
HAL Id: hal-01344750
https://hal.science/hal-01344750v1

Submitted on 12 Jul 2016 (v1), last revised 14 Sep 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Private Multi-party Matrix Multiplication and Trust
Computations

Jean-Guillaume Dumas, Pascal Lafourcade, Jean-Baptiste Orfila, Maxime
Puys

To cite this version:
Jean-Guillaume Dumas, Pascal Lafourcade, Jean-Baptiste Orfila, Maxime Puys. Private Multi-party
Matrix Multiplication and Trust Computations. SECRYPT 2016 : 13th International Conference on
Security and Cryptography, Jul 2016, Lisbonne, Portugal. �hal-01344750v1�

https://hal.science/hal-01344750v1
https://hal.archives-ouvertes.fr

Private Multi-party Matrix Multiplication and Trust
Computations∗

Jean-Guillaume Dumas1, Pascal Lafourcade2, Jean-Baptiste Orfila1 and Maxime Puys3

1Université Grenoble Alpes, CNRS, LJK, 700 av. centrale, IMAG/CS-40700, 38058 Grenoble
cedex 9, France. {Jean-Guillaume.Dumas,Jean-Baptiste.Orfila}@imag.fr

2Université Clermont Auvergne, LIMOS, Campus Universitaire des Cézeaux, BP 86, 63172
Aubière Cedex, France. Pascal.Lafourcade@udamail

3Université Grenoble Alpes, CNRS, Verimag, 700 av. centrale, IMAG - CS 40700, 38058
Grenoble cedex 9, France. Maxime.Puys@imag.fr

July 12, 2016

Abstract

This paper deals with distributed matrix multiplication. Each player owns only one row of both matrices
and wishes to learn about one distinct row of the product matrix, without revealing its input to the other players.
We first improve on a weighted average protocol, in order to securely compute a dot-product with a quadratic
volume of communications and linear number of rounds. We also propose a protocol with five communication
rounds, using a Paillier-like underlying homomorphic public key cryptosystem, which is secure in the semi-
honest model or secure with high probability in the malicious adversary model. Using ProVerif, a cryptographic
protocol verification tool, we are able to check the security of the protocol and provide a countermeasure for each
attack found by the tool. We also give a randomization method to avoid collusion attacks. As an application, we
show that this protocol enables a distributed and secure evaluation of trust relationships in a network, for a large
class of trust evaluation schemes.

1 Introduction
Secure multiparty computations (MPC), introduced by Yao [29] with the millionaires’ problem, has been inten-
sively studied during the past thirty years. The idea of MPC is to allow n players to jointly compute a function
f using their private inputs without revealing them. In the end, they only know the result of the computation
and no more information. Depending on possible corruptions of players, one may prove that a protocol may
resist against a collusion of many players, or that it is secure even if attackers try to maliciously modify their
inputs. Mostly any function can be securely computed [4] and many tools exist to realize MPC protocols. They
comprise for instance the use of a Trusted Third Party [14], the use of Shamir’s secret sharing scheme [27], or
more recently the use of homomorphic encryption [18]. It is also possible to mix these techniques [10].

Our goal is to apply MPC to the a distributed evaluation of trust, as defined in [21, 15]. There, confidence is a
combination of degrees of trust, distrust and uncertainty between players. Aggregation of trusts between players
on a network is done by a matrix product defined on two monoids (one for the addition of trust, the other one for
multiplication, or transitivity): each player knows one row of the matrix, its partial trust on its neighbors, and the
network as a whole has to compute a distributed matrix squaring. Considering that the trust of each player for
his colleagues is private, at the end of the computation, nothing but one row of the global trust has to be learned
by each player (i.e., nothing about private inputs should be revealed to others). Thus, an MPC protocol to resolve
this problem should combine privacy (nothing is learned but the output), safety (computation of the function
does not reveal anything about inputs) and efficiency [23]. First, we need to define a MPC protocol which allows
us to efficiently compute a distributed matrix product with this division of data between players. The problem
is reduced to the computation of a dot product between vectors U and V such that one player knows U and V is

∗This work was partially supported by “Digital trust” Chair from the University of Auvergne Foundation, by the HPAC project
(ANR 11 BS02 013), the ARAMIS project (PIA P3342-146798) and the LabEx PERSYVAL-Lab (ANR-11-LABX-0025).

1

mailto:Jean-Guillaume.Dumas@imag.fr,Jean-Baptiste.Orfila,Maxime.Puys@imag.fr
mailto:Pascal.Lafourcade@udamail
mailto:Maxime.Puys@imag.fr

divided between all players.
Related Work. Dot product in the MPC model has been widely studied [13, 2, 28]. However, in these papers,
assumptions made on data partitions are different: there, each player owns a complete vector, and the dot product
is computed between two players where; in our setting, trust evaluation should be done among peers, like cer-
tification authorities. For instance, using a trusted third party or permuting the coefficients is unrealistic. Now,
computing a dot product with n players is actually close to the MPWP protocol of [12], computing a mean in
a distributed manner: computing dot products is actually similar to computing a weighted average where the
weights are in the known row, and the values to be averaged are privately distributed. In MPWP the total volume
of communication for a dot product is O

(
n3) with O (n) communication rounds. Other generic MPC proto-

cols exist, also evaluating circuits, they however also require O
(
n3) computations and/or communications per

dot-product [6, 10].
Contributions. We provide the following results:
• A protocol P-MPWP, improving on MPWP, which reduces both the computational cost, by allowing the

use of Paillier’s cryptosystem, and the communication cost, from O
(
n3) to O

(
n2).

• An O (n) time and communications protocol Distributed and Secure Dot-Product (DSDPi) (for i partici-
pants) which allows us to securely compute a dot product UV , against a semi-honest adversary, where one
player owns a vector U and where each player knows one coefficient of V .

• A parallel variant that performs the dot-product computation in parallel among the players, limits the total
number of rounds. This is extended to a Parallel Distributed and Secure Matrix-Multiplication (PDSMMi)
family of protocols.

• A security analysis of the DSDP protocol using a cryptographic protocol verification tool, here ProVerif [7,
8]. This tool allows us to define countermeasures for each found attack: adapted proofs of knowledge
in order to preserve privacy and a random ring order, where private inputs are protected as in a wiretap
code [25] and where the players take random order in the protocol to preserve privacy with high probability,
even against a coalition of malicious insiders.

• Finally, we show how to use these protocols for the computation of trust aggregation, where classic addition
and multiplication are replaced by more generic operations, defined on monoids.

In Section 2, we thus first recall some multi-party computation notions. We then introduce in Section 3
the trust model based on monoids. In Section 4, we present our quadratic variant of MPWP and a linear-time
protocol in Section 5. We then give the associated security proofs and countermeasures in Section 6 and present
parallelized version in Section 7. Finally, in Section 8, we show how our protocols can be adapted to perform a
private multi-party trust computation in a network.

2 Background and Definitions
We use a public-key homomorphic encryption scheme where both addition and multiplication are considered.
There exist many homomorphic cryptosystems, see for instance [24, § 3] and references therein. We need
the following properties on the encryption function E (according to the context, we use EPubB, or E1 or just
E to denote the encryption function, similarly for the signature function, D1 or DprivB): computing several
modular additions, denoted by Add(c1;c2), on ciphered messages and one modular multiplication, denoted by
Mul(c;m), between a ciphered message and a cleartext. That is, ∀m1,m2 ∈ Z/mZ: Add(E(m1);E(m2)) =
E(m1 +m2 mod m) and Mul(E(m1);m2) = E(m1m2 mod m). For instance, Paillier’s or Benaloh’s cryptosys-
tems [26, 5, 17] can satisfy these requirements, via multiplication in the ground ring for addition of enciphered
messages (Add(E(m1);E(m2)) = E(m1)E(m2) mod m), and via exponentiation for ciphered multiplication
(Mul(E(m1);m2) = E(m1)

m2 mod m), we obtain the following homomorphic properties:

E(m1)E(m2) = E(m1 +m2 mod m) (1)

E(m1)
m2 = E(m1m2 mod m) (2)

Since we consider the semantic security of the cryptosystem, we assume that adversaries are probabilistic
polynomial time machines. In MPC, most represented intruders are the following ones:
• Semi-honest (honest-but-curious) adversaries: a corrupted player follows the protocol specifications, but

also tries to gather as many information as possible in order to deduce some private inputs.
• Malicious adversaries: a corrupted player that controls the network and stops, forges or listens to messages

in order to gain information.

3 MONOIDS OF TRUST
There are several schemes for evaluating the transitive trust in a network. Some use a single value represent-
ing the probability that the expected action will happen; the complementary probability being an uncertainty on

2

the trust. Others include the distrust degree indicating the probability that the opposite of the expected action
will happen [19]. More complete schemes can be introduced to evaluate trust: Jøsang introduces the Subjective
Logic notion which expresses beliefs about the truth of propositions with degrees of ”uncertainty” in [21]. Then
the authors of [20] applied the associated calculus of trust to public key infrastructures. There, trust is repre-
sented by a triplet, (trust, distrust, uncertainty) for the proportion of experiences proved, or believed, positive;
the proportion of experiences proved negative; and the proportion of experiences with unknown character. As
uncertainty = 1− trust−distrust, it is sufficient to express trust with two values as 〈trust,distrust〉. In e.g. [16]
algorithms are proposed to quantify the trust relationship between two entities in a network, using transitivity
and reachability. For instance, in [15] the authors use an adapted power of the adjacency matrix to evaluate the
trust using all existing (finite) trust paths between entities. We show in the following of this section, that powers
of this adjacency matrix can be evaluated privately in a distributed manner, provided than one disposes of an
homomorphic cryptosystem satisfying the homomorphic Properties (1) and (2).

3.1 Aggregation of Trust
Consider Alice trusting Bob with a certain trust degree, and Bob trusting Charlie with a certain trust degree. The
sequential aggregation of trust formalizes a kind of transitivity to help Alice to make a decision about Charlie, that
is based on Bob’s opinion. In the following, we first consider that the trust values are given as a pair 〈a,b〉 ∈D2,
for D a principal ideal ring: for three players P1, P2 and P3, where P1 trusts P2 with trust value 〈a,b〉 ∈D2 and P2
trusts P3 with trust value 〈c,d〉 ∈ D2 the associated sequential aggregation of trust is a function F : D2×D2→

D2, that computes the trust value over the trust path P1
〈a,b〉→ P2

〈c,d〉→ P3 as 〈a,b〉F〈c,d〉 = 〈ac+bd,ad +bc〉.
Similarly, from Alice to Charlie, there might be several ways to perform a sequential aggregation (several paths
with existing trust values). Therefore it is also possible to aggregate these parallel paths with the same measure,

in the following way: for two disjoint paths P1
〈a,b〉→ P3 and P1

〈c,d〉→ P3, the associated parallel aggregation of trust
is a function z : D2×D2→ D2, that computes the resulting trust value as: 〈a,b〉z〈c,d〉= 〈a+ c−ac,bd〉. We
prove the following Lemma.

Lemma 1. 〈a,b〉 is invertible for z if and only if (b is invertible in D) and (a = 0 or a−1 is invertible).

Proof. As 〈a+ 0− a.0, b.1〉=〈a,b〉, 〈0,1〉 is neutral for z. Then, for b invertible, if a = 0, then 〈0,b−1〉 is
an inverse for 〈0,b〉. Otherwise, for a− 1 invertible, 〈a(a−1)−1,b−1〉z〈a,b〉 = 〈a,b〉z〈a(a−1)−1,b−1〉 =
〈a+a(a−1)−1−a2(a−1)−1,bb−1〉= 〈0,1〉. Similarly, if 〈a,b〉z〈c,d〉= 〈0,1〉, then bd = 1 and b is invertible.
Then also (a−1)c = a. Finally if a 6= 0 and a−1 is a zero divisor, there exists λ 6= 0 such that λ(a−1) = 0, thus
λ(a−1)c = 0 = λa, but then λ(a−1)−λa =−λ = 0. As this is contradictory, the only possibilities are a = 0 or
a−1 invertible.

3.2 Multi-party Private Aggregation
For E an encryption function, we define the natural morphism on pairs, so that it can be applied to trust values:
E(〈a,b〉) = 〈E(a),E(b)〉.We can thus extend homomorphic properties to pairs so that the parallel and sequential
aggregation can then be computed homomorphically, provided that one entry is in clear.

Lemma 2. With an encryption function E, satisfying the homomorphic Properties (1) and (2), we have:

Mul(E (〈a,b〉) ;〈c,d〉) = E (〈a,b〉F〈c,d〉)

= 〈E(a)cE(b)d ,E(a)dE(b)c〉
Add(E (〈a,b〉) ;〈c,d〉) = E (〈a,b〉z〈c,d〉)

= 〈E(a)E(c)E(a)−c,E(b)d〉

Moreover, those two functions can be computed on an enciphered 〈a,b〉, provided that 〈c,d〉 is in clear.

Proof. From the homomorphic properties of the encryption functions, we have: E(a)cE(b)d = E(ac + bd),
E(a)dE(b)c = E(ad+bc), E(a)E(c)E(a)−c = E(a+c+a(−c)) and E(b)d = E(bd). For the computation, both
right hand sides depend only on ciphered values E(a), E(b), and on clear values c and d (E(c) can be computed
with the public key, from c).

This shows, that in order to compute the aggregation of trust privately, the first step is to be able to compute
dot-products privately.

3

4 FROM MPWP TO P-MPWP
4.1 MPWP description
The MPWP protocol [12] is used to securely compute private trust values in an additive reputation system be-
tween n players. Each player Pi (excepted P1, assumed to be the master player) has a private entry vi, and P1
private entries are weights ui associated to others players. The goal is to compute a weighted average trust,
i.e., ∑

n
i=2 ui ∗ vi. The idea of MPWP is the following: the first player creates a vector TV containing her pri-

vate entries ciphered with her own public key using Benaloh’s cryptosystem, i.e., TV = [E1(w2), . . . ,E1(wn)].
Then, P1 also sends a (n− 1)× (n− 1) matrix M, with all coefficients initialized to 1 and a variable A = 1.
Once (M,TV,A) received, each player computes: A = A ∗E1(ui)

vi ∗E1(zi), where zi is a random value gener-
ated by Pi. At the end, the first player gets D1(A) = ∑

n
i=2 uivi + zi. Then, the idea is to cut the zi values in

n− 1 positive shares such that zi = ∑
n
j=2 zi, j. Next, each zi, j is ciphered with the public key of Pj, the result

is stored into the ith column of M, and M is forwarded to the next player. In a second phase, players securely
remove the added random values to A, from M = (mi, j) = (E j(zi, j)): each player Pj, except P1, computes
her PSS j = ∑

n
i=2 D j(mi, j) = ∑

n
i=2 zi, j by deciphering all values contained in the jth row of M; then they send

γ j = E1(PSS j) to P1, their PSSi ciphered with the public key of P1. At the end, P1 retrieves the result by comput-
ing Trust =D1(A)−∑

n
j=2 D1(γ j)=D1(A)−∑

n
j=2 PSS j =D1(A)−∑

n
j=2 ∑

n
i=2 zi, j =D1(A)−∑

n
i=2 zi =∑

n
i=2 uivi.

4.2 P-MPWP: A lighter MPWP
P-MPWP is a variant of MPWP with two main differences: first Paillier’s cryptosystem is used instead of Be-
naloh’s, and, second, the overall communications cost is reduced from O

(
n3) to O

(
n2) by sending parts of

the matrix only. All steps of P-MPWP but those clearly identified in the following are common with MPWP,
including the players’ global settings. Since P-MPWP is using a cryptosystem where players can have different
modulus, some requirements must be verified in the players’ settings. First of all, a bound B needs to be fixed
for the vectors’ private coefficients:

∀i,0≤ ui ≤ B,0≤ vi ≤ B (3)

With Benaloh, the common modulus M must be greater than the dot product, thus at most:

(n−1)B2 < M. (4)

Differently, with Paillier, each player Pi has a different modulus Ni. Then, by following the MPWP protocol
steps, at the end of the first round, P1 obtains A = ∏

n
i=2 E1(ui)

vi ∗E1(zi). In order to correctly decipher this
coefficient, if the players’ values, as well as their random values zi, satisfy the bound (3), her modulo N1 must be
greater than (n− 1)(B2 +B). For others players, there is only one deciphering step, at the second round. They
received (n− 1) shares all bounded by B. Hence, their modulus Ni need only be greater than (n− 1)B. These
modulus requirements are summarized in the following lemma:

Lemma 3. Let n > 3 be the number of players. Under the bound (3), if ∀i,0 ≤ zi ≤ B and if also the modulus
satisfy (n− 1)(B2 +B) < N1 and (n− 1)B < Ni, ∀i = 2, . . . ,n, then at the end of P-MPWP, P1 obtains Sn =

∑
n
i=2 ui ∗ vi.

Now, the reduction of the communications cost in P-MPWP, is made by removing the exchange of the full M
matrix between players. At the zi, j shares computation, each Pi directly sends the jth coefficient to the jth player
instead of storing results in T . In the end, each player Pi receives (n− 1) values ciphered with his public key,
and he can compute the PSSi by deciphering and adding each received values, exactly as in MPWP. Thus, each
player sends only O (n) values, instead of O

(
n2). All remaining steps can be executed as in MPWP.

Both Paillier’s and Benaloh’s cryptosystems provides semantic security, thus the security of P-MPWP is not
altered. Moreover, since a common bound is fixed a priori on private inputs, P-MPWP security can be reduced to
the one in MPWP with the common modulo M between all players [1]. Finally, since all exploitable (i.e., clear or
ciphered with the dedicated key) information exchanged represents a subset of the MPWP players’ knowledge,
if one is able to break P-MPWP privacy, then one is also able to break it in MPWP.

5 A LINEAR DOT PRODUCT PROTOCOL
5.1 Overview with Three Players
We first present in Figure 1 our DSDP3 protocol (Distributed and Secure Dot-Product), for 3 players. The idea is
that Alice is interested in computing a dimension 3 dot-product S = uT · v, between her vector u and a vector v
whose coefficients are owned by different players. The other players send their coefficients, encrypted, to Alice.
Then she homomorphically multiplies each one of these by her ui coefficients and masks the obtained uivi by a

4

random value ri. Then the other players can decrypt the resulting uivi + ri: with two unknowns ui and ri they are
not able to recover vi. Finally the players enter a ring computation of the overall sum before sending it to Alice.
Then only, Alice removes her random masks to recover the final dot-product. Since at least two players have
added u2v2 +u3v3, there is at least two unknowns for Alice, but a single equation.

Alice (P1) Bob (P2) Charlie (P3)

c2 = EpubB(v2) c3 = EpubC(v3)c2oo
c3oo

α2 = cu2
2 ∗EpubB(r2)

α3 = cu3
3 ∗EpubC(r3)

α2, α3 //

∆2 = DprivB(α2) {now ∆2 is (v2u2 + r2)}
β3 = α3 ∗EpubC(∆2) β3 //

∆3 = DprivC(β3)

{now ∆3 is (v3u3 + r3)+(v2u2 + r2)}
γ = EpubA(∆3)γoo

S = DprivA(γ)− r2− r3 +u1v1 {now S is u1v1 +u2v2 +u3v3}

Figure 1: DSDP3: Secure dot product of vectors of size 3 with a Paillier-like asymmetric cipher.

We need that after several decryptions and re-encryptions, and removal of the random values ri, S is ex-
actly ∑uivi. The homomorphic Properties (1) and (2) only guaranty that D(Add(Mul(E(vi);ui);ri)) = viui + ri
mod Ni, for the modulo Ni of the cryptosystem used by player Pi. But then these values must be re-encrypted
with another player’s cryptosystem, potentially with another modulo. Finally Alice also must be able to remove
the random values and recover S over Z. On the one hand, if players can share the same modulo M = Ni for
the homomorphic properties then decryptions and re-encryptions are naturally compatible. This is possible for
instance in Benaloh’s cipher. On the other hand, in a Paillier-like cipher, at the end of the protocol, Alice will
actually recover S4 = ((u2v2 + r2) mod N2 +u3v3 + r3) mod N3. He can remove r3, via S3 = S4− r3 mod N3,
but then S3 = ((u2v2 + r2) mod N2 +u3v3) mod N3. Now, if vectors coefficients are bounded by say B, and if
the third modulo is larger than the second, N3 > N2 +B2, the obtained value is actually the exact value over the
naturals: S3 = (u2v2 + r2) mod N2 +u3v3. Then Alice can remove the second random value, this time modulo
N2: S2 = (u2v2 +u3v3) mod N2, where now N2 > 2B2 suffices to recover S = S2 ∈ N. We generalize this in the
following section.

5.2 General Protocol with n Players
We give the generalization DSDPn, of the protocol of Figure 1 for n players in Algorithm 4 hereafter. For this
protocol to be correct, we use the previously defined bound (3) on the players’ private inputs. Then, for n players,
there are two general cases: First, if all the players share the same modulo M = Ni for all i for the homomorphic
properties, then Alice can also use M to remove the ri. Then, to compute the correct value S, it is sufficient to
satisfy the bound (4). Second, for a Paillier-like cipher, differently, the modulo of the homomorphic properties
are distinct. We thus prove the following Lemma 5.

Lemma 5. Under the bound (3), and for any ri, let M2 = (u2v2 + r2) mod N2 and Mi = (Mi−1 + uivi + ri)
mod Ni, for i = 2 . . .n−1. Let also Sn+1 = Mn and Si = (Si+1− ri) mod Ni for i = n . . .2. If we have:{

Ni−1 +(n− i+1)B2 < Ni, for all i = 3..n
(n−1)B2 < N2

(5)

then S2 = ∑
n
i=2 uivi ∈ N.

Proof. By induction, we first show that Si = Mi−1 +∑
n
j=i u jv j, for i = n..3: indeed Sn = (Mn− rn) mod Nn =

(Mn−1 + unvn) mod Nn. But Mn−1 is modulo Nn−1, so (Mn−1 + unvn) < Nn−1 +B2, and then (5) for i = n,
ensures that Nn−1 + B2 < Nn and Sn = Mn−1 + unvn ∈ N. Then, for 3 ≤ i < n, Si = (Si+1 − ri) mod Ni =
(Mi+∑

n
j=i+1 u jv j−ri) mod Ni = (Mi−1+uivi+ri+∑

n
j=i+1 u jv j−ri) mod Ni = (Mi−1+∑

n
j=i u jv j) mod Ni,

by induction. But (3) enforces that Mi−1 +∑
n
j=i u jv j < Ni−1 +(n− i+ 1)B2 and (5) also ensures the latter is

lower than Ni. Therefore Si = Mi−1 +∑
n
j=i u jv j and the induction is proven. Finally, S2 = (S3− r2) mod N2 =

5

Algorithm 4 DSDPn Protocol: Distributed and Secure Dot-Product of size n
Require: n≥ 3 players, two vectors U and V such that P1 knows complete vector U , and each players Pi knows

component vi of V , for i = 1 . . .n;
Require: Ei (resp. Di), encryption (resp. decryption) function of Pi, for i = 2 . . .n.
Ensure: P1 knows the dot-product S =UTV .

1: for i = 2 . . .n do {Pi : ci = Ei(vi); Pi
ci→ P1}

2: for i = 2 . . .n do
3: P1 : ri

$← Z/NiZ
4: P1 : αi = cui

i ∗Ei(ri) so that αi = Ei(uivi + ri)

5: P1
α2→ P2

6: for i = 2 . . .n−1 do P1 :
αi+1→ Pi

7: P2 : ∆2 = D2(α2) so that ∆2 = u2v2 + r2

8: P2 : β3 = α3 ∗E3(∆2) so that β3 = E3(u3v3 + r3 +∆2); P2
β3→ P3

9: for i = 3 . . .n−1 do
10: Pi : ∆i = Di(βi) so that ∆i = ∑

i
k=2 ukvk + rk

11: Pi : βi+1 = αi+1 ∗Ei+1(∆i) so that βi+1 = Ei+1(ui+1vi+1 + ri+1 +∆i); Pi
βi+1→ Pi+1

12: Pn : ∆n = Dn(βn); Pn : γ = E1(∆n); Pn
γ→ P1

13: return P1 : S = D1(γ)−∑
n−1
i=1 ri +u1v1.

(M2 +∑
n
j=3 u jv j − r2) mod N2 = (∑n

j=2 u jv j) mod N2. As ∑
n
j=2 u jv j < (n− 1)B2, by (5) for i = 2, we have

S2 = ∑
n
j=2 u jv j ∈ N.

This shows that the DSDPn protocol of Algorithm 4 can be implemented with a Paillier-like underlying
cryptosystem, provided that the successive players have increasing modulo for their public keys.

Theorem 6. Under the bounds (3), and under Hypothesis (4) with a shared modulus underlying cipher, or under
Hypothesis (5) with a Paillier-like underlying cipher, the DSDPn protocol of Algorithm 4 is correct. It requires
O (n) communications and O (n) encryption and decryption operations.

Proof. First, each player sends his ciphered entry to P1, then homomorphically added to random values, ri. Then,
Pi (i ≥ 2) deciphers the message received by Pi−1 into ∆i. By induction, we obtain ∆i = ∑

i
k=2 ukvk + rk. This

value is then re-enciphered with next player’s key and the next player share is homomorphically added. Finally,
P1 just has to remove all the added randomness to obtain S = ∆n−∑

n
i=2 ri+u1v1 = ∑

n
i=1 uivi. For the complexity,

the protocol needs n−1 encryptions and communications for the ci; 2(n−1) homomorphic operations on ciphers
and n− 1 communications for the αi; n− 1 decryptions for the ∆i; n− 1 encryptions, homomorphic operations
and communications for the βi; and finally one encryption and one communication for γ. Then P1 needs O (n)
operations to recover S.

6 SECURITY OF DSDP
We study the security of DSDPn using both mathematical proofs and automated verifications. We first demon-
strate the security of the protocol for semi-honest adversaries. Then we incrementally build its security helped
by attacks found by ProVerif, an automatic verification tool for cryptographic protocols.

6.1 Security Proofs
The standard security definition in MPC models [23] covers actually many security issues, such as correctness,
inputs independence, privacy, etc. We first prove that under this settings, computation of the dot product is safe.

Lemma 7. For n≥ 3, the output obtained after computing a dot product where one player owns complete vector
U, and where each coefficient vi of the second vector V is owned by the player Pi, is safe.

Proof. After executing DSDPn with n≥ 3, P1 received the dot product of U and V . Therefore, it owns only one
equation containing (n−1) unknown values (coefficients from v2 to vn). Then, he cannot deduce other players’
private inputs.

6

Then, proving the security relies on a comparison between a real-world protocol execution and an ideal one.
The latter involves an hypothetical trusted third party (T T P) which, knowing only the players’ private inputs,
returns the correct result to the correct players. The protocol is considered secure if the players’ views in the ideal
case cannot be distinguished from the real ones. Views of a player Pi (denoted ViewPi) are defined as distributions
containing: the players’ inputs (including random values), the messages received during a protocol execution and
the outputs. The construction of the corrupted players’ view in the ideal world is made by an algorithm called
Simulator.

Definition 8. In the presence of a set C of semi-honest adversaries with inputs set XC, a protocol Π securely
computes f : ([0,1]∗)m → ([0,1]∗)m (and fC denotes the outputs of f for each adversaries in C) if there exists
a probabilistic polynomial-time algorithm Sim, such that: {Sim(C,{XC}, fC(X))}X∈([0,1]∗)m is computationally
indistinguishable from {C,{ViewΠ

Pi
}Pi∈C}.

For DSDPn, it is secure only if C is reduced to a singleton, i.e. if only one player is corrupted.

Lemma 9. By assuming the semantic security of the cryptosystem E, for n ≥ 3, DSPDn is secure against one
semi-honest adversary.

Proof. We assume that the underlying cryptosystem E is semantically secure (IND-CPA secure). First, we
suppose that only P1 is corrupted. His view, in a real execution of the protocol, is ViewP1 = {U,R,γ,S,A,B,C},
where U = {ui}1≤i≤n, R = {ri}1≤i≤n, A = {αi}2≤i≤n, B = {βi}3≤i≤n−1 and C = {ci}2≤i≤n. Now, Sim1 is the
simulator for P1 in the ideal case, where a simulated value x is denoted x′: by definition, P1’s private entries
(vectors U and R) are directly accessible to Sim1, along with the output S, sent by the T T P. Sim1 starts by
generating n− 2 random values, and then ciphers them using the corresponding public keys: this simulates
the c′i values. Then, using the provided ri and ui with the associated c′i and Pi’s public key, Sim1 computes:
α′i = c′ui

i ∗Ei(ri),2 ≤ i ≤ n. Next, the simulation of B′ is done by ciphering random values with the appropriate
public key. The γ′ value is computed using R along with the protocol output S: γ′ = E1(S+∑

n−2
i ri+u1v1). In the

end, the simulator view is ViewSim1 = {U,R,γ′,S,A′,B′,C′}. If an adversary is able to distinguish any ciphered
values (e.g. C′ from C and thus A′ from A), hence he is able to break the semantic security of the underlying
cryptographic protocol. This is assumed impossible. Moreover, since the remaining values are computed as in
a real execution, P1 is not able to distinguish ViewP1 from ViewSim1 . Second, we suppose that a player Pi, i ≥ 2
is corrupted and denote by Simi the simulator in this case. Since the role played by each participant is generic,
(except for Pn, which only differs by his computation of γ instead of βn+1), the simulators are easily adaptable.
During a real protocol execution, the view of Pi is ViewPi = {vi,A,B,C,γ,∆i}. Simulating the values also known
to P1 is similar, up to the used keys. Hence, the simulation of A′, B′, γ′, C′ (except ci) is made by ciphering random
values using the adequate public key. ci is ciphered using vi and the public key of Pi. For ∆′i, the simulator Simi
has to forward the random value previously chosen to be ciphered as αi. Indistinguishability is based on the
semantic security of E (for A, B, C and γ) and on the randomness added by P1 (and thus unknown by Pi). Then,
∆′i is computationally indistinguishable from the real ∆i. Hence, ViewPi and ViewSi are indistinguishable and
DSDPn is secure against one semi-honest adversary.

6.2 Automated Verification
Alongside mathematical proofs, we use an automatic protocol verification tool to analyze the security of the
protocol. Among existing tools, we use ProVerif [7, 8]. It allows users to add their own equational theories to
model a large class of protocols. In our case, we model properties of the underlying cryptosystem including
addition and multiplication. Sadly, verification of protocol in presence of homomorphic function over abelian
groups theory has been proven undecidable [11]. Moreover, as showed in [22], some equational theories such
as Exclusive-Or can already outspace the tool’s capacities. Thus we have to provide adapted equational theories
to be able to obtain results with the tool. We modeled the application of Pailler’s or shared modulus encryption
properties on αi messages that Bob receives as follows:

(i). ∀u,v,r,k, bob(Ek(r),u,Ek(v)) = Ek(uv+ r)
This property allows Bob to obtain u2v2 + r2 from α2. This also allows an intruder to simulate such calculus and
impersonate Bob. We also model:
(ii). β3 by ∀u,v,r,x,y,z,k, charlie(Ek(uv+ r),Ek(xy+ z)) = Ek(uv+ xy+ r+ z)

(iii). β4 by ∀u,v,r,x,y,z,a,b,c,k, dave(Ek(uv+ xy+ r+ z),Ek(ab+ c)) = Ek(uv+ xy+ab+ r+ z+ c)
In the following, we use ProVerif to prove the security of our protocols under the abstraction of the functionalities
given in our equational theory. ProVerif discovers some attacks in presence of active intruder. We then propose
some countermeasures. The limits of ProVerif are reached and it does not terminate. The associated source files
are available in a web-site: http://matmuldistrib.forge.imag.fr

7

Intruder(Alice) Bob Charlie

c2=EpubB(v2)oo

α2 = cuI
2 ∗EpubB(rI)

x3 = EpubC(vI)

α3 = xu′I
3 ∗EpubC(r′I)

α2,α3 //

∆2 = DprivB(α2) {now ∆2 is (v2uI + rI)}
β3=α3∗EpubC(∆2) //

∆3 = DprivC(β3)

{now ∆3 is (vIu′I + r′I)+(v2uI + rI)}
γ=EpubA(∆3)oo

v2 = (DprivA(γ)− vIu′I− rI− r′I)u
−1
I

Figure 2: Attack on the secrecy of v2

Analysis in case of a passive adversary. Using these equational theories on the protocol described in
Figure 1, we verify it in presence of a passive intruder. Such adversary is able to observe all the traffic of the
protocol and tries to deduce secret information of the messages. This corresponds to a ProVerif intruder that only
listens to the network and does not send any message. By default, this intruder does not possess the private key
of any agent and thus does not belong to the protocol. To model a semi-honest adversary as defined in Section 2,
we just give secret keys of honest participants to the passive intruder knowledge in ProVerif. Then the tool proves
that all secret terms cannot be learn by the intruder for any combinations of leaked key. This confirms the proofs
given in Section 6.1 against the semi-honest adversaries.

Analysis in case of malicious adversary. The malicious adversary described in Section 2 is an active
intruder that controls the network and knows a private key of a compromised honest participant. Modeling this
adversary in ProVerif, we are able to spot the two following attacks and give some countermeasures:

(i) Only the key of Alice is compromised and the countermeasure uses proofs of knowledge.
(ii) Only the key of Charlie is compromised and the countermeasure uses signatures.

In the rest of the section, we present these two points. In the Section 7.2, we also give a solution called random
ring for the case where both keys of Alice and Charlie are compromised.

(i) The key of Alice is compromised. An attack on the secrecy of v2, the secret generated by Bob, is then
presented in Figure 2.

The malicious adversary usurps Alice and replaces all the αi messages, arriving from the other agents, with
one message she generated, except one message, denoted c2 in Figure 2. He lets the protocol end normally and
obtains a term where only v2 is unknown. He learns v2. If the key of Alice (P1) is compromised, ProVerif also
finds an attack on any of the other players secrecy. Suppose, w.l.o.g, that P2 is the target, P1 replaces each αi
except α2 by ciphers Ei(xi) where xi are known to him. xi = 0 could do for instance (xi = 0vi + ri also), since
after completion of the protocol, P1 learns u2v2 + r2 +∑

n
i=3 xi, where the ui and ri are known to him. Therefore,

P1 learns v2. Note also that similarly, for instance, α2 = 1v2 +0 and x3 = v3 could also reveal v2 to P3. Counter
measure: this attack, and more generally attacks on the form of the αi can be counteracted by zero-knowledge
proofs of knowledge. P1 has to prove to the other players that αi is a non trivial affine transform of their secret
vi. For this we use a variant of a proof of knowledge of a discrete logarithm [9] given in Figure 3.

In the Protocol 4, this proof of a non trivial affine transform applies as is to α2 with µ2 = gu2 , ρ2 = gr2 so that

8

Alice Public: g Bob

c = EpubB(v)
coo

α = EpubB(uv+ r)

µ = gu and ρ = gr
α, µ, ρ //

Check µ 6= 1,µ 6= g so that u 6= 0,u 6= 1

Check ρ 6= 1,ρ 6= g so that r 6= 0,r 6= 1

∆ = DprivB(α) if ∆ = uv+ r

Check g∆ ?
== µvρ then guv+r = (gu)vgr

Figure 3: Proof of a non trivial affine transform

the check of P2 is δ2 = g∆2 ?
== µv2

2 ρ2. Differently, for the subsequent players, the δi−1 = g∆i−1 used to test must
be forwarded: indeed the subsequent players have to check in line 10 that ∆i = uivi + ri +∆i−1. Thus with P1

providing µi = gui , ρi = gri and Pi−1 providing δi−1, the check of player Pi ends with δi = g∆i ?
== µvi

i ρiδi−1. As
for proofs of knowledge of discrete logarithm, secrecy of our proof of non trivial affine transform is guaranteed as
long as the discrete logarithm is difficult. The overhead in the protocol, in terms of communications, is to triple
the size of the messages from P1 to Pi, with αi growing to (αi,µi,ρi), and to double the size of the messages from
Pi to Pi+1, with βi growing to (βi,δi). In terms of computations, it is also a neglectible linear global overhead.

(ii) The key of Charlie is compromised. There ProVerif finds another attack on the secrecy of v2. This time
the key of Charlie is compromised and the malicious adversary blocks all communications to and from Alice
who is honest. The adversary performs the same manipulation on the αi terms which are directly sent to Bob.
Thus, this attack becomes feasible since the adversary knows the terms u2, u3, r2, r3 and v3 that he generated
and ∆3 = (v2u2 + r2)+ (v3u3 + r3) using the private key of Charlie. Such an attack relies on the fact that Bob
has no way to verify if the message he receives from Alice has really been sent by Alice. This can be avoided
using cryptographic signatures.

This attack can be generalized to any number of participants. The attack needs the adversary to know the
key of Alice (since she is the only one to know the ui and ri values thanks to the signatures). Then, to obtain the
secret value of a participant Pi, the key of participants Pi−1 and Pi+1 are also needed:

(i). Pi−1 knows ∆i−1 = (u2v2 + ...+ui−1vi−1 + r2 + ...+ ri−1).
(ii). Pi+1 knows ∆i+1 = (u2v2 + ...+ui−1vi−1 +uivi +ui+1vi+1 + r2 + ...+ ri−1 + ri + ri+1).

Thus, by simplifying ∆i−1 and ∆i+1, the malicious adversary obtains uivi +ui+1vi+1 + ri + ri+1 where he can
remove ui+1, vi+1, ri, ri+1 and ui to obtain vi. For more than three participants, we see in Section 7.2 that these
kinds of threats can be diminished if the protocol is replayed several times in random orders.

7 PARALLEL APPROACH
In order to speed up the overall process, we show that we can cut each dot-product into blocks of 2 or 3 coef-
ficients. On the one hand, the overall volume of communications is unchanged, while the number of rounds is
reduced from n to a maximum of 5. On the other hand, semantic security is dropped, but we will see at the end
of this section that by simply repeating the protocol with a wiretap mask it is possible to make the probability of
breaking the protocol negligible.

An application of the DSDPn protocol is the computation of matrix multiplication. In this case, instead of
knowing one vector, each player Pi owns two rows, Ai and Bi, one of each n× n matrices A and B. At the end,

9

each Pi learns a row Ci of the matrix C = AB. In order to compute the matrix product, it is therefore natural to
parallelize DSDPn: each dot-product is cut into blocks of 2 or 3 coefficients. Indeed, scalar product between
three players (resp. four) involves two (resp. three) new coefficients in addition to the ones already known by
Pi. For P1, the idea is to call DSDP3 on the coefficients u1,v1 and u2,u3 of P1, and v2,v3 of P2 and P3. Then
P1 knows s = u1v1 + u2v2 + u3v3. P1 can then continue the protocol with P4 and P5, using (s,1) as his first
coefficient and u4,u5 to be combined with v4,v5, etc. P1 can also launch the computations in parallel. Then
P1 adds his share u1v1 only after all the computations. For this it is sufficient to modify line 13 of DSDPn as:
P1 : S = D1(γ)−∑

n−1
i=1 ri. This is given as the ESDPn protocol variant in Algorithm 10.

Algorithm 10 ESDPn Protocol: External Secure Dot-Product of size n
Require: n+ 1 players, P1 knows a coefficient vector U ∈ Fn, each Pi knows components vi−1 of V ∈ Fn, for

i = 2 . . .n+1.
Ensure: P1 knows S =UTV .

return DSDPn+1(P1 . . .Pn+1, [0,U], [0,V]).

7.1 Partition in Pairs or Triples
Depending on the parity of n, and since gcd(2,3) = 1, calls to ESDP2 and ESDP3 are sufficient to cover all
possible dot-product cases, as shown in protocol PDSMMn of Algorithm 11. The protocol is cut in two parts.
The loop allows us to go all over coefficients by block of size 2. In the case where n is even, a block of 3
coefficients is treated with an instance of ESDP3. In terms of efficiency and depending on the parity of n, ESDP2
is called n−1

2 or n
2 −2 times, and ESDP3 is called 0 or 1 times.

Algorithm 11 PDSMMn Protocol: Parallel Distributed and Secure Matrix Multiplication
Require: n players, each player Pi knows rows Ai and Bi of two n×n matrices A, B.
Ensure: Each player Pi knows row i of C = AB.

1: for Each row: i=1 . . . n do
2: for Each column: j=1 . . . n do
3: s← ai,ibi, j
4: if n is even then
5: k1← (i−1) mod n+1; k2← (i−2) mod n+1; k3← (i−3) mod n+1;
6: s← s+ESDP3(Pi, [Pk3 ,Pk2 ,Pk1], [ai,k3 ,ai,k2 ,ai,k1], [bk3, j,bk2, j,bk1, j])

7: t← n−4
2

8: else
9: t← n−1

2
10: for h = 1 . . . t do
11: k1← (i+2h−1) mod n+1; k2← (i+2h) mod n+1;
12: s← s+ESDP2(Pi, [Pk1 ,Pk2], [ai,k1 ,ai,k2], [bk1, j,bk2, j])
13: ci, j← s

Theorem 12. The PDSMMn Protocol in Algorithm 11 is correct. It runs in less than 5 parallel communication
rounds.

Proof. Correctness means that at the end, each Pi has learnt row Ci of C = AB. Since the protocol is applied
on each rows and columns, let us show that for a row i and a column j, Algorithm 11 gives the coefficient
ci j such that ci j = ∑

n
k=1 aik ∗ bk j. First, the ki coefficients are just the values 1 . . .(i− 1) and (i+ 1) . . .n in

order. Then, the result of any ESDP2 step is ai,k1 bk1, j + ai,k2 bk2, j and the result of the potential ESDP3 step
is ai,k3 bk3, j + ai,k2 bk2, j + ai,k1 bk1, j. Therefore accumulating them in addition of ai,i ∗ bi, j produces as expected
ci j = ∑

n
k=1 aik ∗bk j.

Now for the number of rounds, for all i and j, all the ESDP calls are independent. Therefore, if each player
can simultaneously send and receive multiple data we have that: in parallel, ESDP2, like DSDP3 in Figure 1,
requires 4 rounds with a constant number of operations: one round for the ci, one round for the αi, one round for
β3 and one round for γ. As shown in Algorithm 4, ESDP3, like DSDP4, requires only a single additional round
for β4.

10

7.2 Random Ring Order Mitigation
We have previously seen that if the first player of a dot-product cooperates with the third one she can always
recover the second player private value. If the first player cooperates with two well placed players she can
recover the private value of a player in between. In the trust evaluation setting every malicious player plays the
role of the first player in its row and therefore as soon as there is a collaboration, there is a risk of leakage. To
mitigate this cooperation risk, our idea is to repeat the dot product protocol in random orders, except for the first
player. To access a given private value, the malicious adversaries have to be well placed in every occurrence
of the protocol. Therefore if their placement is chosen uniformly at random the probability that they recover
some private value diminishes with the number of occurrences. In practice, they use a pseudo, but unpredictable,
random generator to decide their placement: as each of them has to know their placement, they can for instance
use a cryptographic hash function seeded with the alphabetical list of the players distinguished names, with the
date of the day and with random values published by each of the players. We detail the overall procedure only
for one dot-product, within the PDSMMn protocol. Each player except the first one masks his coefficient v as in
a simple wiretap channel [25], as sketched in Algorithm 13.

Algorithm 13 Wiretap repetition of the dot-product
1: The players agree on d occurrences.
2: Each player computes his placement order in each occurrence of the protocol from the cryptographic hash

function.
3a: With a shared modulus cryptosystem, the players should share a common modulo M satisfying Hypothesis (4).

In the first occurrence, each player Pj then masks his private input coefficient v j with d− 1 random values
λ j,i ∈ Z/MZ: v j−∑

d
i=2 λ j,i.

3b: With a Paillier-like cryptosystem, the players choose their moduli according to Hypothesis (5), where B2 is
replaced by dB2, in groups of size n = 4 (the requirements of (5) on the moduli are somewhat sequential, but
can be satisfied independently if each modulo is chosen in a distinct interval larger than 3dB2). Then, in the
first occurrence, each player Pj masks his private input coefficient v j with d−1 random values 0≤ λ j,i < B:
v j +∑

d
i=2(B−λ j,i)< dB.

4: Then for each subsequent occurrence, each player replaces its coefficient by one of the λ j,i.
5: In the end, the first player has gathered d dot-products and just needs to sum them in order to recover the

correct one.

Theorem 14. Algorithm 13 correctly allows the first player to compute the dot-product.

Proof. First, in a shared modulus setting, after the first occurrence, Alice (P1) gets S1 = ∑
n
j=2 u j

(
v j−∑

d
i=2 λ j,i

)
.

Then in the following occurrences, Alice gets Si = ∑
n
j=2 u jλ j,i. Finally she computes ∑

d
i=1 Si = ∑

n
j=2 u jv j. Sec-

ond, similarly, in a Paillier-like setting, after the first occurrence, Alice recovers S1 =∑
n
j=2 u j

(
v j +∑

d
i=2(B−λ j,i)

)
.

Then in the following occurrences, Alice gets Si =∑
n
j=2 u jλ j,i. Finally she computes ∑

d
i=1 Si−(d−1)B(∑n

j=2 u j)=

∑
n
j=2 u j(v j +(d−1)B)− (d−1)Bu j = ∑

n
j=2 u jv j.

We give now the probability of avoiding attacks in the case when n = 2t +1, but the probability in the even
case should be close.

Theorem 15. Consider n = 2t +1 players, grouped by 3, of which k ≤ n−2 are malicious and cooperating, in-
cluding the first one Alice. Then, it is on average sufficient to run Algorithm 13 with d≤ 2ln

(
min{k−1,n− k, n−1

2 }
)(

1+ k−1
n−k−1

)
occurrences, to prevent the malicious players from recovering any private input of the non malicious ones.

Proof. The idea is that for a given private input of a non malicious player Bob, to be revealed to Alice, Bob
needs to be placed between cooperating malicious adversaries at each occurrence of the protocol. If there is only
one non malicious player, then nothing can be done to protect him. If there is 2 non malicious, they are safe
if they are together one time, this happens with probability 1

n−2 , and thus on average after n− 2 occurrences.
Otherwise, PDSMMn uses t = n−1

2 groups of 3, including Alice. Thus, each time a group is formed with one
malicious and one non malicious other players, Alice can learn the private value of the non malicious player.
Now, after any occurrence, the number a of attacked players is less than the number of malicious players minus
1 (for Alice) and obviously less than the number of non malicious players: 0 ≤ a < min{k− 1,n− k}. Thus
let b = k− 1− a and c = n− k− a. In the next occurrence, the probability of saving at least one more non
malicious is a(a−1+c)(n−3)!

(n−1)!
n−1

2 =
a(a−1+c)

2(n−2) =
a(n−k−1)

2(n−2) , so that the average number of occurrences to realize this

is En,k(a) =
2(n−2)

a(n−k−1) . Thus, Tn,k(a), the average number of occurrences to save all the non malicious players,

11

satisfies Tn,k(a) ≤ En,k(a)+ Tn,k(a− 1) ≤ ∑
3
i=a En,k(i)+ Tn,k(2) = (∑3

i=a
1
i)

2(n−2)
n−k−1 + Tn,k(2). With 2 attacked

and c saved, Tn,k=n−c−2(2) = n−2
c+1 so that Tn,k(a) ≤ (Ha− 3

2)
2(n−2)
n−k−1 + n−2

n−k−1 , where bounds on the Harmonic
numbers give Ha ≤ lna (see, e.g., [3]) and since a ≤ k− 1 and a ≤ n− k, this shows also that 2a ≤ n− 1.
Therefore, Tn,k(a)≤ 2ln

(
min{k−1,n− k, n−1

2 }
) n−2

n−k−1 .

For instance, if k, the number of malicious insiders, is less than the number of non malicious ones, the number
of repetitions sufficient to prevent any attack is on average bounded by O (logk). To guaranty a probability of
failure less than ε, one needs to consider also the worst case. There, we can have k = n−2 malicious adversaries
and the number of repetitions can grow to n ln(1/ε):

Proposition 16. With n= 2t+1, the number d of random ring repetitions of Algorithm 13 to make the probability
of breaking the protocol lower than ε satisfies d < n ln(1/ε) in the worst case.

Proof. There are at least 2 non-malicious players, otherwise the dot-product reveals the secrets in any case. Any
given non-malicious player is safe from any attacks if in at least one repetition he was paired with another non-
malicious player. In the worst case, k = n− 2 players are malicious and the latter event arises with probability
(1− 1

n−1)
d for d repetitions. If d ≥ n

(
ln
(
ε−1)), then d > (n− 1)(− lnε) > lnε

ln(1− 1
n−1)

, which shows that (1−
1

n−1)
d < ε.

Overall, the wiretap variant of Algorithm 13 can guaranty any security, at the cost of repeating the protocol.
As the number of repetitions is fixed at the beginning by all the players, all these repetitions can occur in parallel.
Therefore, the overall volume of communication is multiplied by the number of repetitions, while the number of
rounds remains constant. This is summarized in Table 1 and Figure 4, for the average (Theorem 15) and worst
(Proposition 16) cases of Algorithm 13, and where the protocols of the previous sections are also compared.

Table 1: Communication complexities
Protocol Volume Rounds Paillier

MPWP O
(
n3) O (n) 7

P-MPWP (§ 4) n2+o(1) O (n) 3

Alg. 13 (Wiretap) n2+o(1) ln
(1

ε

)
5 3

Alg. 4 (DSDPn) n1+o(1) O (n) 3

Alg. 11 (PDSMMn) n1+o(1) 5 3

Alg. 13 (Average) n1+o(1) 5 3

On the one hand, we see in Figure 4 that quadratic protocols, with homomorphic encryption, are not usable for
a realistic large group of players (trust aggregation could be used for instance by certificate authorities, and there
are several hundreds of those in current operating systems or web browsers). On the other hand, quasi linear time
protocols present good performance, while preserving some reasonable security properties: the average wiretap
curve is on average sufficient to prevent any attack and still has a quasi linear asymptotic behavior. The steps in
this curve are the rounding of log(n) to the next integer and correspond to one more random ring wiretap round.

8 CONCLUSION: MPC OF TRUST
We now come back to the aggregation of trust. As shown in Section 3, the first step is to reduce the computation
to that of dot-products. We show how to fully adapt the protocol of Section 5 to the evaluation of trust values
with parallel and sequential aggregations:

Corollary 17. The protocol DSDP of Algorithm 4 can be applied on trust values, provided that the random
values ri are invertible for z.

Proof. • ui, vi, ri, ci, αi, βi, ∆i, γ are now couples;
• Encryption and decryption (E(vi), D(βi), E(∆i), E(γ), etc.) now apply on couples, using the morphism E(〈a,b〉)=
〈E(a),E(b)〉;

• αi is E((uiFvi)zri) = Add(Mul(E(vi);ui);ri), and can still be computed by P1, since ci = E(vi) and ui
and ri are known to him;

• Similarly, βi = E(αiz∆i) = Add(E(αi);∆i).
• Finally, as z is commutative, S is recovered by adding the inverses for z of the ri.

12

 0

 200

 400

 600

 800

 1000

 100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

s)

players

dot-product protocols with 2048 bits Paillier on a single core of an i5-4690 3.50GHz

Random Ring Wiretap (worst-case)
P-MPWP

Random Ring Wiretap (average: log(n))
DSDP

Figure 4: Quadratic and linear protocols timings

From [15, Definition 11], the d-aggregation of trust is a dot-product but slightly modified to not include the
value u1v1. Therefore at line 3, in the protocol of Algorithm 11, it suffices to set s to the neutral element of z
(that is s← 〈0,1〉, instead of s← ai, jbi, j).

There remains to encode trust values that are proportions, in [0,1], into D= Z/NZ. With n participants, we
use a fixed precision 2−p such that 2n(2p+1) < N ≤ 2n(2(p+1)+1) and round the trust coefficients to bx2pc mod N
from [0,1]→ D. Then the dot-product can be bounded as follows:

Lemma 18. If each coefficient of the ui and vi are between 0 and 2p−1, then the coefficients of S =zn
i=1(uiFvi)

are bounded by 2n(2p+1) in absolute value.

Proof. For all u,v, the coefficients of (uFv) are between 0 and (2p−1)(2p−1)+(2p−1)(2p−1) = 22p+1−
2p+2 + 2 < 22p+1− 1 for p a positive integer. Then, by induction, when aggregating k of those with z, the
absolute values of the coefficients remain less than 2k(2p+1)−1.

Therefore, with N an 2048 bits modulus and n≤ 4 in the ESDP protocols of Algorithm 11, Lemma 18 allows
a precision close to 2−255 ≈ 10−77.

In conclusion, we provide an efficient and secure protocol DSDPn to securely compute dot products (against
semi-honest adversary) in the MPC model, with unsual data division between n players. It can be used to perform
a private matrix multiplication and also be adapted to securely compute trust aggregation between players.

References
[1] Vulnerabilities of decentralized additive reputation systems regarding the privacy of individual votes. Wire-

less Personal Commnications, 66(3):559–575, 2012. doi:10.1007/s11277-012-0734-z.

[2] Artak Amirbekyan and Vladimir Estivill-Castro. A new efficient privacy-preserving scalar product pro-
tocol. In AusDM 2007, volume 70 of CRPIT, pages 209–214, 2007. URL: http://crpit.com/
confpapers/CRPITV70Amirbekyan.pdf.

[3] Necdet Batir. Sharp bounds for the psi function and harmonic numbers. Mathematical inequalities and
applications, 14(4), 2011. doi:10.7153/mia-14-77.

13

http://dx.doi.org/10.1007/s11277-012-0734-z
http://crpit.com/confpapers/CRPITV70Amirbekyan.pdf
http://crpit.com/confpapers/CRPITV70Amirbekyan.pdf
http://dx.doi.org/10.7153/mia-14-77

[4] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. STOC’88, pages 1–10. ACM, 1988. URL: http://doi.acm.org/
10.1145/62212.62213, doi:10.1145/62212.62213.

[5] Josh Benaloh. Dense probabilistic encryption. In First Annual Workshop on Selected Areas in Cryptog-
raphy, pages 120–128, Kingston, ON, May 1994. URL: http://sacworkshop.org/proc/SAC_94_006.
pdf.

[6] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption and
multiparty computation. In KennethG. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011,
volume 6632 of Lecture Notes in Computer Science, pages 169–188. Springer Berlin Heidelberg, 2011.
URL: http://dx.doi.org/10.1007/978-3-642-20465-4_11, doi:10.1007/978-3-642-20465-4_
11.

[7] B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In Proc. CSFW’01, pages
82–96. IEEE Comp. Soc. Press, 2001.

[8] B. Blanchet. Cryptographic Protocol Verifier User Manual, 2004. URL: http://www.di.ens.fr/

˜blanchet/crypto/proverif-manual.ps.gz.
[9] David Chaum, Jan-Hendrik Evertse, Jeroen van de Graaf, and René Peralta. Demonstrating possession of a

discrete logarithm without revealing it. In Andrew M. Odlyzko, editor, Advances in Cryptology - CRYPTO
’86, Santa Barbara, California, USA, 1986, Proceedings, volume 263 of Lecture Notes in Computer
Science, pages 200–212. Springer, 1986. URL: http://dx.doi.org/10.1007/3-540-47721-7_14,
doi:10.1007/3-540-47721-7_14.

[10] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryp-
tology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 643–662. Springer
Berlin Heidelberg, 2012. URL: http://dx.doi.org/10.1007/978-3-642-32009-5_38, doi:10.
1007/978-3-642-32009-5_38.

[11] Stéphanie Delaune. An undecidability result for agh. Theor. Comput. Sci., 368(1-2):161–167, December
2006. URL: http://dx.doi.org/10.1016/j.tcs.2006.08.018, doi:10.1016/j.tcs.2006.08.018.

[12] Shlomi Dolev, Niv Gilboa, and Marina Kopeetsky. Computing multi-party trust privately: in O(n) time
units sending one (possibly large) message at a time. In Proceedings of the 2010 ACM Symposium on
Applied Computing, SAC ’10, pages 1460–1465, New York, NY, USA, 2010. ACM.

[13] Wenliang Du and M. J. Atallah. Privacy-preserving cooperative statistical analysis. In Proceedings of the
17th Annual Computer Security Applications Conference, ACSAC ’01, pages 102–110, December 2001.
doi:10.1109/ACSAC.2001.991526.

[14] Wenliang Du and Zhijun Zhan. A practical approach to solve secure multi-party computation problems.
In Proceedings of the 2002 Workshop on New Security Paradigms, NSPW ’02, pages 127–135, New York,
NY, USA, 2002. ACM. URL: http://doi.acm.org/10.1145/844102.844125, doi:10.1145/844102.
844125.

[15] Jean-Guillaume Dumas and Hicham Hossayni. Matrix powers algorithm for trust evaluation in PKI ar-
chitectures. In Audun Jøsang, Pierangela Samarati, and Marinella Petrocchi, editors, STM’2012, Pro-
ceedings of the eigth International Workshop on Security and Trust Management (co-ESORICS 2012),
Pisa, Italy, volume 7783 of Lecture Notes in Computer Science, pages 129–144, September 2012. URL:
http://hal.archives-ouvertes.fr/hal-00607478, doi:10.1007/978-3-642-38004-4_9.

[16] Simon N. Foley, Wayne Mac Adams, and Barry O’Sullivan. Aggregating trust using triangular norms
in the keynote trust management system. In Jorge Cuéllar, Javier Lopez, Gilles Barthe, and Alexander
Pretschner, editors, Security and Trust Management - 6th International Workshop, STM 2010, Athens,
Greece, September 23-24, 2010, Revised Selected Papers, volume 6710 of Lecture Notes in Computer
Science, pages 100–115. Springer, 2010. URL: http://dx.doi.org/10.1007/978-3-642-22444-7_7,
doi:10.1007/978-3-642-22444-7_7.

[17] Laurent Fousse, Pascal Lafourcade, and Mohamed Alnuaimi. Benaloh’s dense probabilistic encryption
revisited. In Abderrahmane Nitaj and David Pointcheval, editors, Progress in Cryptology - AFRICACRYPT
2011 - 4th International Conference on Cryptology in Africa, Dakar, Senegal, July 5-7, 2011. Proceedings,
volume 6737 of Lecture Notes in Computer Science, pages 348–362. Springer, 2011. URL: http://dx.
doi.org/10.1007/978-3-642-21969-6_22, doi:10.1007/978-3-642-21969-6_22.

[18] Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. On private scalar product computation
for privacy-preserving data mining. In Choon-sik Park and Seongtaek Chee, editors, Information Security
and Cryptology ICISC 2004, volume 3506 of Lecture Notes in Computer Science, pages 104–120. Springer
Berlin Heidelberg, 2005. URL: http://dx.doi.org/10.1007/11496618_9, doi:10.1007/11496618_
9.

14

http://doi.acm.org/10.1145/62212.62213
http://doi.acm.org/10.1145/62212.62213
http://dx.doi.org/10.1145/62212.62213
http://sacworkshop.org/proc/SAC_94_006.pdf
http://sacworkshop.org/proc/SAC_94_006.pdf
http://dx.doi.org/10.1007/978-3-642-20465-4_11
http://dx.doi.org/10.1007/978-3-642-20465-4_11
http://dx.doi.org/10.1007/978-3-642-20465-4_11
http://www.di.ens.fr/~blanchet/crypto/proverif-manual.ps.gz
http://www.di.ens.fr/~blanchet/crypto/proverif-manual.ps.gz
http://dx.doi.org/10.1007/3-540-47721-7_14
http://dx.doi.org/10.1007/3-540-47721-7_14
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1016/j.tcs.2006.08.018
http://dx.doi.org/10.1016/j.tcs.2006.08.018
http://dx.doi.org/10.1109/ACSAC.2001.991526
http://doi.acm.org/10.1145/844102.844125
http://dx.doi.org/10.1145/844102.844125
http://dx.doi.org/10.1145/844102.844125
http://hal.archives-ouvertes.fr/hal-00607478
http://dx.doi.org/10.1007/978-3-642-38004-4_9
http://dx.doi.org/10.1007/978-3-642-22444-7_7
http://dx.doi.org/10.1007/978-3-642-22444-7_7
http://dx.doi.org/10.1007/978-3-642-21969-6_22
http://dx.doi.org/10.1007/978-3-642-21969-6_22
http://dx.doi.org/10.1007/978-3-642-21969-6_22
http://dx.doi.org/10.1007/11496618_9
http://dx.doi.org/10.1007/11496618_9
http://dx.doi.org/10.1007/11496618_9

[19] Ramanathan V. Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. Propagation of trust and
distrust. In Stuart I. Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills, editors, Proceedings of the
13th international conference on World Wide Web, WWW 2004, New York, NY, USA, May 17-20, 2004,
pages 403–412. ACM, 2004. URL: http://doi.acm.org/10.1145/988672.988727, doi:10.1145/
988672.988727.

[20] Jingwei Huang and David M. Nicol. A formal-semantics-based calculus of trust. IEEE Internet Computing,
14(5):38–46, 2010. URL: http://doi.ieeecomputersociety.org/10.1109/MIC.2010.83, doi:10.
1109/MIC.2010.83.

[21] Audun Jøsang. Probabilistic logic under uncertainty. In Joachim Gudmundsson and C. Barry Jay, editors,
Theory of Computing 2007. Proceedings of the Thirteenth Computing: The Australasian Theory Sympo-
sium (CATS2007). January 30 - Febuary 2, 2007, Ballarat, Victoria, Australia, Proceedings, volume 65
of CRPIT, pages 101–110. Australian Computer Society, 2007. URL: http://crpit.com/abstracts/
CRPITV65Josang.html.

[22] Pascal Lafourcade and Maxime Puys. Performance evaluations of cryptographic protocols. verification
tools dealing with algebraic properties. In FPS 2015, 2015.

[23] Yehuda Lindell. Secure computation for privacy preserving data mining. In John Wang, editor,
Encyclopedia of Data Warehousing and Mining, Second Edition (4 Volumes), pages 1747–1752. IGI
Global, 2009. URL: http://www.igi-global.com/Bookstore/Chapter.aspx?TitleId=11054, doi:
10.4018/978-1-60566-010-3.

[24] Payman Mohassel. Efficient and secure delegation of linear algebra. IACR Cryptology ePrint Archive,
2011:605, 2011. URL: http://eprint.iacr.org/2011/605.

[25] Lawrence H. Ozarow and Aaron D. Wyner. Wire-tap channel II. In Thomas Beth, Norbert Cot, and Ingemar
Ingemarsson, editors, EUROCRYPT’84, Paris, France, volume 209 of LNCS, pages 33–50. Springer, 1984.
URL: http://dx.doi.org/10.1007/3-540-39757-4_5, doi:10.1007/3-540-39757-4_5.

[26] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Jacques Stern,
editor, Advances in Cryptology - EUROCRYPT ’99, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, volume 1592
of Lecture Notes in Computer Science, pages 223–238. Springer, 1999. URL: http://dx.doi.org/10.
1007/3-540-48910-X_16, doi:10.1007/3-540-48910-X_16.

[27] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979. URL: http:
//doi.acm.org/10.1145/359168.359176, doi:10.1145/359168.359176.

[28] I-Cheng Wang, Chih hao Shen, Tsan sheng Hsu, Churn-Chung Liao, Da-Wei Wang, and J. Zhan. To-
wards empirical aspects of secure scalar product. In Information Security and Assurance, 2008. ISA 2008.
International Conference on, pages 573–578, April 2008. doi:10.1109/ISA.2008.78.

[29] Andrew C. Yao. Protocols for secure computations. 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science, 0:160–164, 1982. doi:http://doi.ieeecomputersociety.org/10.1109/SFCS.
1982.88.

15

http://doi.acm.org/10.1145/988672.988727
http://dx.doi.org/10.1145/988672.988727
http://dx.doi.org/10.1145/988672.988727
http://doi.ieeecomputersociety.org/10.1109/MIC.2010.83
http://dx.doi.org/10.1109/MIC.2010.83
http://dx.doi.org/10.1109/MIC.2010.83
http://crpit.com/abstracts/CRPITV65Josang.html
http://crpit.com/abstracts/CRPITV65Josang.html
http://www.igi-global.com/Bookstore/Chapter.aspx?TitleId=11054
http://dx.doi.org/10.4018/978-1-60566-010-3
http://dx.doi.org/10.4018/978-1-60566-010-3
http://eprint.iacr.org/2011/605
http://dx.doi.org/10.1007/3-540-39757-4_5
http://dx.doi.org/10.1007/3-540-39757-4_5
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/3-540-48910-X_16
http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1109/ISA.2008.78
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/SFCS.1982.88
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/SFCS.1982.88

	Introduction
	Background and Definitions
	Monoids of Trust
	Aggregation of Trust
	Multi-party Private Aggregation

	From MPWP to P-MPWP
	MPWP description
	P-MPWP: A lighter MPWP

	A Linear Dot Product Protocol
	Overview with Three Players
	General Protocol with n Players

	Security of DSDP
	Security Proofs
	Automated Verification

	Parallel Approach
	Partition in Pairs or Triples
	Random Ring Order Mitigation

	Conclusion: MPC of Trust

