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ABSTRACT
We propose in this paper two new models for modeling
topic and word-topic dependencies between consecutive doc-
uments in document streams. The first model is a direct
extension of Latent Dirichlet Allocation model (LDA) and
makes use of a Dirichlet distribution to balance the influ-
ence of the LDA prior parameters wrt to topic and word-topic
distribution of the previous document. The second exten-
sion makes use of copulas, which constitute a generic tools
to model dependencies between random variables. We rely
here on Archimedean copulas, and more precisely on Franck
copulas, as they are symmetric and associative and are thus
appropriate for exchangeable random variables. Our exper-
iments, conducted on three standard collections that have
been used in several studies on topic modeling, show that
our proposals outperform previous ones (as dynamic topic
models and temporal LDA), both in terms of perplexity and
for tracking similar topics in a document stream.

CCS Concepts
•Computing methodologies → Latent Dirichlet alloca-
tion; •Mathematics of computing → Bayesian compu-
tation; Gibbs sampling; Metropolis-Hastings algorithm;

Keywords
Latent Dirichlet allocation, Copulas, Document Streams,
Topic Dependencies

1. INTRODUCTION
The recent proliferation of temporal textual data on the

Internet such as Tweets or comments on Youtube has brought
new challenges for learning with interdependent data. Thou-
gh important progress has been made in some directions [8],
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popular approaches for most of these tasks are designed to
deal with static collections of documents. This is specially
the case for latent topic modeling, albeit analyzes of social
content have gained much attention in recent years for dif-
ferent aspects of daily life, such as latent health-related topic
analysis [19] or buzz detection [20].

Although the main goal of probabilistic modeling is to find
word topics, an equally interesting objective is to examine
topic evolutions and transitions. The seminal work of [4]
proposed to model the dynamic evolution of topics by first
grouping documents into time slices and then to chain the
evolution of both the word-topic and topic mixture distribu-
tions via a Gaussian process. In some cases, the Gaussian
distribution was not found to be the appropriate distribu-
tion in modeling the topic shifts and some studies considered
other probability distributions for capturing the evolution of
topics over time [22]. However, the idea of grouping docu-
ments into epochs for modeling topic evolution was echoed
in a number of studies. For example, [24] estimated a transi-
tion matrix over topic vectors between two predefined epochs
and they showed that the LDA model [5] can be enhanced by
considering directly the evolution of the topics over time.

In this paper we propose two extensions of LDA for model-
ing the dependency between two consecutive documents in a
stream. In our first model, we suppose that the dependency
between topic distributions of two consecutive documents
follows a Dirichlet distribution controlled by an hyperpa-
rameter. This model is similar to the one of [4] with time
slices equal to 1, but it offers a more precise mechanism for
controlling the dependencies and is based on a framework en-
compassing all the situations (from complete independence
to plain equality). This first study paves the way for a more
general topic model in which the dependencies between the
topics of two consecutive documents are captured by cop-
ulas which constitute generic tools to model dependencies
between random variables [6]. Among the several families
of copulas that have been defined in the literature, our choice
fell on Archimedean copulas [13, 14] as they are symmetric
and associative, necessary conditions when dealing with ex-
changeable random variables [18]. More particularly, we use
Franck copulas, a special case of Archimedean copulas that
rely on a single parameter, easier to estimate and more ro-
bust to sparse data. Using three collections with different
characteristics, we show that our approaches are faster and
improve over state-of-the-art topic models. We also analyze



the precision of our models to track the topics on a labeled
dataset.

The outline of this paper is as follows. In the next sec-
tion, we present our models. In Section 3, we introduce an
efficient procedure to estimate the most important, in terms
of size, parameters. We then describe in Section 4 the ex-
perimental results obtained with our approaches on three
distinct datasets. In Section 5, we position our work with
respect to the state of the art. Finally, Section 6 concludes
our study by summarizing its main results and by giving
some pointers to future research.

2. STREAMING LDA
Latent Dirichlet Allocation (LDA, [5]) is a probabilistic

Bayesian model used to describe a corpus of D documents,
associated with a vocabulary of size V . In this model, la-
tent variables, indexed in {1, · · · ,K}, are used to represent
the hidden (in the sense non-observed) topics underlying
each document. LDA is associated to the following genera-
tive model1:

• Generate, for each topic k, 1 ≤ k ≤ K, a distribution
over the words: φk ∼ Dir(β), where φk and β are V
dimensional vectors;

• For each document d:

– Choose a distribution over the topics: θd ∼ Dir(α),
where θd and α are K dimensional vectors;

– For each position (indexed by n, 1 ≤ n ≤ N) in d:
(a) Choose a topic assignment: zdn ∼ mult(1, θd);
(b) Choose the word wdn from the topic zdn with
probability P (wdn = v|zdn = k) = φk,v;

where N is the length of each document and φk,v is the vth

coordinate of φk. α and β correspond to the priors of the
model. They are usually fixed, following [5]. Furthermore,
in almost all previous studies on LDA, the priors are consid-
ered to be symmetric, each coordinate of the vector being
equal: α1 = · · · = αK . If one assumes a broad Gamma prior
for both α and β, then their value can be easily learned from
data by maximum a posteriori [1] or Markov Chain Monte
Carlo [15] methods. One can also envisage learning asym-
metric Dirichlet priors [21], which raises no particular diffi-
culties for the models we are considering. For clarity sake,
we however assume here fixed, symmetric priors; the ex-
tension to their learning through Gamma priors or through
asymmetric priors is purely technical. In the remainder, we
will denote by α and β the priors for the Dirichlet distribu-
tions as well the constant value taken by each coordinate of
these priors, the context being sufficient to determine which
element is referred to.

An important characteristic of LDA is that each document
is generated independently from the previous ones. This is
not a realistic assumption in different settings, as document
streams, and we introduce below two extensions of LDA that
model such dependencies.

2.1 Dirichlet-based dependencies
We introduce here a first extension of LDA, that we refer

to as ST-LDA-D.
1For simplification and following standard practice, we do
not model here the length of each document, assumed to be
fixed and equal to N .

2.1.1 Presentation of the model
In this first model, we rely on a direct extension of the

LDA model to take into account dependencies between the
document-specific topic distributions of two sequential doc-
uments, denoted (d− 1) and d (2 ≤ d ≤ D). This extension
uses, as the standard LDA model, Dirichlet distributions for
the document-specific topic distributions, the parameters of
which are linear combination of the standard prior α and
the topic distribution estimated in the previous document:

θd|θd−1 ∼ Dir(α+ λdθ
d−1) (1)

where λd is a uniformly distributed parameter that controls
the influence of the topics of document (d − 1) on the top-
ics of document d (see Figure 1). The expectation of each
component of θd is given by:

E[θdi |θd−1
i ] =

α+ λdθ
d−1
i

Kα+ λd
(2)

Hence, if λd is high, i.e. if document d covers the same topics
as document (d− 1), then E[θdi |θd−1

i ] ≈ θd−1
i .

We furthermore assume that the previous document, (d−
1), can influence the word-topic distributions of the cur-
rent document d. This assumption, also made in dynamic
topic models [4] and topic tracking models [11], is motivated
by the fact that, within a given topic, if word distributions
evolve over time, they tend to do so in a smooth way. As
before, one can use a direct extension of the LDA model to
account for dependencies between word-topic distributions
in sequential documents:

∀k, 1 ≤ k ≤ K,φdk|φd−1
k ∼ Dir(β + µdφ

d−1
k ) (3)

Here µd is again a uniformly distributed parameter that con-
trols the tradeoff between the prior β and the learned topic-
word distributions φd−1. As usual φd−1

k is the word distri-
bution of topic k. The conditional mean of each component
of φdk is given by:

E[φdk|φd−1] =
β + µdφ

d−1
k

V β + µd
(4)

and is approximately the value of the same component of
document (d− 1) when the two documents are strongly de-
pendent.

Lastly, as one can note, by setting λd = µd = 0, ∀d, 2 ≤
d ≤ D, one “forgets” the dependencies between consecutive
documents. The streaming model is in this case identical to
the standard LDA model.

2.1.2 Inference with Gibbs sampling
As mentioned before, the parameters α and β are consid-

ered fixed. The other parameters can be estimated through
Gibbs sampling, with Metropolis-Hasting updates for the
parameters λd and βd. We give here the update formulas of
each parameter.

For θ, one has:

θd ∼ P (θ|θd−1, zd, wd, α, β, λd, φ
d−1, φd, µd)

=
B(α)B(α+ λdθ

d−1 + Ωd)

B(α+ Ωd)B(α+ λdθd−1)
×

Dir(Ωd + α+ λdθ
d−1) (5)
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Figure 1: Graphical models for Dynamic Mixture Models (DMM, [25]), Topic Tracking Models (TTM, [11]), Dynamic Topic
Models (DTM, [4]), Temporal LDA (TM-LDA, [24]) and Streaming-LDA (ST-LDA-[D|C])

where Ωd is defined as in [23] and represents the dth row of
the D ×K count matrix Ω, with Ωd,k being the number of
times that topic k is assigned to words in document d.

The update for φdk, 1 ≤ k ≤ K is similar:

φdk ∼ P (φk|θd−1, θd, zd, wd, α, β, λd, φ
d−1, µd)

=
B(β)B(β + µdφ

d−1
k + Ψk)

B(β + Ψk)B(β + µdφ
d−1
k )

×

Dir(Ψk + β + µdφ
d−1
k ) (6)

where Ψk is again defined as in [23] and represents the kth

row of a K × V count matrix, Ψk,v being the number of
times that topic k is assigned to word v in the documents
seen so far.

The Gibbs update for z is the same as the one for the
standard LDA model:

∀k, 1 ≤ k ≤ K,P (zdv = k|θd, φd) =
θdk × φdk,v∑
j θ

d
j × φdj,v

(7)

Finally, for λd and µd, one can not directly compute Gibbs
updates as the normalizing factor for the distribution of λ
given all the other parameters can not be computed exactly.
One can nevertheless rely on a Metropolis-Hasting proce-
dure, detailed in Appendix A.

2.2 Copula-based dependencies
Model ST-LDA-D captures topic and word-topic dependen-

cies through Dirichlet distributions, which allow one to bal-
ance the influence of the priors (α and β) and of the topic
and topic-word distributions of the previous document. We
introduce now another extension of LDA in which the de-
pendencies between the topics of consecutive documents are
modeled through copulas, which constitute a generic tool to
model dependencies and do not rely on a specific distribu-
tion. We first provide a brief overview of copulas, prior to
describe our model.

2.2.1 Basics on copulas
For every p ≥ 2, a p–dimensional copula is a p–variate

density function on [0, 1]p, whose univariate marginals are
uniformly distributed on [0, 1]. Copulas are particularly use-
ful when modeling dependencies between random variables.
Indeed, the joint cumulative distribution function (CDF)

FX1,··· ,Xp of any random vector X = (X1, · · · , Xp) can be
written as a function of its marginals, as follows:

Theorem 1 (Sklar’s theorem Theorem 2.3.3 of [16]) Let
FX1,··· ,Xp be a p–dimensional distribution function with
marginals FX1 , · · · , FXp . Then there exists a copula C with
uniform marginals such that:

FX1,··· ,Xp(x1, · · · , xp) = C(FX1(x1), · · · , FXp(xp))

Furthermore, when the CDF FX1,··· ,Xp is continuous, the
copula is unique.

Copulas represent a general way of modeling the depen-
dencies between random variables, from complete indepen-
dence to equality. If the random variables X1, · · · , Xp are
pairwise independent, their copula is the so–called indepen-
dency copula:

FX1,··· ,Xp(x1, · · · , xp) = FX1(x1) · · ·FXp(xp)

whereas in the case X1 = · · · = Xd, one gets the comono-
tonicity copula:

FX1,··· ,Xp(x1, · · · , xp) = min
i∈{1,··· ,p}

FXi(xi)

Several copula families have been defined in the literature,
among which the Archimedean copulas ([16, Ch. 4]), partic-
ularly interesting in our case. A p–dimensional Archimedean
copula C with generator ψ is defined as:

Cp(u;ψ) := ψ(ψ−1(u1) + · · ·+ ψ−1(up)), u ∈ [0, 1]p

where ψ is a continuous, decreasing function, from [0,∞]
to (0, 1), strictly decreasing on [0, inf{t : ψ(t) = 0}], and
satisfying:

ψ(0) = 1, ψ(∞) = lim
t→∞

ψ(t) = 0

Archimedean copulas have the following interesting proper-
ties:

• They are symmetric, that is invariant by any permu-
tation of their coordinates, which is important when
dealing with exchangeable random variables, as is the
case here2;

2The LDA model is based on the assumption that topics are
infinitely exchangeable within a document.



• They are associative: for any (u1, · · · , up) ∈ [0, 1]p,
one has:

Cp−1(C2(u1, u2;ψ), u3, · · · , up;ψ)

= Cp−1(u, · · · , up−2, C2(up−1, up;ψ);ψ)

This means that the dependency properties are the
same whatever the way we group the random variables.

In this study, we further consider a particular case of the
Archimedean copulas, namely the one–parameter family of
Franck copula, defined, for any λ ∈ R \ {0}, as:

Cλ(u, v) = −(1/λ) ln(1 +
(e−λu − 1)(e−λv − 1)

e−λ − 1
) (8)

When λ → 0, one approaches the independency copula,
whereas λ = ∞ yields the comonotonicity copula. Lastly,
for any λ ∈ R \ {0}, Cλ is twice differentiable on [0, 1]2 so
that the copula function admits a density, denoted in the se-
quel cλ. By varying λ from 0 to∞, Franck copula allows one
to model all the possible dependencies between two random
variables, from complete independency to equality. Depen-
dency/independency is furthermore controlled by a single
parameter, λ, which makes parameter estimation both eas-
ier and more robust.

2.2.2 Generative process
Instead of generating the topic distribution of each docu-

ment θd independently, as is done in standard LDA we bind,
as for our first model, ST-LDA-D, the topic distributions θd−1

and θd of consecutive documents, this time by using copulas,
and more precisely Franck copula.

One can not however directly use Sklar’s theorem as it
does not extend to joint distributions over random vectors.
This means that if we are given two random vectors X1,X2,
one can not claim that there exists a copula C such that, for
any (x1,x2) ∈ [0, 1]p1 × [0, 1]p2 :

FX1,X2(x1,x2) = C(FX1(x1), FX2(x2))

except in very specific situation as when X1 and X2 are in-
dependent for example. One can nevertheless relate latent
topics θd−1 and θd through their components. Indeed, the
topic Dirichlet distribution can be decomposed into univari-
ate Gamma distributions with parameters (α, 1), denoted
Ga(α):

Theorem 2 (from Theorem 2.1 of [17]) A random vector
θ follows a Dirichlet distribution Dir(α) iff there exists a
random vector T ∼ Ga(α)⊗ · · · ⊗Ga(α) such that:

θ
(L)
=

T
‖T ‖`1

(9)

where
(L)
= means “equality in distribution”. In addition, if we

are given θ ∼ Dir(α) and R ∼ Ga(Kα) independent, then
T = Rθ ∼ Ga(α)⊗ · · · ⊗Ga(α).

To bind the topic distributions θd−1 and θd of two con-
secutive documents, we thus consider the associated vectors
T d−1 and T d, and bind them coordinate per coordinate us-
ing Franck copula. For the word-topic distributions, we use
the same coupling between consecutive documents as the
one used in model ST-LDA-D, as a tighter coupling through
copulas would be too costly. We will come back to this issue
in Section 3.

In the sequel for any γ > 0, fγ (resp. Fγ) denotes the
pdf (resp. cdf) of the Gamma distribution with parameters
(γ, 1). The global generative model is thus as follows:

1. Generate the first document according to the standard
LDA model

2. For each document d, 2 ≤ d ≤ D:

(a) Generate λd ∼ U [0, τλ]

(b) Generate µd ∼ U [0, τµ]

(c) For each topic k, 1 ≤ k ≤ K:

• Generate T dk whose conditional density w.r.t.
T d−1
k is:

P (T dk |T d−1
k ) = fα(T dk ) cλd(Fα(T d−1

k ), Fα(T dk ))

• Generate φdk|φd−1
k ∼ Dir(β + µdφ

d−1
k )

(d) Set θd = T d/‖T d‖`1
(e) For each word n, 1 ≤ n ≤ N in d:

• Choose a topic assignment: zdn ∼ mult(1, θd)
• Choose the word wdn from the topic zdn with

probability P (wdn|zdn) = φdzdn,wd
n

where T dk represents the kth coordinate of the vector T d,
and follows a distribution Ga(α) according to Theorem 2.
We refer to the corresponding model as ST-LDA-C. Figure 1
provides a graphical representation of this model, together
with the ones of previous models.

2.2.3 Inference with Gibbs sampling
The updates for zd, φd and µd are identical to the ones

for model ST-LDA-D. For λd, one gets:

P (λd|T d−1, T d, zd, wd, α, β, φd−1, φd, µd) ∝

P (λd)

K∏
k=1

fα(T d−1
k )fα(T dk )cλ(Fα(T d−1

k ), Fα(T dk ))

The same Metropolis-Hasting procedure as the one used for
model ST-LDA-D and detailed in Appendix A can then be
used.

For θd, one needs first to estimate the conditional prob-
ability of the random vector T d with respect to the other
parameters. This expression can be factored as follows:

P (T d|T d−1, zd, wd, α, β, λd, φ
d−1, φd, µd) =

P (T d|T d−1, α, λd)P (zd|T d)
P (zd|α)

As in the classical context of LDA, one has P (zd|α) = B(Ωd+
α)/B(Ωd) where Ωd is defined as before. By assumption on
the distribution of the random vectors (T d−1, T d):

P (T d|T d−1, α, λd) =

K∏
k=1

fα(T dk )cλ(Fα(T d−1
k ), Fα(T dk ))

Developing P (zd|T d) as detailed in Appendix B, finally
leads to:

P (T d|T d−1, zd, wd, α, β, λd, φ
d−1, φd, µd) ∝ (

K∑
k=1

T dk )−N

×
K∏
k=1

f(Ωd,k+α−1)(T dk )× cλ(Fα(T d−1
k ), Fα(T dk )) (10)

Each T dk can then be estimated through the Metropolis-
Hasting procedure presented in Appendix A; θd is finally
obtained from T d through Eq. 9.



3. COMPUTATIONAL CONSIDERATIONS
For model ST-LDA-C, the word-topic distributions φdk (1 ≤

k ≤ K) could be estimated in the same way as θd is esti-
mated, as mentioned in Section 2.2. However, this would
entail running K×V Metropolis-Hasting procedures, which
is problematic as soon as the collections considered are rel-
atively large. We thus proposed in Section 2.2 to estimate
it through Eq. 6, as done for ST-LDA-D. This time, K × V
Gibbs sampling updates are required. If this estimation pro-
cedure is faster, it may still be too slow for really large col-
lections. Theorem 2 nevertheless suggests a way to approxi-
mate φdk (1 ≤ k ≤ K, 2 ≤ d ≤ D) through Gamma updates,
as follows:

1. For each word v in d, generate tk,v ∼ Ga(β + φd−1
k,v )

2. For each word v in the vocabulary V, φdk,v ←
tk,v∑

v∈V tk,v

where β corresponds to the real parameter (i.e., the constant
value that makes up the V dimensional vector of priors).
The quantities tk,v are first initialized through tk,v ∼ Ga(β),
and updated each time a new document is encountered.
As one can note, this update primarily concerns the words
present in the current document (step 1), the components
for the other words being just renormalized (step 2). This
contrasts with Eq. 6 in which the contribution of all words
is resampled for each document via a multivariate Dirichlet
distribution. The above procedure simplifies this by relying
on the univariate equivalent of the Dirichlet distribution,
namely the Gamma distribution, and by binding the vari-
ables through the renormalization step. It is faster as it
involves only K ×N samplings from a Gamma distribution
instead of K samplings from a multivariate, V (V >> N)
dimensional Dirichlet distribution (the K × V renormaliza-
tions in step 2 do not really harm the procedure and are
negligible compared to the Dirichlet samplings). We have

Algorithm 1: Inference process for ST-LDA-[D|C]

Input: Stream of D documents of length N ; number of
topics K

Output: For each document d, topic distribution θd,
word-topic distributions φdk (1 ≤ k ≤ K); for
each word v in d, topic assignment zdv

// Initialization

1 for k = 1 to K, v ∈ V do
2 tk,v ∼ Ga(β)

3 for d = 1 to D do
4 Random initialization of λd, µd and zdn, 1 ≤ n ≤ N
5 λ1 = µ1 = 0
// Document processing

6 for d = 1 to D do
7 repeat
8 For ST-LDA-D: update θd acc. to Eq. 5
9 For ST-LDA-C:

10 (a) update T d (Metropolis-Hasting)

11 (b) obtain θd from T d through Eq. 9

12 Update φdk acc. φ-procedure
13 Update λd and µd (Metropolis-Hasting), d > 2

14 Update zdn acc. to Eq. 7, 1 ≤ k ≤ K, 1 ≤ n ≤ N
15 until estimates are stable

observed in practice no difference, in terms of performance
measures we consider (see Section 4), between this procedure
and the more complex ones mentioned before, and make use
of it in the remainder of the paper. In terms of speed, this
procedure performed 1.5 times faster on the NIPS collec-
tion, which contains long documents and a relatively small
vocabulary (ca. 12,000 words), and 2 times faster for the
TDT4 and Tweets collections, which contain shorter docu-
ments with a larger vocabulary (up to 42,000 words).

Algorithm 1 summarizes the inference process we rely on.
It makes use of the above procedure to estimate φ, referred
to as φ-procedure.

4. EXPERIMENTAL STUDY
We conducted a number of experiments aimed at evaluat-

ing how the proposed models behave on different collections
by analyzing their stability, convergence time and perfor-
mance.

Datasets. We performed experiments on three datasets
with different characteristics. The NIPS dataset contains
1,500 scientific papers with no time dependency between
them. The size of the vocabulary is 12,375 and documents
contain 500 unique words in average. The collection was
collected from the NIPS proceedings and is relatively homo-
geneous in terms of the topics covered. It allows us to assess
whether topic dependencies are still useful in a ”loose” con-
text in which there is no more temporal dependency. It is
available at the UCI ML Repository [12].

The Multilingual Text and Annotations data set (TDT4)3

proposed for topic detection and tracking, has 3,190 original
documents in English and a vocabulary size of 22,965. Doc-
uments here are newswires extracted from different broad-
casts and the number of unique words per document is 100
in average. Even though newswires are not extracted from
the same source, they are ranked by the time.

The Tweets dataset is collected using Twitter’s streaming
API during 20 days from 8/10/2014 to 27/10/2014. The
collection contains 72,592 tweets and a vocabulary of size
42,336. Tweets have been sequenced by time and are filtered
over health issues using an SVM classifier trained over MeSH
categories4.

Each dataset was separated into training and test sets.
The NIPS collection was randomly splitted into training (90%
of the collection) and test (10% of the collection) sets. For
TDT4, we used the first 2800 newswires released in time for
training, and the last 390 ones for testing. For the Tweets
dataset, we used the tweets issued in the first 17 days for
training (60,000 documents) and those of the last 3 days
(12,000 documents) for testing. Table 1 summarizes the
characteristics of these collections.

Evaluation. Results are evaluated over the test set
using the widely used perplexity measure that can be ap-
proximated by [5].

perplexity(Ctest) = exp


−
∑
d

∑
n

log
∑
k

θdk × φdk,vdn

Dtest ×N


(11)

3Linguistic Data Consortium, The Trustees of the
University of Pennsylvania https://catalog.ldc.upenn.edu/
LDC2005T16.
4https://www.nlm.nih.gov/mesh/
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Figure 2: Perplexity curves with respect to time for all methods on NIPS and TDT4 collections (80 topics).

Table 1: Datasets used in our experiments along with their
properties.

NIPS TDT4 Tweets
Documents in Train set 1,350 2,800 60,000
Documents in Test set 150 390 12,000
Vocabulary size 12,375 22,965 42,336
# of unique words per doc. 500 100 15
Words in total 1,900,000 779,000 904,262

where Ctest denotes the test collection, Dtest is its size and
vdn represents the word at position n in document d. The
parameters θdk and φdk are estimated on the training set. Fur-
thermore, for the TDT4 collection we use the available se-
mantic labels of newswires in the test set in order to evaluate
the ability of the models to find documents of the same se-
mantic labels using only their predicted topic distributions
(Section 4.2). To this aim, we measure ROC curves and
AUC of different topic models on TDT4.

Settings and comparisons. For all models, both
hyperparameters α and β were fixed to 0.5. Documents of
the NIPS dataset are initially stoplisted, we did not perform
further preprocessing of the data nor removed stop words
from the TDT4 and Tweets documents as for all methods
best results are obtained when collections are not filtered.

To validate the streaming LDA models described in the
previous section, we test the following six methods. The
first two are LDA models [5]: (a) LDA1, which consists in
training an LDA model on the whole training data, then fix-
ing φ and updating θ for each document in the test set,
(b) LDAall, which consists in training an LDA model on the
whole on training data and updating both φ and θ for each
document in the test set. In addition, we consider two state-
of-the-art latent models that take into account dependencies
between topics: Dynamic Topic Model (DTM) [4] and Tem-
poral LDA (TM-LDA) [24]. DTM is certainly the most popular

model to take into account topic dependencies. It is fur-
thermore complete in the sense that it integrates both topic
and word-topic distributions. TM-LDA is a very recent pro-
posal with nice features. Lastly, we also consider the two
streaming LDA models we have introduced (ST-LDA-D and
ST-LDA-C). For these last two models, τλ (see Appendix A)
is set to 30,0005. All the algorithms were implemented in
Python with Numpy and Scipy6 except DTM that is a C++
implementation tool from [3]. For both training and test,
DTM is used considering that each document corresponds to
a time slice.

4.1 The effect of streams of documents
We start our evaluation by analyzing the gains provided

by modeling dependencies between topics by streaming (as
with ST-LDA-D and ST-LDA-C) compared to other approaches
on the different datasets. Figure 2 shows the evolution of
perplexities of different models over the test set with re-
spect to the training time of each model on NIPS and TDT4
datasets. The code program of DTM (in C++) generally ex-
ecutes faster than the other code programs (written in pyh-
ton), nevertheless we ignore this detail and consider all the
curves identically.
To measure the perplexity for each model, we estimate θ
and φ over respectively all documents and all words of the
training set. These estimates are then used to evaluate iter-
atively new φ and θ distributions for each document in the
test set. This iterative update of φ and θ is done for all of
the methods except LDA1 which updates the distributions θ
and φ over the whole documents in the test set with the last
parameters that were obtained from the training set.

As expected, all perplexity curves decrease monotonically
with respect to time. On both datasets, perplexity curves

5This value, upper bounding λd, corresponds to a regime of
the Franck copula close to comonotonicity.
6We are working to release all the programs developed in
this study publicly available for research purpose.



Table 2: Perplexity with respect to different number of topics in {20, 40, 60}.

Models
NIPS TDT4 Tweets

20 40 60 20 40 60 20 40 60
LDA1 2068.4 2034.5 1986.4 900.8 930.2 960.4 470.8 580.3 615.5
LDAall 1625.4 1534.7 1458.1 723.1 768.4 792.7 431.8 508.6 577.1
TM-LDA 2038.7 2025.4 1985.3 876.7 900.3 916.3 455.1 520.1 585.2
DTM 1737.5 1551.2 1450.7 869.1 836.7 820.9 559.45 578.25 607.41
ST-LDA-D 1620.4 1520.9 1450.2 724.4 758.1 784.4 393.9 480.1 552.7
ST-LDA-C 1612.8 1497.6 1434.5 720.6 752.5 780.8 388.2 474.1 546.8

ST-LDA-D and ST-LDA-C lower-bound the other curves on all
iterations. On the NIPS dataset, DTM becomes competitive
with the two others, at the end of the iterations, while on
TDT4, where test documents come in a stream, ST-LDA-C

stands clearly as the best model. These results show the
ability of ST-LDA-C to capture dependencies between topics
in document streams. Further, we note that at the begin-
ning of iterations where dependencies are not yet apparent,
the perplexity curves of both models are very similar to the
one of LDAall. This is in line with our assertion of the pre-
vious section supporting that both models reduce to LDA in
the case where topics are independent. TM-LDA is not com-
petitive in this setting as it does really not make advantage
of the fact that the words in the new, arriving documents are
known. Its ability to predict future topics is not exploited
in this setting.

The evolution of perplexity on Tweets from the three last
consecutive days considered in our experiments is shown in
Figure 3. The behavior of perplexity curves here are accen-
tuated with the total stream characteristics of Tweets; the
curve of LDAall gets away from those of ST-LDA-C and ST-

LDA-D, while DTM comes close. In order to see if the number
of topics, that we fixed for all models to 80, have an im-
pact on these results or not, we repeated the experiments
by varying the number of topics in the set {20, 40, 60}.
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Figure 3: Perplexity of each method by number of tweets
that are added to the test set (80 topics).

Table 2 depicts the perplexities of all models on the three

collections at the end when the parameters φ and θ have
been estimated over all the test documents. In all exper-
iments, best results are obtained with ST-LDA-C and ST-

LDA-D, followed by DTM on NIPS and TDT4 and by LDAall on
Tweets. These results are consistent with those of the figures
2 and 3. Again, TM-LDA does not perform well (as explained
before); LDAall which is a standard LDA model, performs
relatively well; however, both DTM and the ST-LDA-[D|C]

models outperform it by taking into account dependencies
between topics. We see here that the extra flexibility of the
ST-LDA-[D|C] models allow them to outperform DTM.

4.2 Ability to detect semantic correlations
We further investigate on the ability of models to find top-

ics that can detect documents of the same semantic class.
For doing so, we used the TDT4 collection for which some
documents are assigned semantic classes by experts. We
hence use the cosine measure or the λd parameter of ST-

LDA-C, to detect consecutive documents in the test set of
this collection that are found similar on the basis of their
topic distributions; two consecutive documents are consid-
ered as similar if the cosine measure of their topic distribu-
tions (resp. estimated λd - line 13 Algorithm 1) is higher
than a given threshold. If two consecutive and similar doc-
uments share the same semantic label, we count them as a
true positive; if they do not share the same semantic label,
we count them as false positive. By changing the threshold,
we can plot the ROC curves for the corresponding method.

Figure 4 depicts ROC curves of DTM, TM-LDA and ST-LDA-

C defined over 8 different thresholds taken in the set [0.2 0.5
0.7 0.86 0.89 0.92 0.95 0.98] for the cosine measure and [0.5
1 2 5 10 15 20 50] for λd when the number of topics is fixed
to 20 and to 80.

In order to compare between the different ROC curves,
we estimated the area under them, shown in Table 3. From
these results it comes clear, that topic distributions found
by ST-LDA-C are more able to detect these semantic classes
than topic distributions of DTM and TM-LDA.

Table 3: Areas under the ROC curves of figure 4.

Methods 20 (Fig. 4, left) 80 (Fig. 4, right)
ST-LDA-C with λd 0.7982 0.8306
ST-LDA-C with cosine 0.8004 0.7755
TM-LDA with cosine 0.7652 0.7349
DTM with cosine 0.7357 0.6301

Finally, to further illustrate the role of λd, we pictorially
illustrate the correlation between the estimated λd and the
topic distributions of three consecutive documents (Figure
5) with identical labels in the TDT4 collection. As one can
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Figure 4: ROC curves of ”semantic class matching” methods working over the topic distributions found by DTM, TM-LDA and
ST-LDA-C, for the number of topics fixed to 20 (left) and 80 (right).

see, the distributions of topics in the three pairs of consec-
utive documents with high λd are similar. In addition, the
two most probable topics of the document pairs retained in
Figure 6, also taken from TDT4, do not share any word when
λd is small and are almost identical when λd is high. These
examples illustrate the fact that λd is a good indicator of
the topic dependencies between documents.

5. RELATED WORK
Some studies have considered the possibility to model dif-

ferent streams of documents, as in [10], trying to leverage
standard models (as LDA) by considering topics common to
the different streams. In such studies the evolution of topics
over time is not considered. The study presented in [22] aims
at modeling, through an extension of LDA, the timestamp
associated with each token in a document. If dependen-
cies between topics are not explicitly modeled, topics tend
to specialize over different time periods through the joint
dependence of each word and timestamp on the topic vari-
able (z in LDA). Other studies have addressed the problem
of topic evolution and dependencies within a single docu-
ment, as the recent sequential LDA model described in [7].
We rather focus in this study on explicitly modeling topic
dependencies across documents, for both topic and word-
topic distributions. Several studies have addressed a similar
problem. One of the first proposals corresponds to the Dy-
namic Topic Model (DTM), introduced in [4] and illustrated
in Figure 1. An interesting feature of DTM is its use of time
slices; we have not considered time slices in this study, but
our models (as most dynamic models) can be extended to
deal with them. DTM captures dependencies for both topic
and word-topic distributions. These dependencies are how-
ever captured through Gaussian distributions, the expecta-
tion of which corresponds to the previous parameters. This
entails that new parameter values are constrained to be dis-
tributed around the values observed previously. In contrast,
even in model ST-LDA-D, the expectations of the new topic
and word-topic distributions (Eqs. 2 and 4) can be uncor-

related to the previous distributions in the absence of de-
pendencies. Our models thus offer additional flexibility over
the presence or absence of dependencies between consecu-
tive documents in a stream. The Dynamic Mixture Model
(DMM, see Fig.1) introduced in [25] is similar to DTM except
that topic dependencies are directly considered at the topic
level (as is the case for ST-LDA-D and ST-LDA-C but not for
DTM which operates at the prior level) and that word-topic
dependencies are dropped. As for DTM, the expectation of a
new topic distribution is given by the values obtained in the
previous document. This again contrasts with our proposal
that introduces additional flexibility, as mentioned before.
The Topic Tracking Model (TTM, see Fig.1) introduced in
[11] is similar to our models in the sense that both topic
and word-topic (more precisely interest-topic) dependencies
are considered. However, as for DTM and DMM, the mean of
the current topics and interests are the same as the ones of
the previous topics and interests. The model is thus again
limited in its ability to model the presence or absence of de-
pendencies between consecutive documents. A more recent
proposal, called Temporal LDA (TM-LDA, see Fig.1), was in-
troduced in [24]. TM-LDA differs from the previous models
as it also aims at predicting future topics even in the situa-
tion where future documents are not seen. It thus assumes
a strong dependency between consecutive documents, which
is not always realistic, even on such collections as Tweets.
Furthermore, TM-LDA does not consider dependencies for the
word-topic distributions.

6. CONCLUSION
We have proposed in this paper two new models for mod-

eling topic and word-topic dependencies between consecu-
tive documents in document streams. The first model is a
direct extension of Latent Dirichlet Allocation model (LDA)
and makes use of a Dirichlet distribution to balance the in-
fluence of the LDA prior parameters wrt to topic and word-
topic distribution of the previous document. The second
extension makes use of copulas, which constitute a generic
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Figure 5: Topic distribution of three pairs consecutive documents that have the same topic (Olympic - left, Election - middle,
Sport - right) and subject labels in TDT4 dataset (20 topics).
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tool to model dependencies between random variables. Our
experiments, conducted on three standard collections that
have been used in several studies on topic modeling, show
that our proposals outperform previous ones (as dynamic
topic models and temporal LDA), both in terms of perplex-
ity and for tracking similar topics in a document streams.
Compared to previous proposals, our models have extra flex-
ibility and can adapt to situations where there is in fact no
dependencies between the documents.

In the future, we plan to develop non-parametric exten-
sions as well as versions of these models that scale well, fol-
lowing the improvements on the inference methods for LDA,
proposed in streams [26] or in online settings [9, 2].
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APPENDIX
A. METROPOLIS-HASTING PROCEDURE

The Metropolis-Hasting procedure is based on the follow-
ing steps:

1. Generate an initial value of x: draw x1 ∼ Pprior(x)

2. Initialize j = 1

3. Repeat till sequence is stable

(a) Draw x ∼ q, where q represents the ”jump”function

(b) Draw u ∼ U [0, 1]

(c)

α =


Π(xj)q(x)

Π(x)q(xj)
if Π(xj)q(x) < Π(x)q(xj)

Π(x)q(xj)

Π(xj)q(x)
otherwise

(d) If u ≤ α, then xj+1 = x; xj+1 = xj otherwise

For x = λd, one has:

P (λd|θd−1, θd, zd, wd, α, β, φd−1, φd, µd)

∝ Pprior(λd)P (θd|θd−1, α, λd) := Π(λd)

where Pprior(λd) ∼ U [0, τλ]. As λd should be higher when

θd−1 and θd are more similar (as in such a case the influence
of θd−1 on θd is more important), we make use of the follow-
ing jump function, based on the exponential distribution:

q(λd) = (1− cos(θd−1, θd))× e−(1−cos(θd−1,θd))×λd

For x = µd, the same distribution is used for the jump func-
tion, the cosine being taken between the vectors that corre-
spond to the column-wise concatenation of the columns of
each matrix φd−1 and φd. The prior this time is P (µd) ∼
U [0, τµ]. Lastly, for x = T dk , Pprior(T dk ) ∼ Ga(α), the jump

function corresponds to Franck copula, and Π(T dk ) corre-
sponds to the kth contribution in Eq. 10.

B. GIBBS SAMPLING UPDATES (ST-LDA-C )
We provide here the complete derivation of Eq. 10. For

any d ≥ 2, one has:

T d ∼ P (T d|T d−1, zd, wd, α, β, λd, φ
d−1, φd, µd)

=
P (T d−1|α)P (T d|T d−1, α, λd)P (zd|T d)P (wd|zd)

P (T d−1|α)p(zd|α)P (wd|zd)

=
P (T d|T d−1, α, λd)P (zd|T d)

P (zd|α)

Let Fα (resp fα) denote the cdf (resp pdf) of the Gamma
distribution with parameters (α, 1). By assumption:

P (T d|T d−1, α, λd) =

K∏
k=1

fα(T dk )cλ(Fα(T d−1
k ), Fα(T dk ))

and, since θd = T d/
(∑K

k=1 T
d
k

)
,:

P (zd|T d) =

N∏
n=1

θdzdn =

(
K∑
k=1

T dk

)−N N∏
n=1

T dzdn

Further, as usual [23]:

P (zd|α) =

∫
P (zd|θd)P (θd|α)dθd =

B(Ωd + α)

B(Ωd)

Hence:

p(T d|T d−1, zd, · · · ) =

(∑K
k=1 T

d
k

)−N ∏N
n=1 T

d
zdn[∏K

k=1 Γ(α)
]
B(Ωd + α)/B(Ωd)

×

[
K∏
k=1

T dk
α−1

exp−T
d
k cλ(Fα(T d−1

k ), Fα(T dk ))

]

=

(∑K
k=1 T

d
k

)−N ∏K
k=1 T

d
k

Ωd,k+α−1[∏K
k=1 Γ(α)

]
B(Ωd + α)/B(Ωd)

×

exp−
∑K

k=1 T
d
k

K∏
k=1

cλ(Fα(T d−1
k ), Fα(T dk ))

leading to the desired result.


