with the
results of our numerical simulations. We see that, despite
the relatively low temperature of the system, the agreement

for both forces is excellent. The asymptotic results for the
small and large field limits, Eqs. (11), (12), (13), (14), are
compared to the full numerical integration of Eqs. (9), (10)
in Fig. 2(b).
Conclusions.—We have introduced a simple model

exhibiting the thermal Casimir effect and shown that when
the system is driven by an external electric field, the thermal
Casimir force, both its normal and lateral components can
be modulated in a controlled and reversible manner. The
underlying physical mechanism is that the external driving
electric fields suppress the charge correlations that are
responsible for the fluctuation interaction. Indeed, the
Onsager study of the field dependence of electrolyte
conductivity [38], the Wien effect, shows that the increase
in conductivity is due to the fact that the applied field
suppresses Debye screening. The underlying mechanism
here is clearly related and we have clearly exhibited the
effect in numerical simulations, and, analytically, taking
into account all the nonequilibrium physics in the model via
its microscopic formulation. Indeed, one of the prime
advantages of the model studied here is that one can carry
out numerical experiments to measure fluctuation induced
interactions out of equilibrium and future study of this
model should enable the study of fluctuation induced
interactions beyond the weak density fluctuation approxi-
mation employed in our analytical study.
Extensions of this model to more realistic systems or

models are clearly desirable in order to test the general
hypothesis on field-induced correlation scrambling put
forward here. Another natural question to ask is whether
nonequilibrium forcing can be used to amplify correlations
and thus enhance the fluctuation-induced attractive force?
The Brownian conductor model should be extended to take
into account inertial effects so that it more closely resem-
bles the Drude model. In addition, retardation effects in the
electromagnetic interactions between the charges could
also be incorporated. Ultimately, one should consider
nonequilibrium quantum field theories in order to under-
stand the quantum aspects of the problem. Clearly ac
driving fields also constitute an interesting line of research,
from both a numerical and analytical point of view.
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