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Abstract Hierarchies of partitions are generally

represented by dendrograms (direct representation).

They can also be represented by saliency maps or

minimum spanning trees. In this article, we precisely

study the links between these three representations.

In particular, we provide a new bijection between

saliency maps and hierarchies based on quasi-�at

zones as often used in image processing and we

characterize saliency maps and minimum spanning

trees as solutions to constrained minimization problems

where the constraint is quasi-�at zones preservation. In

practice, these results make up a toolkit for designing

new hierarchical methods where one can choose the

most convenient representation. They also invite us to

process non-image data with morphological hierarchies.

More precisely, we show the practical interest of

the proposed framework for: i) hierarchical watershed

image segmentations, ii) combinations of di�erent

hierarchical segmentations, iii) hierarchicalizations of

some non-hierarchical image segmentation methods

based on regional dissimilarities, and iv) hierarchical

analysis of geographical data.
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1 Introduction

Many image segmentation methods look for a partition

of the set of image pixels such that each region of the

partition corresponds to an object of interest in the

image. Hierarchical segmentation methods, instead of

providing a unique partition, produce a sequence of

nested partitions at di�erent scales, enabling to describe

an object of interest as a grouping of several objects of

interest that appear at lower scales.

Since the early work of [36], hierarchical image

analysis has been the subject of intense research.

For instance, one can refer to hierarchical watersheds,

pioneered in [7,33,27], to quasi-�at zones hierarchies,

studied notably in [29], to binary partition trees,

introduced in [40], and to the scale-set theory, initiated

in [16]. In the few last years, hierarchical segmentation

has become a hot topic as attested by the popularity

of [3], which presents a hierarchical segmentation

machinery that reaches excellent practical results on

the Berkeley image segmentation dataset.

This article deals with a theory of hierarchical

segmentation as used in image processing. More

precisely, we investigate di�erent representations of a

hierarchy: by a dendrogram (direct set representation),

by a saliency map (a characteristic function), and

by a minimum spanning tree (a reduced domain of

de�nition). Our theoretical contributions are threefold:

1. a new bijection theorem between hierarchies and

saliency maps (Theorem 1) relying on the quasi-�at

zones hierarchies that is simpler and more general

than previous bijection theorems for saliency maps;

2. a new characterization of the saliency map of a

given hierarchy as the minimum function for which

the quasi-�at zones hierarchy is precisely the given

hierarchy (Theorem 2); and
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3. a new characterization of the minimum spanning

trees of a given edge-weighted graph as the

minimum subgraphs (for inclusion) whose quasi-�at

zones hierarchies are the same as the one of the given

graph (Theorem 4).

The links established in this article between the maps

that weight the edges of a graph G, the hierarchies on

the vertex set V (G) of G, the saliency maps on the edge

set E(G) of G, and the minimum spanning trees for the

maps that weight the edges of G are summarized in the

diagram of Figure 1.

One possible application of these results is the

design of algorithms for computing hierarchies. Indeed,

our results allow one to use indi�erently any of the three

hierarchical representations. This can be useful when a

given operation is more e�ciently performed with one

representation than with the two others. Naturally, one

could work directly on the hierarchy (or on its tree-

based representation, called a dendrogram) and �nally

compute a saliency map for visualization purposes.

For instance, in [16,22], the authors e�ciently handle

directly the tree-based representation of the hierarchy.

Conversely, thanks to Theorem 1, one can work on a

saliency map or, thanks to Theorem 4, on the weights

of a minimum spanning tree and explicitly computes

the hierarchy in the end. In [11,32,25], a resulting

saliency map is computed before a possible extraction

of the associated hierarchy of watersheds. In [17], a

basic transformation that consists of modifying one

weight on a minimum spanning tree according to some

criterion is considered. The corresponding operation on

the equivalent dendrogram is more di�cult to design.

When this basic operation is iterated on every edge

of the minimum spanning tree, one transforms a given

hierarchy into another one. The technique is generic and

was applied in [17,19,20] to the measures presented in

[15,35,37] respectively. An in-depth exploration of one

of these measures, namely the observation scale of [15]

is detailed in [18]. In particular, in [18], an extensive

assessment based on the framework of [3] shows that

the hierarchical method performs at least as well as its

non-hierarchical counterpart while providing at once all

the possible scales. The results of this article constitute

the theoretical basis of the methods presented in the

aforementioned references [11,13,32,17,19,20]. It also

opens the door towards new hierarchical image analysis.

As an example, we present, in Section 8.3, de�nitions

of interesting combinations of hierarchies featuring

distinct aspects of a same image. We also provide

an e�cient combination algorithm based on saliency

maps (quasi-linear time algorithm with-respect to the

underlying graph).

Another interest of our work is to enable a

precise link between hierarchical classi�cation [34]

and hierarchical image segmentation. In particular, it

suggests that hierarchical image segmentation methods

can be used for classi�cation (the converse being carried

out for a long time). Indeed, our work is deeply

related to hierarchical classi�cation, more precisely, to

ultrametric distances, subdominant ultrametrics and

single linkage clustering. In classi�cation,

representations of hierarchies, on which no connectivity

hypothesis is made, are studied since the 60's (see

references in [34]). The framework presented in this

article deals with connected hierarchies and a graph

needs to be speci�ed for de�ning the connectivity

of the regions of the partitions in the hierarchies.

The connectivity of regions is the main di�erence

between what has been done in classi�cation and in

segmentation. Rather than restricting the work done

for classi�cation, the framework studied in this article

generalizes it. Indeed the usual notions of classi�cation

are recovered from the de�nitions of this article when a

complete graph (every two points are linked by an edge)

is considered. For instance, when a complete graph

is considered, a saliency map becomes an ultrametric

distance, which is known to be equivalent to a hierarchy.

However, Theorem 1 shows that, when the graph is

not complete, we do not need a value for every pair of

elements in order to characterize a hierarchy (as done

with an ultrametric distance) but one value for each

edge of the graph is enough (with a saliency map).

Furthermore, when a complete graph is considered, the

hierarchy of quasi-�at zones becomes the one of single

linkage clustering. Hence, Theorem 4 allows to recover

and to generalize a well-known relation between the

minimum spanning trees of the complete graph and

single linkage clustering. In order to emphasize the links

drawn in this paper between hierarchical segmentation

and classi�cation, we present in Section 8.4 an original

hierarchical analysis of geographic data. We indeed

investigate the Knuth Miles dataset [1] (a dataset of

128 US cities with population and position information)

with a hierarchical segmentation scheme coming from

image analysis, namely hierarchical watershed (see, e.g.,

[7,33,27,11]).

This article is organized as follows: Sections 2 and 3

recall basic notions for handling connected hierarchies

and quasi-�at zones respectively; Section 4 introduces

the notion of a saliency map and provides the

correspondence between saliency maps and hierarchy

(Theorem 1); Sections 5 and 6 characterize saliency

maps and minimum spanning trees as solutions

to constrained minimization problems, where the

constraint is quasi-�at zones preservation; Section 7
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Q F Z

Saliency maps on E(G)

(P1): Φ−1 = Q F Z Q F Z

Connected hierarchies on V (G)

Maps on E(G) Minimum spanning trees⊆

(P2): constrained minimization for

Φ

(P3): constrained minimization forΨ
the inclusion relation ⊑ on graphs.

the ≤ ordering on maps.

Fig. 1 A diagram that summarizes the results of this article. The solutions to problems (P1), (P2), and (P3) are given by
Theorems 1, 2, and 4, respectively. The constraint involved in (P2) and (P3) is to leave the induced quasi-�at zones hierarchy
unchanged. In the diagram, QFZ stands for quasi-�at zones (Equation (3)), and the symbols Φ and Ψ stand for the saliency map of
a hierarchy (Equation (5)) and of a map respectively (Section 5).

(a) (b) (c) (d)

Fig. 2 Top row: some images from the Berkeley database [3]. Middle row: saliency maps according to [17] developed thanks to the
framework of this article. Bottom row: segmentations extracted from the hierarchies with (a) 3, (b) 18, (c) 6 and (d) 16 regions.

presents a linear-time algorithm for computing the

saliency map of a hierarchy and a quasi-linear

time algorithm for the ultrametric opening (i.e. the

transformation denoted by Ψ in Figure 1); Finally

Section 8 illustrates the versatility of the proposed

framework with applications to image, mesh and

geographic data processing.

This article extends an article ([12]) published in

a conference. In particular, it contains the proof of

all properties presented in [12] and illustrations of

the proposed framework to image and geographic data

analysis.

2 Connected hierarchies of partitions

In this section, we provide basic de�nitions for

handling partitions, hierarchies and connectivity based

on graphs.

A partition of a �nite set V is a set P of nonempty

disjoint subsets of V whose union is V (i.e., ∀X,Y ∈
P, X ∩ Y = ∅ if X 6= Y and ∪{X ∈ P} = V ). Any

element of a partition P of V is called a region of P.

If x is an element of V , there is a unique region of P
that contains x; this unique region is denoted by [P]x.
Given two partitions P and P′ of a set V , we say that
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P′ is a re�nement of P if any region of P′ is included
in a region of P. A hierarchy (on V ) is a sequence H =
(P0, . . . ,P`) of indexed partitions of V such that [P]i−1

is a re�nement of [P]i, for any i ∈ {1, . . . , `}. If H =
(P0, . . . ,P`) is a hierarchy, the integer ` is called the

depth of H. A hierarchy H = (P0, . . . ,P`) is called

complete if P` = {V } and if P0 contains every singleton

of V (i.e., P0 = {{x} | x ∈ V }). The hierarchies

considered in this article are complete.

P0 P1 P2

P1

P2

P3

P0

P3 H

Fig. 3 Illustration of a hierarchy H = (P0,P1,P2,P3). For
every partition, each region is represented by a gray level: two
dots with the same gray level belong to the same region. The
last sub�gure represents the hierarchy H as a tree, often called a
dendrogram, where the inclusion relation between the regions of
the successive partitions is represented by line segments.

Figure 3 graphically represents a hierarchy H =
(P0,P1,P2,P3) on a rectangular subset V of Z2 made

of 9 dots. For instance, it can be seen that P1 is a

re�nement of P2 since any region of P1 is included in

a region of P2. It can also be seen that the hierarchy is

complete since P0 is made of singletons and P3 is made

of a single region that contains all elements.

In this article, we consider connected regions,

the connectivity being given by a graph. Therefore,

we remind basic graph de�nitions before introducing

connected partitions and hierarchies.

A (undirected) graph is a pair G = (V,E), where V
is a �nite set and E is composed of unordered

pairs of distinct elements in V , i.e., E is a subset

of {{x, y} ⊆ V | x 6= y}. Each element of V is called

a vertex or a point (of G), and each element of E

is called an edge (of G). A subgraph of G is a graph

G′ = (V ′, E′) such that V ′ is a subset of V , and E′ is a

subset of E. If G′ is a subgraph of G, we write G′ v G.
The vertex and edge sets of a graph X are denoted

by V (X) and E(X) respectively.

Let G be a graph and let (x0, . . . , x`) be a sequence

of vertices of G. The sequence (x0, . . . , x`) is a path

(in G) from x0 to x` if, for any i in {1, . . . , `}, {xi−1, xi}
is an edge of G. The graph G is connected if, for any two

vertices x and y of G, there exists a path from x to y.

Let X be a subset of V (G). The graph induced by X

(in G) is the graph whose vertex set is X and whose

edge set contains any edge of G which is made of two

elements in X. If the graph induced by X is connected,

we also say, for simplicity, that X is connected (for G) .

The subset X of V (G) is a connected component of G if

it is connected for G and maximal for this property, i.e.,

for any subset Y of V (G), if Y is a connected superset

of X, then we have Y = X. In the following, we denote

by C(G) the set of all connected components of G.

It is well-known that this set C(G) of all connected

components of G is a partition of V (G). This partition
is called the (connected components) partition induced

by G. Thus, the set [C(G)]x is the unique connected

component of G that contains x.

Given a graph G = (V,E), a partition of V is

connected (for G) if any of its regions is connected

and a hierarchy on V is connected (for G) if any of

its partitions is connected.

For instance, the partitions presented in Figure 3

are connected for the graph given in Figure 4(a).

Therefore, the hierarchy H made of these partitions,

which is depicted as a dendrogram in Figure 3 (bottom-

right sub�gure), is also connected for the graph of

Figure 4(a).

For image analysis applications, the graph G can be

obtained as a pixel or a region adjacency graph: the

vertex set of G is either the domain of the image to be

processed or the set of regions of an initial partition of

the image domain. In the latter case, the regions are

often called the �image superpixels�. In both cases, two

typical settings for the edge set of G can be considered:

(1) the edges of G are obtained from an adjacency

relation between the image pixels, such as the well

known 4- or 8-adjacency relations; and (2) the edges

of G are obtained by considering, for each vertex x

of G, the nearest neighbors of x for a distance in a

features space onto which the vertices of G are mapped.

A common feature space (see, e.g., [15]) is the one where

each pixel of a color image is mapped to a vector in

dimension 5 made of the two spatial coordinates and the

three spectral values describing the color of the pixel.

3 Quasi-�at zones

As established in the next sections, a connected

hierarchy can be equivalently treated by means of an

edge-weighted graph. We �rst recall in this section that
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1

(a) (b) (c)

(d) (e) (f)

Fig. 4 Illustration of quasi-�at zones hierarchy. (a) A graph G;
(b) a map w (numbers in black) that weights the edges of G
(in gray); (c, d, e, f) the λ-level graph of G, with λ = 0, 1, 2, 3.
The associated connected component partitions that make up the
hierarchy of quasi-�at zones of G for w is depicted in Figure 3.

the level sets of any edge-weighted graph induce a

hierarchy of quasi-�at zones. This hierarchy is widely

used in image processing [30,29,44].

Let G be a graph, if w is a map from the edge set

of G to the set R+ of positive real numbers, then the

pair (G,w) is called an (edge-)weighted graph. If (G,w)
is an edge-weighted graph, for any edge u of G, the

value w(u) is called the weight of u (for w).

Important notation. In the sequel of this paper,

we consider a weighted graph (G,w). To shorten the

notations, the vertex and edge sets of G are denoted

by V and E respectively instead of V (G) and E(G).
Furthermore, we assume that the vertex set of G is

connected. Without loss of generality, we also assume

that the range of w is the set E of all integers from 0
to |E| − 1 (otherwise, one could always consider an

increasing one-to-one mapping from the set {w(u) | u ∈
E} into E). We also denote by E• the set E ∪ {|E|}.

Let X be a subgraph of G and let λ be an integer

in E•. The λ-level set of X (for w) is the set wλ(X) of
all edges of X whose weight is less than λ:

wλ(X) = {u ∈ E(X) | w(u) < λ}. (1)

The λ-level graph of X (for w) is the subgraph wVλ (X)
of X whose edge set is the λ-level set of X and whose

vertex set is the one of X:

wVλ (X) = (V (X), wλ(X)). (2)

The connected component partitionC(wVλ (X)) induced
by the λ-level graph of X is called the λ-level partition

of X (for w).

For instance, let us consider the graph G depicted

in Figure 4(a) and the map w shown in Figure 4(b).

The 0-, 1-, 2- and 3-level sets of G contain the edges

depicted in Figures 4(c), (d), (e), and (f), respectively.

The graphs depicted in these �gures are the associated

0-, 1-, 2- and 3-level graphs of G and the associated 0-,
1-, 2- and 3-level partitions are shown in Figure 3.

Let X be a subgraph of G. If λ1 and λ2 are two

elements in E• such that λ1 ≤ λ2, it can be seen that

any edge of the λ1-level graph ofX is also an edge of the

λ2-level graph of X. Thus, if two points are connected

for the λ1-level graph ofX, then they are also connected

for the λ2-level graph of X. Therefore, any connected

component of the λ1-level graph of X is included in

a connected component of the λ2-level graph of X. In

other words, the λ1-level partition of X is a re�nement

of the λ2-level partition of X. Hence, the sequence

QFZ(X,w) = (C(wVλ (X)) | λ ∈ E•) (3)

of all λ-level partitions of X is a hierarchy. This

hierarchy QFZ(X,w) is called the quasi-�at zones

hierarchy of X (for w). It can be seen that this

hierarchy is complete whenever X is connected.

For instance, the quasi-�at zones hierarchy of the

graph G (Figure 4(a)) for the map w (Figure 4(b)) is

the hierarchy of Figure 3.

For image analysis applications, we often consider

that the weight of an edge u = {x, y} represents the

dissimilarity of x and y. For instance, in the case where

the vertices of G are the pixels of a grayscale image, the

weight w(u) can be the absolute di�erence of intensity

between x and y. The setting of the graph (G,w)
depends on the application context.

4 Correspondence between hierarchies and

saliency maps

In the previous section, we have seen that any edge-

weighted graph induces a connected hierarchy of

partitions (called the quasi-�at zones hierarchy). In this

section, we tackle the inverse problem:

(P1) given a connected hierarchy H, �nd a map w

from E to E such that the quasi-�at zones

hierarchy for w is precisely H.
We will see that the saliency maps (de�ned by

Equation (5), below) provide a solution to this problem.

The �rst notion of a saliency map was introduced

in [33] for visualizing some hierarchies of watersheds.

Then, it was notably used in [4,3] under the name

of ultrametric contour maps. Some connections with

topological watersheds [6] were studied in [31] and some

morphological properties were investigated in [22] in the

lattice of Jordan nets in the Euclidean 2D plane R2.

We start this section by de�ning the saliency map

of H. Then, we provide a one-to-one correspondence
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(also known as a bijection) between saliency maps

and hierarchies. This correspondence is given by the

hierarchy of quasi �at-zones. Finally, we deduce that

the saliency map of H is a solution to problem (P1).
Until now, we handled the regions of a partition.

Let us now study their �dual� that represents �borders�

between regions and that are called graph-cuts or

simply cuts. The notion of a cut will then be used to

de�ne the saliency maps.

Let P be a partition of V , the cut of P (for G),

denoted by φ(P), is the set of edges of G made of two

vertices in di�erent regions of P:

φ (P) =
{
{x, y} ∈ E | [P]x 6= [P]y

}
. (4)

Let H = (P0, . . . ,P`) be a hierarchy on V . The

saliency map of H is the map Φ(H) from E to {0, . . . , `}
such that the weight of any edge u for Φ(H) is the

maximum value λ for which u belongs to the cut of Pλ:

Φ (H) (u) = max {λ ∈ {0, . . . , `} | u ∈ φ (Pλ)} . (5)

Dually, the weight of the edge u = {x, y} for Φ(H)
is directly related to the lowest index of a partition in

the hierarchy H for which x and y belong to the same

regions:

Φ (H) (u) = min
{
λ ∈ {0, . . . , `} | [Pλ]x = [Pλ]y

}
− 1.

(6)

For instance, if we consider the graph G represented

by the gray dots and line segments in Figure 5(a), the

saliency map of the hierarchy H shown in Figure 3

is the map shown with black numbers in Figure 5(a).

When the 4-adjacency relation is used, a saliency map

can be displayed as an image (Figures 5(e,f) and

Figure 2(middle row)), which is useful for visualizing

the associated hierarchy at a glance. Indeed, as assessed

by the next theorem, the saliency map is equivalent to

the hierarchy.

As illustrated in Figures 5(e,f), a visualization of

a saliency map when the graph is given by the 4-

adjacency relation can be obtained thanks to cubical

complexes (also known as Khalimsky grids). Cubical

complexes have been promoted in particular by V.

Kovalevsky [23] in order to provide a sound topological

basis for image analysis. In 2D, a cubical complex is

a set of squares, unit line segments (represented by

rectangles in Figure 5(e)), and unit points (represented

by dots Figure 5(e)). Each vertex of the graph can be

identi�ed to a square of the complex. Then, each edge

linking two vertices x and y can be identi�ed to the

segment corresponding to the common side of the two

squares identi�ed with x and y. The squares are given

a null value whereas the sides are given the value of the

associated edges in the saliency map. Finally, for each

point of the complex (i.e., the corners of the squares),

the maximal value of a side containing it is kept. Thus,

any element of the complex has a value. Hence, since

the elements of the complex are aligned on a square

matrix, the saliency map can be visualized as an image

(see Figure 5(f)).

0

0

0 0

0 0

2 2

1

2

1

0

(a) (b) (c)

0 0 0 0 1 0 0

0 0 0 0 1 0 0

0 0 0 0 1 0 0

0 0 0 0 1 0 0

2 2 2 2 2 2 2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 1 0 0

0 0 0 0 1 0 0

0 0 0 0 1 0 0

2 2 2 2 2 2 2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

(d) (e) (f)

Fig. 5 Illustration of a saliency map. The map (depicted by
black numbers) is the saliency map s = Φ(H) of the hierarchy H
shown in Figure 3 when we consider the graph G depicted in
gray. (b, c, d) the 1-, 2-, and 3-level graphs of G for s. The
vertices are colored according to the associated 1-, 2-, and 3-level
partitions of G: in each sub�gure, two vertices belonging to a
same connected components have the same gray level. Sub�gures
(e) and (f) show possible image representations of a saliency map
when one considers the 4-adjacency graph.

We say that a map w from E to E is a saliency map

if there exists a hierarchy H such that w is the saliency

map of H (i.e. w = Φ(H)).
If ϕ is a map from a set S1 to a set S2 and if ϕ−1 is

a map from S2 to S1 such that the composition of ϕ−1

with ϕ is the identity, then we say that ϕ−1 is the

inverse of ϕ.

The next theorem identi�es the inverse of the map Φ

and asserts that there is a bijection between the saliency

maps and the connected hierarchies on V .

Theorem 1 The map Φ is a one-to-

one correspondence between the connected hierarchies

on V of depth |E| and the saliency maps (of range E).
The inverse Φ−1 of Φ associates to any saliency map w

its quasi-�at zones hierarchy: Φ−1(w) = QFZ(G,w).

Hence, as a consequence of this theorem, we have:

QFZ(G,Φ(H)) = H, (7)

which means that H is precisely the hierarchy of

quasi-�at zones of G for its saliency map Φ(H). In
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other words, the saliency map of H is a solution

to problem (P1). For instance, if we consider the

hierarchy H shown in Figure 3, it can be observed that

the quasi-�at zones hierarchy for Φ(H) (see Figure 5)

is indeed H. From Theorem 1, we also deduce that, for

any saliency map w, the relation

Φ(QFZ(G,w)) = w (8)

holds true. In other words, a given saliency map w

is precisely the saliency map of its quasi-�at zones

hierarchy.

From this last relation, we can deduce that there

are some maps that weight the edges of G and that

are not saliency maps. Indeed, in general, a map w is

not equal to the saliency map of its quasi-�at zones

hierarchy, which means that Equation (8) does not

hold true for such map. For instance, the map w in

Figure 4 is not equal to the saliency map of its quasi-�at

zones hierarchy which is depicted in Figure 5. Thus, the

map w is not a saliency map. The next section studies

a characterization of the maps that are saliency maps.

5 Characterization of saliency maps

Following the conclusion of the previous section, given a

hierarchy H, there might well exist distinct maps such

that the quasi-�at zones hierarchies for these distinct

maps are equal to H. Hence, in order to select among

such maps, the following problem can be considered:

(P2) given a hierarchy H, �nd a minimal map w

such that the quasi-�at zones hierarchy for w is

precisely H.
The next theorem establishes that the saliency map

of H is the unique solution to problem (P2). Hence,
the saliency maps are equivalently characterized by

Equation (5) (or by its dual version Equation (6)) and

as the solutions to (P2).
Before stating Theorem 2, let us recall that, given

two maps w and w′ from E to E, the map w′ is less

than w if we have w′(u) ≤ w(u) for any u ∈ E.

Theorem 2 Let H be a hierarchy and let w be a map

from E to E. The map w is the saliency map of H if

and only if the two following statements hold true:

1. the quasi-�at zones hierarchies for w is H; and
2. the map w is minimal for statement 1, i.e., for any

map w′ such that w′ ≤ w, if the quasi-�at zones

hierarchy for w′ is H, then we have w = w′.

Roughly speaking, we can say from Theorem 2 that

the saliency map of a hierarchy H is the minimal

characteristic map of H. More formally, we deduce

that w ≥ φ(H) whenever the quasi-�at zones of w is H.
Given an edge-weighted graph (G,w), it is

sometimes interesting to consider the saliency map of its

quasi-�at zones hierarchy. This saliency map is simply

called the saliency map of w and is denoted by Ψ(w):

Ψ(w) = Φ(QFZ(G,w)). (9)

Hence Ψ is an operator acting on the maps weighting

the edges ofG. As established by the following property,

this operator is a morphological opening.

Property 3

1. The operator Ψ is idempotent: Ψ(Ψ(w)) = Ψ(w);
2. the operator Ψ is anti-extensive: Ψ(w) ≤ w; and
3. the operator Ψ is increasing: for any map w′ that

weights the edges of G, if w ≥ w′, then we

have Ψ(w) ≥ Ψ(w′).

Similar operators, settled in di�erent frameworks,

are studied under several names: ultrametric watershed

[31], class opening [21], ultrametric opening [24]

or subdominant ultrametric [34] when the complete

graph is considered. When the considered graph G

is complete, it is known in classi�cation (see, e.g.,

[34]) that this operator is linked to the minimum

spanning tree of (G,w). The next section proposes a

generalization of this link.

6 Minimum spanning trees

Two distinct maps that weight the edges of the same

graph (see, e.g., the maps of Figures 4(b) and 5(a))

can induce the same hierarchy of quasi-�at zones.

Therefore, in this case, one can guess that some of

the edge weights do not convey any useful information

with respect to the associated quasi-�at zones hierarchy.

More generally, in order to represent a hierarchy by a

simple (i.e., easy to handle) edge-weighted graph with

a low level of redundancy, it is interesting to consider

the following problem:

(P3) given an edge-weighted graph (G,w), �nd a

minimal subgraph X v G such that the quasi-

�at zones hierarchies of G and of X are the same.

The main result of this section, namely Theorem 4,

provides the set of all solutions to problem (P3):
the minimum spanning trees of (G,w). The minimum

spanning tree problem is one of the most typical and

well-known problems of combinatorial optimization (see

[8]) and Theorem 4 provides, as far as we know, a

new characterization of minimum spanning trees based
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on the quasi-�at zones hierarchies as used in image

processing.

Let X be a subgraph of G. The weight of X with

respect to w is the sum of the weights of all the edges

in E(X). The subgraph X is a minimum spanning tree

(MST) of (G,w) if:

1. X is connected; and

2. V (X) = V ; and

3. the weight of X is less than or equal to the weight of

any subgraph Y of G satisfying (1) and (2) (i.e., Y

is a connected subgraph of G whose vertex set is V ).

For instance, a MST of the graph shown in

Figure 4(b) is presented in Figure 6(a).

Theorem 4 A subgraph X of G is a MST of (G,w) if

and only if the two following statements hold true:

1. the quasi-�at zones hierarchies of X and of G are

the same; and

2. the graph X is minimal for statement 1, i.e., for any

subgraph Y of X, if the quasi-�at zones hierarchy

of Y for w is the one of G for w, then we have Y =
X.

Theorem 4 (statement 1) indicates that the quasi-

�at zones hierarchy of a graph and of its MSTs are

identical. Note that statement 1 appeared in [13]

but Theorem 4 completes the result of [13]. Indeed,

Theorem 4 indicates that there is no proper subgraph of

a MST that induces the same quasi-�at zones hierarchy

as the initial weighted graph. Thus, a MST of the

initial graph is a solution to problem (P3), providing
a minimal graph representation of the quasi-�at zones

hierarchy of (G,w), or more generally by Theorem 1 of

any connected hierarchy. More remarkably, the converse

is also true: a minimal representation of a hierarchy in

the sense of (P3) is necessarily a MST of the original

graph. To the best of our knowledge, this result has not

been stated before.

For instance, the level sets, level graphs and level

partitions of the MST X (Figure 6(a)) of the weighted

graph (G,w) (Figure 4) are depicted in Figures 6(b),

(c), (d). It can be observed that the level partitions ofX

are indeed the same as those of G. Thus the quasi-�at

zones hierarchies of X and G are the same.

7 Saliency map algorithms

In this section, we study algorithms for computing

the saliency map of a hierarchy and for computing

the saliency map of a map (i.e. for computing the

result of the opening Ψ). We start by considering a

0

0

0 0

0 0

2

13

4

25

(a) (b) (c) (d)

Fig. 6 Illustration of a minimum spanning tree and of its quasi-
�at zones hierarchy. (a) A minimum spanning tree X (black edges
and black circled vertices) of the weighted graph of Figure 4(b);
(b, c, d) the 1- , 2-, and 3-level graphs of X. The vertices are
colored according to the associated 1-, 2-, and 3-level partitions
of X: in each sub�gure, two vertices belonging to the same
connected components have the same color.

naive approach before providing e�cient (linear-time)

algorithms.

Using Equation (5) straightforwardly, to obtain the

saliency map Φ(H) of a hierarchy H = (P0, . . . ,P`),
one can proceed in two steps:

i) for every level λ of the hierarchy, compute the

cut φ(Pλ) of the partition Pλ at level λ; and

ii) for every edge u of the graph G, set the value

of Φ(H)(u) to the maximum level λ such that u

belongs to φ(Pλ).

In order to perform step i), a naive approach consists

in deciding for each level λ and for each edge u

of G whether u belongs to the cut φ(Pλ) or not. For

performing step ii), one can check for every edge u of

the graph and for every level λ if u belongs to φ(Pλ)
and set the value Φ(H)(u) to the maximum value such

that this property holds true. Thus, since the hierarchy

contains `+ 1 levels, the time complexity of this naive

saliency map algorithm is then at least O(` × |E|).
Note that, we can have a hierarchy of depth ` = |V |
where any two levels are distinct. The time complexity

of the naive algorithm is then O(|V | × |E|). In the

next paragraphs, we present a linear-time (O(|V | +
|E|)) algorithm for computing the saliency map of a

hierarchy and a quasi-linear time algorithm to compute

the saliency map of a map. To this end, we consider the

dual characterization (Equation (6)) of a saliency map.

Given a hierarchy H, Equation (6) states that the

weight of an edge linking x and y for the saliency map

of H is associated to the lowest index of a partition

for which x and y belongs to the same region. When

a hierarchy H is stored as a tree data structure, such

as e.g. the dendrogram of Figure 3, this index can be

obtained by �nding the index of the least common

ancestor of {x} and {y} in the tree. The problem of

�nding the least common ancestor of two nodes of

a tree is notably studied in [5]. In particular, after

a preprocessing of the tree, �nding the least-common

ancestor of any two nodes can be done in constant
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time. Thus, an e�cient algorithm for computing a

saliency map consists of a preprocessing of the tree-

based representation of the hierarchy followed by the

computation of the saliency map value of each edge.

Algorithm 1, given below, provides a precise description

of this process. The functions LCAPreprocess and LCA

called in Algorithm 1 correspond to the preprocessing of

the tree and to the least common ancestor computation

as described in [5]. The preprocessing step runs in

linear time with respect to the number of nodes of

the considered tree. The tree-based representation of a

hierarchy on V is made of at most 2|V | − 1 nodes since

a hierarchy on V contains at most 2|V | − 1 distinct

regions: |V | singletons and |V | − 1 regions built from

merging two regions of lower levels (see e.g. [32]). Thus,

the preprocessing step runs in O(|V |) time complexity.

The main loop consists of repeating constant time

operations for each edge of the graph. Thus, it runs

in O(|E|) time complexity. Hence, the overall time-

complexity is O(|V | + |E|). Compared to the naive

approach, the proposed strategy allows us to reduce

the time complexity for computing a saliency map from

quadratic O(|V | × |E|) to linear O(|V |+ |E|).

Algorithm 1: Saliency map.

Data: A connected graph G = (V,E), the tree-based
representation T of a hierarchy H on V , and an
array level that maps to every node of T its height
(which is also the level at which the corresponding
region �rst appears in the hierarchy).

Result: The saliency map S = Φ(H) of the hierarchy H.
1 LCAPreprocess(T);
2 foreach edge {x, y} in E do

3 S[{x, y}] := level[LCA(T, {x}, {y})] -1;

Following the de�nition of the opening Ψ given

in Equation (9), in order to compute the saliency

map Ψ(w) of a given map w, one can proceed in two

steps:

i) build the quasi-�at zones hierarchy H =
QFZ(G,w) of G for w; and

ii) compute the saliency map Ψ(w) = Φ(H).

On the basis of [13], step i) can be performed with

the quasi-linear time algorithm shown in [32] and step

ii) can be performed in linear time as proposed in the

previous paragraph. Thus, the overall time complexity

of this algorithm is quasi-linear with respect to the

size |E|+ |V | of the graph G.
The algorithm sketched in [31], based on [9], for

computing the saliency map of a given map w has

the same complexity as the algorithm proposed above.

However, the algorithm of [31] is more complicated

since it requires to compute the topological watershed

of the map. This involves a component tree (a data

structure which is more complicated than the quasi-

�at zones hierarchy in the sense of [13]), a structure for

computing least common ancestors, and a hierarchical

queue [9], which is not needed by the above algorithm.

Hence, as far as we know, the algorithm presented in

this section is the simplest algorithm for computing

a saliency map. It is also the most e�cient both

from memory and execution-time points of view. An

implementation in C of this algorithm is available at

perso.esiee.fr/~dpt-it/sm.

8 Illustrations

In this section, we show with several practical

examples how one can take advantage of having several

representations for a same hierarchy. The two �rst

illustrations present algorithms (and their results) to

build interesting hierarchies of image segmentations.

These algorithms rely on the links between hierarchies,

MST, and saliency maps shown in this article. The

third illustration consider saliency maps in order

to design operations on hierarchies. Then, the last

illustration shows that hierarchical image segmentation

methods can be used for the hierarchical classi�cation

of non-image data. More precisely, in Section 8.1, the

framework of hierarchical minimum spanning forests

and watersheds is recalled and illustrated on images and

3-dimensional meshes. Then, an algorithm to compute

these hierarchies is sketched. In Section 8.2, we brie�y

present (more details are provided in [18]) how the

proposed framework can be used to hierarchicalize some

well known image segmentation methods which are

originally not hierarchical. In Section 8.3, saliency maps

are used to e�ciently combine hierarchies that features

di�erent aspects of a same image. Finally, in Section 8.4,

we show that hierarchical watersheds can be used to

perform a hierarchical classi�cation of non-image data.

In particular, the Knuth Miles dataset (i.e., a set of

128 American cities with demographic and position

information) is analyzed.

8.1 Hierarchical minimum spanning forests and

watersheds

Minimum spanning forests can be used for marker-

based segmentation [10]. Given an edge-weighted graph

over the set of points to be studied (e.g., the pixels

of an image) and a subset of points that mark

the objects of interest, the problem is to �nd a

spanning forest of minimum total weight such that
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each connected component is rooted in (i.e., contains

exactly) one marker. The segmentation is then obtained

as the connected components partition of the minimum

spanning forest. The resulting segmentation is therefore

optimal in the sense of minimum spanning forests. If

the markers are ranked by importance, it is possible to

obtain a series of nested MSF such that the k-th MSF

is rooted in the k-most important markers according

to the ranking. Thus, one can obtain a series of nested

partitions, hence a hierarchy of partitions as de�ned in

this article, where every partition is optimal. Such kind

of hierarchies are studied in [11,13,32].

A usual choice in morphology is to consider the

regional minima of the weight map as markers. Indeed,

in this case, minimum spanning forest partitions are

watershed segmentations de�ned by the drop of water

principle [10]. The minima are often ranked according

to some regional attributes called extinction values [46].

Extinction values can be computed from the component

tree [41] of the weight map or directly from its quasi-�at

zones hierarchy. Typical attributes are related to the

area of the regions, their depth (also called dynamics)

or their volume. The resulting hierarchies of partitions

are called hierarchical watersheds [28,33,11]. Figure 7

displays hierarchical watersheds of three images. For

each image, two hierarchies are computed: for the �rst

one, the minima are ranked with an area attribute and,

for the second one, they are ranked by a dynamics

attribute. Figure 8 shows the application of the same

method for the segmentation of the surface of a 3D

object represented as a mesh. The vertices of the

considered graph are the triangles of the mesh and

two vertices are linked by an edge if the corresponding

triangles share a common side. The edges are weighted

thanks to a curvature function.

In order to compute hierarchical watershed, a key

idea of the algorithms in [11,32] is to compute a weight

map whose quasi-�at zones hierarchy is the desired

hierarchical watershed segmentation. This allows the

time complexity to be reduced compared to a direct

computation of the hierarchy. Therefore, the theoretical

results of this article constitute a necessary basis

to build and to justify the algorithms presented in

the aforementioned articles. As far as we know the

investigation of these basis was lacking before the

present article.

Let us brie�y sketched the main steps of the

algorithm presented in [13,32].

1. Given the edge-weighted graph (G,w), the �rst step
consists of computing a binary partition tree by

altitude ordering, denoted by BPTAO for short in

the following. This structure is simply the hierarchy

of partitions of V obtained during Kruskal minimum

spanning tree algorithm (see e.g.[8]). We initially

consider a partition into singletons. Then, when an

edge is selected by Kruskal algorithm, we build the

next level of the hierarchy by merging the largest

regions containing the vertices of the selected edge.

In terms of tree, the newly created region is a new

node of the BPTAO, which becomes the parent of

the two nodes associated to the merged regions. At

the end of the algorithm, the obtained BPTAO is a

tree whose non-leaf nodes correspond to the edges of

the minimum spanning tree T produced by Kruskal

algorithm. It has been shown that, if needed, the

quasi-�at zones can be straightforwardly recovered

from this BPTAO. At this step, we take advantage

of the link between MSTs and quasi-�at zones

established by Theorem 4.

2. From this BPTAO the minima of the weight-map

are identi�ed and regional attributes as well as

extinction values of the minima can be computed.

For instance, computing area attribute requires only

to traverse the BPTAO once from the leaves to the

root and a second traversal of the tree, from the

root to the leaves, allows extinction values to be

obtained.

3. Once extinction values of the minima are obtained,

they can be extended to all nodes of the tree:

the extinction of a non-leaf node being the highest

extinction value of its descendants. These values can

be computed by traversing the tree once more from

the leaves to the root. At steps 2 and 3, we only

work on the direct tree-based representation of the

initial hierarchy.

4. Then, we set the persistence of each non-leaf node to

be the minimum of the extinction of its two children.

Thus, we end up with one persistence for each

non-leaf node of the BPTAO. Since BPTAO non-

leaf nodes correspond to the edges of the minimum

spanning tree, we end up with one persistence value

for each edge of the minimum spanning tree. In

other words, we have produced a new weight map p

(by persistence values) for the edges of the minimum

spanning tree T .

5. The hierarchical watershed is simply the quasi-�at

zones hierarchy of T for the map p. At steps 4

and 5, the new hierarchy of watersheds is built by

�rst considering its saliency map (step 4) before

explicitly computing the hierarchy (step 5). Hence,

at these steps, we take advantage of the links

between saliency maps and hierarchies established

by Theorems 1 and 2.
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Fig. 7 First column: three color images; second and third columns: hierarchies of watersheds (saliency maps) driven by area attribute
and by dynamics attribute respectively.

8.2 Hierarchizing graph-based image segmentation

algorithms relying on a region dissimilarity: the case

of the Felzenszwalb-Huttenlocher method

In the applicative companion article [18], a generic

algorithm that builds a new kind of hierarchy of

image segmentations is proposed. The main idea of

this algorithm consists of transforming a �rst hierarchy

into a second one obtained by hierarchically grouping

the regions of the �rst one according to a given

dissimilarity measure, called an observation scale,

between regions. The hierarchies considered by this

method are all connected. They can therefore be

handle, as established by the framework of this article,

as dendrograms, saliency maps or weighted trees.

Hence, instead of explicitly transforming hierarchies,

our algorithm transforms a �rst weighted spanning tree

into a second one. More precisely, it �re-weights� (i.e.,
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Fig. 8 Illustration of the segmentation of the surface of a 3D object. First row: a triangular mesh, a crop on its associated dual graph,
and its pseudo-inverse curvature. Second row: a saliency map representing a hierarchical segmentation of the surface. A framework for
the indexing and retrieval of ancient artwork 3D models, using shape descriptors adapted to the surface regions of the segmentations,
is detailed in [38]. The mesh is provided by the French Museum Center for Research and Restoration (C2RMF, Le Louvre, Paris).

produces a new weight function for) a MST associated

to the �rst hierarchy. The new weights are obtained by

considering the edges of the MST in increasing order of

the weights associated to the �rst hierarchy. The new

weights are computed based on dissimilarity measures

between regions.

Despite the appearance, the segmentation method

proposed in [15] is not hierarchical (see counter

examples of the hierarchical properties of [15] in [18]).

Thus, we use the generic algorithm described above

to produce a hierarchical segmentation based on the

observation scale measure proposed by [15]. In [18], we

show that the hierarchical method compares favorably

to its non hierarchical counterpart. Figure 2 presents

some saliency maps obtained with the hierarchical

version of the method.

8.3 Combinations of hierarchies

One di�culty in the design of many segmentation

methods relies on combining di�erent kinds of measures

that are not necessarily homogeneous (e.g., the

Mumford and Shah functional integrates photometric

and boundary lengths measures). The same di�culty

can occur with hierarchical segmentations, where

di�erent methods can capture distinct properties. With

the hierarchical method presented in Section 8.1, the

use of di�erent attributes leads to hierarchies featuring

di�erent aspects of the image. For instance, with the

area attribute, at the highest levels of the hierarchy,

small regions are vanished but low contrasted regions

can remain. A high level of the area based hierarchies

of Figure 7 is represented in the �rst row of Figure 9.

On the other hand, with the dynamics attribute,

the highest levels only contain contrasted regions but

very small regions may remain. The second column

of Figure 9 presents a high level of each of the

dynamics based hierarchy shown in Figure 7. Attributes

combining contrast and area can be designed, but such

attributes would probably not be increasing. Attributes

that are not increasing are known to be di�cult to

handle [41,45] and to lead to hierarchies lacking some



Hierarchies and graphs 13

Fig. 9 First and second column: one level of the hierarchies depicted in Figure 7; third column: one level of the hierarchies depicted
in Figure 10. First (resp. second, and third) row: the partitions contain 500 (resp. 75, and 250) regions.

important stability properties related to morphological

�ltering (see Theorem 11 in [11] for a link between

morphological �ltering and hierarchical watersheds).

Another approach, which we investigate in this section,

consists of combining hierarchies. To this end, we work

on saliency maps instead of on the direct representation

of the hierarchy. This approach was pioneered in [14] in

the framework of graphs and with illustration in image

segmentation. It was also investigated in [21] in the

framework of Jordan nets in the Euclidean 2D plane R2,

with applications to fusion of ground truths. In this

section we explicit this later approach in the framework

of graphs, which allows, in particular, for processing

images of arbitrary dimension, and we provide an

e�cient quasi-linear algorithm for the combinations of

hierarchy by in�mum, by supremum, and by average.
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8.3.1 Combination by in�mum and supremum

In order to investigate the combinations of hierarchies

by in�mum and supremum, we �rst equip hierarchies

with a lattice structure.

If a partition P is a re�nement of a partition P′,
we say that P is �ner than P′ and that P′ is coarser

than P. The set of all partitions of V , together with

the relation �is coarser than�, is a lattice. The in�mum

(resp. supremum) of two partitions is the coarsest (resp.

�nest) partition which is �ner (resp. coarser) than

the two original partitions. We can extend the order

relation �is coarser than� on partitions to the hierarchies

of a given depth: a hierarchy is coarser than another

if, at every level, the partition of the �rst hierarchy

is coarser than the partition of the second hierarchy.

With this setting, the in�mum (resp. supremum) of two

hierarchies is given by considering, at every level, the

in�mum (resp. supremum) of the partitions of the two

hierarchies.

Based on the de�nition, to compute the in�mum

and the supremum of two hierarchies, one needs to

compute the in�mum and supremum of two partitions

for every level of the hierarchy, which cannot be done

e�ciently in a direct manner. However, computation

becomes e�cient when saliency maps are considered.

Indeed, the in�mum H1 fH2 and supremum H1 gH2

of two hierarchies H1 and H2 are given by the quasi-

�at zones hierarchy of the supremum and in�mum,

respectively, of the saliency maps of H1 and of H2:

H1 fH2 = QFZ(G,Φ(H1) ∨ Φ(H2)); (10)

and

H1 gH2 = QFZ(G,Φ(H1) ∧ Φ(H2)), (11)

where for every edge u in E we have:

[Φ(H1) ∨ Φ(H2)](u) = min{Φ(H1)(u), Φ(H2)(u)}; (12)

and

[Φ(H1) ∧ Φ(H2)](u) = max{Φ(H1)(u), Φ(H2)(u)}. (13)

Hence, to compute the in�mum or supremum of H1

and H2, we need to compute two saliency maps, the

edge-wise maximum or minimum of the two saliency

maps and the quasi-�at zones hierarchy of the resulting

map. Using the algorithms introduced in Section 7, the

�rst and last steps can be done in linear and quasi-linear

time with respect to the size of G whereas the edge-wise

maximum and minimum of two functions can also be

done straightforwardly in linear time with respect to

the number of edges. Hence, the in�mum or supremum

of two hierarchies can be obtained in quasi-linear time

with respect to the size of the graph.

It can be seen that the saliency map of the in�mum

of H1 and H2 is simply the supremum of Φ(H1)
and Φ(H2). On the other hand, the saliency map of the

supremum of H1 and H2 is not the in�mum of Φ(H1)
and Φ(H2), but it is the saliency map of Φ(H1)∧Φ(H2),
namely Ψ(Φ(H1) ∧ Φ(H2)).

In practice the combination of two hierarchies

by in�mum does not lead to interesting results. For

instance, the combination of the area and dynamics

hierarchies shown in Figure 7 lead to hierarchies

featuring the drawbacks of both initial hierarchies: at

high levels of the resulting hierarchies, some small

regions as well as some uncontrasted ones can be

found. In order to obtain a hierarchy whose high level

contains only large and contrasted regions, combination

by supremum can be considered. However, in the next

section, we see that, following a similar approach,

hierarchies can be combined by averaging saliency

maps. On the tested images, the best results (visually)

are obtained by this last technique.

8.3.2 Combination by average

We de�ne the combination by average of two

hierarchies H1 and H2, denoted by AVG(H1,H2), as
the quasi-�at zones hierarchy of the average of the

saliency maps of H1 and of H2:

AVG(H1,H2) = QFZ(G, avg(Φ(H1), Φ(H2))), (14)

where for every edge u in E we have:

[avg(Φ(H1), Φ(H2))](u) =
1
2
(Φ(H1)(u) + Φ(H2)(u)).

(15)

Figure 10 presents, for each image of Figure 7 the

saliency maps of the combination by average of the

hierarchies obtained with the area and depth attributes

(second and third column of Figure 7). One level of each

of these hierarchies is represented in the third row of

Figure 9

In fact, any combination of the saliency maps of

two (or more) hierarchies can be used before a possible

extraction of a quasi �at zone hierarchy. More precisely,

in Equation (14), one can replace the function avg be

any function from F × F into F , where F denotes the

set of all maps weighting the edges of G. Exploring and

determining precisely the combinations that lead to the

best practical results is beyond the scope of this article

and is left for future work.
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Fig. 10 Hierarchies of partitions (depicted as saliency maps)
obtained from the images of Figure 7 (�rst column). Each
hierarchy is the combination by average of the hierarchical
watersheds by area attribute (second column of Figure 7) and
by dynamics attribute (third column of Figure 7) obtained from
the images of Figure 7 (�rst column).

8.4 Geographic data processing

We �nish this section by an illustration where the

proposed framework is used for geographic data

analysis. The goal is to illustrate on a small example

that the catchment areas of cities could be studied with

a hierarchical method coming from the �eld of image

analysis, namely hierarchical watersheds.

We consider the Knuth Miles dataset [1] that

contains the position and population of 128 US cities.

From this, we build a graph where each vertex is a

city and where two neighboring cities are connected

by a weighted edge. The weight of an edge is the

Euclidean distance between two inter-connected cities.

The edges are obtained from the Voronoi diagram

of the cities. Two cities are said to be neighbor if

the corresponding regions of the Voronoi diagram are

adjacent. Then, a morphological hierarchical analysis

is performed as described in Section 8.1 with the area

attribute. However, in this experiment, the area of a

vertex is given by the population of the corresponding

city and the area of a region is then the sum of the

populations of the cities that belong to this region. The

morphological analysis provides:

1. a hierarchy of optimal partitions of the cities such

that at a given level of the hierarchy there are

only regions with more than a certain number of

inhabitants (see the saliency map in Figure 11 and

a projection of the saliency map on a geographical

map in Figure 13); and

2. a ranking (see Figure 14) of the cities by extinction

values. In our case the extinction value of a city can

be thought of as the number of inhabitants of its

catchment area, meaning that, following our model,

if the extinction value of a city is n, then at most n

inhabitants can be attracted by this city. Thus, if

you consider the level of the hierarchy corresponding

to n inhabitants, each regions contains more than n

inhabitants and exactly one city with an extinction

value greater than n. The extinction values of the

cities are graphically presented on a geographic map

in Figure 12.

As far as we know, apart from image segmentation

applications, representations of hierarchical clusterings

by saliency maps are not usual. In the �eld of

information visualization, a related approach consists of

spacializing the data by projecting hierarchical clusters

on an arti�cial topographical map that represents some

relations between the data (see e.g. [43,42]). However,

in data analysis, hierarchical clusterings are most often

represented by dendrograms. Such dendrograms (see

e.g. Figure 15) become di�cult to read when the

numbers of clusters and of levels exceed a few dozens.

Concerning the hierarchical clustering of the 128 cities

of Knuth Miles dataset, the dendrograms would be

unreadable. Someone used to read dendrograms may

take some times to get used to saliency maps because

the information is shown in a dual way. Indeed, roughly
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Fig. 11 Saliency map of a hierarchical watershed (driven by population attribute) on the Knuth Miles dataset (i.e. 128 representative
US cities with positions and populations). Each vertex is a city and two neighboring cities are linked by an edge if they share an edge
in the Voronoi diagram of the cities. The width and gray-level of an edge is the inverse of its weight in the associated saliency map.

speaking, one may say that dendrograms display

hierarchies by classes whereas saliency maps depict

their borders. From our experience, after a few minutes

and some simple explanations, saliency maps have been

found to be pretty readable. Therefore, saliency maps

could constitute an interesting tool for information

visualization. Assessing precisely how they can be used

on larger databases for which the points are not paired

to 2D positions is beyond scope of this paper but is an

interesting perspective for future work.

9 Conclusions

In this article, we study three representations for

a hierarchy of partitions: direct representation (i.e.

dendrogram), saliency map and minimum spanning

trees. We show a new bijection between hierarchies

and saliency maps and we characterize the saliency

map of a hierarchy and the minimum spanning trees

of a graph as minimal elements preserving quasi-�at

zones. In practice, these results allow us to indi�erently

handle a hierarchy by a dendrogram (the direct tree

structure given by the hierarchy), by a saliency map,

or by an edge-weighted tree. These representations

make up a toolkit for the design of hierarchical

(segmentation) methods where one can choose the most

convenient representation or the one that leads to the

most e�cient implementation for a given particular

operation. The results of this paper were used in [17] to

provide a framework for hierarchizing a certain class

of non-hierarchical methods. We study in particular

a hierarchicalization of [15]. In [18], we provide more

details on this method as well as a precise practical

evaluation of the gain of the hierarchical method with

respect to its non-hierarchical counterpart. On the

tested cases (Grabcut [39], Weizmann [2], and Berkeley

[26] datasets), the hierarchical method is always as good

as and is sometimes better than the non-hierarchical

one. Furthermore, the hierarchical method provides all

the scales in one run, which is about 2.5 faster than

obtaining 50 segmentations, with 50 distinct parameter

values, with the non-hierarchical method.
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Fig. 12 Same as Figure 11 but the size of the vertices and of the labels are given by the extinction value (for the population attribute)
of the cities.

Another important aspect of the present work

is to underline and to precise the close link that

exists between classi�cation and hierarchical image

segmentation. Whereas classi�cation methods were

used as image segmentation tools for a long time, our

results incite us to use hierarchical methods initially

designed for image segmentation for processing non

image data. We showed preliminary results of the

use of hierarchical watersheds and saliency maps for

analyzing and visualizing a dataset of cities. With the

emergence of the so-called �big-data�, exploring the

analysis of large databases with morphological tools

seems a promising direction for future research.
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A Proof of Theorem 1

Proof In order to establish Theorem 1, we will prove that the
two following statements hold true:

(1) for any connected hierarchy H = (P0, . . . ,P`), we have:
Φ−1(Φ(H)) = QG(Φ(H)) = H; and

(2) for any saliency map w, we have Φ(Φ−1(w)) = Φ(QG(w)) =
w.

(1) Let QG(Φ(H)) = (P′0, . . . ,P
′
`). Since H and QG(Φ(H))

are complete hierarchies, we have P0 = P′0. Thus, in order to
complete the proof of (1), we will establish that Pλ = P′λ, for
any λ ∈ {1, . . . , `}. let λ ∈ {1, . . . , `} and let x and y be two
points in V . The following statements are equivalent:

i [P′i]x = [P′i]y ;
ii x and y belong to the same connected component of
Φ(H)Vλ (G) (by Equation (3));

iii there exists a path π = (x = x0, . . . , xk = y) from x to y in
the graph Φ(H)Vλ (G);

iv there exists a path π = (x = x0, . . . , xk = y) from x to y in
the graph (V, {u ∈ E | Φ(H)(u) < λ} (by Equations (2) and
(1));

v there exists a path π = (x = x0, . . . , xk = y) in G from x

to y such that Φ(H)({xi−1, xi}) < λ, for any i ∈ {1, . . . , k};
vi there exists a path π = (x = x0, . . . , xk = y) in G from x to y

such that max
n
j ∈ {0, . . . , `} | [Pj ]xi−1

6= [Pj ]xi

o
< λ, for

any i ∈ {1, . . . , k} (by Equations (5) and (4));
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Fig. 13 Saliency map of a hierarchical watershed (driven by population attribute) on the Knuth Miles dataset (i.e. 128 representative
US cities with positions and populations). The saliency weights are projected on the edges of the Voronoi diagram of the cities.

vii there exists a path π = (x = x0, . . . , xk = y) in G from x

to y such that [Pλ]xi−1
= [Pλ]xi

, for any i ∈ {1, . . . , k};
viii [Pλ]x = [Pλ]y (since [P]λ is a connected partition for G).

Thus, since statements i. and viii. are equivalent, we deduce
that Pλ = P′λ, which completes the proof of statement (1).

(2) Let w be a saliency map. By the de�nition of a saliency
map, there exists a hierarchy H such that w = Φ(H). By
statement 1., we have H = Φ−1(Φ(H)). Thus, we deduce
that w = Φ(Φ−1(Φ(H))). Then, since w = Φ(H), we have w =
Φ(Φ−1(w)). ut

B Proof of Theorem 2

In order to prove Theorem 2, we �rst established the following
lemma.

Lemma 5 For any map z from E to E, the following inequality
holds true:

Φ (QFZ (G, z)) ≤ z.

Proof Let H = QFZ(G, z) = (P0, . . . ,P`). For any λ ∈
{0, . . . `}, the partition Pλ is the connected component partition
of the λ-level graph zVλ (G) of G for z. By Equation (2), we have
zVλ (G) = (V, zλ(G)), for any λ ∈ {0, . . . `}. Let u = {x, y} be
any edge in E. In order, to establish Lemma 5, it is su�cient
to prove that z(u) ≥ Φ(H)(u). For any λ ∈ {z(u) + 1, . . . , `},
the edge u belongs to zλ(G). Thus, for any λ ∈ {z(u) +
1, . . . , `}, we have [Pλ]x = [Pλ]y . By Equation (6), we deduce

that min{λ ∈ {0, . . . , `} | [Pλ]x = [Pλ]y} = Φ(H)(u)+1. Thus,

we have z(u) ≥ Φ(H)(u). ut

Proof (of Theorem 2)

1. Let us �rst prove the forward implication of Theorem 2. To
this end, let H = (P0, . . . ,P`) and let us assume that w is
the saliency map of H (i.e., w = Φ(H)). Thus, we have:
QFZ(G,w) = QFZ(G,Φ(H)).
Hence, by Theorem 1 (see, in particular, Equation (7)
which follows straightforwardly from Theorem 1), we deduce
that QFZ(G,w) = H, which establishes statement 1. Let z
be any map from E to E such that QFZ(G, z) = H and such
that z ≤ w. By Lemma 5, we have Φ(QFZ(G, z)) ≤ z. Thus,
since QFZ(G, z) = H, we deduce that Φ(H) ≤ z. Hence,
we have w ≤ z. Therefore, we conclude that w = z, which
establishes statement 2.

2. Let us now prove the backward implication of Theorem 2. To
this end, let us suppose that the map w is such that: (1) the
quasi-�at zones hierarchies for w is H (i.e., QFZ(G,w) =
H); and (2) the map w is minimal for statement 1, i.e.,
for any map w′ such that w′ ≤ w, if the quasi-�at zones
hierarchy for w′ is H, then we have w = w′. By Lemma 5, we
deduce that Φ(QFZ(G,w)) ≤ w. Thus, we have Φ(H) ≤
w. By Theorem 2 (see, in particular, Equation (7)), we
have QFZ(G,Φ(H)) = H. Thus, by de�nition of w (see in
particular statement (2)), we deduce that Φ(H) = w. ut

C Proof of Property 3

Proof

1. By Equation (9), we have:

Ψ(Ψ(w)) = Φ(QFZ(G,Φ(QFZ(G,w)))).

Hence, by Equation (7), we deduce that:

Ψ(Ψ(w)) = Φ(QFZ(G,w)).

Thus, by Equation (9), we conclude that:

Ψ(Ψ(w)) = Ψ(w).
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Feuille2

Page 1

City Pop. B. S. City Pop. B. S. City Pop. B. S.
Washington, DC 638 15280 South Bend, IN 109 118 Watertown, NY 27 27

San Francisco, CA 678 4692 San Bernardino, CA 118 118 Selma, AL 26 26

Shreveport, LA 205 2424 Springfield, OH 72 113 Steubenville, OH 26 26

Syracuse, NY 170 1620 Waterbury, CT 103 103 Twin Falls, ID 26 26

Seattle, WA 493 1416 Waco, TX 101 101 Walla Walla, WA 25 25

San Diego, CA 875 1271 Reno, NV 100 100 Vicksburg, MS 25 25

San Antonio, TX 786 836 Springfield, IL 100 100 Scottsbluff, NE 14 25

Wichita, KS 279 664 Scranton, PA 88 93 Sumter, SC 24 24

Saint Louis, MO 453 634 Saginaw, MI 77 92 Tupelo, MS 23 23

San Jose, CA 629 629 Trenton, NJ 92 92 Stevens Point, WI 22 22

Toronto, ON 599 599 Salem, OR 89 89 Staunton, VA 21 21

Toledo, OH 354 594 Santa Rosa, CA 83 83 Winchester, VA 20 20

Winnipeg, MB 564 564 Sioux City, IA 82 82 Sedalia, MO 20 20

Saint Paul, MN 270 444 Terre Haute, IN 61 81 Vincennes, IN 20 20

Sacramento, CA 275 424 Salinas, CA 80 80 Waycross, GA 19 19

Springfield, MA 152 416 Saint Joseph, MO 76 76 Rock Springs, WY 19 19

Vancouver, BC 414 414 Waterloo, IA 75 75 Rutland, VT 18 18

Rockford, IL 139 387 Utica, NY 75 75 Wenatchee, WA 17 17

Tampa, FL 271 382 Santa Barbara, CA 74 74 Salisbury, MD 16 16

Tulsa, OK 360 368 San Angelo, TX 73 73 Watertown, SD 15 15

Reading, PA 78 366 Wilmington, DE 70 70 Sheridan, WY 15 15

Tucson, AZ 330 330 Tyler, TX 70 70 Traverse City, MI 15 15

Santa Ana, CA 204 322 Wheeling, WV 43 69 Sault Sainte Marie, MI 14 14

Savannah, GA 141 296 Schenectady, NY 67 67 Uniontown, PA 14 14

Winston-Salem, NC 131 252 Waukegan, IL 67 67 Williston, ND 13 13

Rochester, NY 241 241 Yakima, WA 49 66 Yankton, SD 12 12

Salt Lake City, UT 163 228 Wausau, WI 32 63 Warren, PA 12 12

Richmond, VA 219 219 West Palm Beach, FL 63 63 Saint Augustine, FL 11 11

Youngstown, OH 115 209 Rochester, MN 57 57 Sterling, CO 11 11

Sioux Falls, SD 81 197 Valdosta, GA 37 56 Ravenna, OH 11 11

Topeka, KS 115 191 Victoria, TX 50 50 Red Bluff, CA 9 11

Wilmington, NC 139 180 Sarasota, FL 48 48 Trinidad, CO 9 9

Regina, SK 162 175 Santa Fe, NM 48 48 Saint Joseph, MI 9 9

Spokane, WA 171 171 Saint Cloud, MN 42 42 Seminole, OK 8 8

Salida, CO 44 165 Salina, KS 41 41 Saint Johnsbury, VT 7 7

Worcester, MA 161 161 Richmond, IN 41 41 Rhinelander, WI 7 7

Tacoma, WA 158 158 Rocky Mount, NC 41 41 Swainsboro, GA 7 7

Springfield, MO 133 153 Roswell, NM 39 39 Valley City, ND 7 7

Stockton, CA 149 149 Williamsport, PA 33 33 Williamson, WV 5 5

Tallahassee, FL 81 137 Sandusky, OH 31 31 Stroudsburg, PA 5 5

Wichita Falls, TX 94 124 Texarkana, TX 31 31 Richfield, UT 5 5

Tuscaloosa, AL 75 124 Sherman, TX 30 30 Wisconsin Dells, WI 2 2

Roanoke, VA 100 121 Weed, CA 2 2

Fig. 14 Ranking (from top to bottom and left to right) of the Knuth Miles dataset cities according to catchment basins size (i.e.
extinction value pf the cities by population attribute).

2. Lemma 5.

3. Let w′ be a map from E to E such that w′ ≤ w.
Let u = {x, y} be any edge in E, we are going to
prove that [Ψ(w′)](u) ≤ [Ψ(w)](u). By Equation (9), we
have Ψ(w′) = Φ(QFZ(G,w′)) and Ψ(w) = Φ(QFZ(G,w)).
Let QFZ(G,w′) =
(P′0, . . . ,P

′
|E|) and QFZ(G,w) = (P0, . . . ,P|E|). Let k =

[Ψ(w′)](u). From Equation (6), we deduce that [Pk+1]x =
[Pk+1]y . By Equation (3), we have Pk+1 = C(wVk+1(G)).

Hence, there exists a path (x0, . . . , x`) such that x0 =
x, x` = y, and w({xi−1, xi}) < k + 1 for any i ∈ {1, . . . , `}.
Since w′ ≤ w, we also have w′({xi−1, xi}) < k + 1 for

any i ∈ {1, . . . , `}. Thus, we have
h
P′k+1

i
x

=
h
P′k+1

i
y
.

Hence, by Equation (6), we have [Φ (QFZ(w′))] (u) ≤ k.
Thus, we have, [Ψ(w′)](u) ≤ [Ψ(w)](u). ut

D Proof of Theorem 4

In order to establish the equivalence Theorem 4, we �rst prove
the backward implication (Property 7) and then the forward
implication (Property 8)

Before establishing Properties 7 and 8, let us state the
following propositions which can be derived from classical
properties of trees.

Let S be a subset of V and let {x, y} be an edge of G. We
say that {x, y} is outgoing from S if we have x ∈ S and x ∈ V \S
(or y ∈ S and x ∈ V \ S).

Lemma 6 Let X be a connected subgraph of G. If, for any subset
S of V , there is an edge u of X outgoing from S such that the
weight of u is less than or equal to the weight of any edge of G
outgoing from S, then, there exists a subgraph of X that is an
MST of (G,w)

Let X be a graph and let π = (x0, . . . , xk) be a path in X.
We say that π is a simple path if for any two distinct i and j in
{0, . . . , k}, we have xi 6= xj . If x and y be two vertices of X, there
exists a path from x to y in X if and only if there is a simple
path in X from x to y.
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Fig. 15 Dendrogram representing the hierarchy obtained by morphological analysis of the Knuth Miles dataset.

Property 7 Let X be an MST of (G,w). Then, the two
following statements hold true:

1. the quasi �at zones hierarchies of X and of G are the same;
and

2. the graph X is minimal for Theorem 4.1, i.e., for any
subgraph Y of X, if the quasi �at zones hierarchy of Y for w
is the one of G for w, then we have Y = X.

Proof Let H = (P0, . . . ,P`) = and H′ = (P′0, . . . ,P
′
`) be the

quasi-�at zones hierarchy of G and X respectively. It can be
seen that P0 = P′0 since H and H′ are complete hierarchies.
Let λ ∈ {1, . . . , `} and let x and y be two points of V . In order

to complete the proof of Theorem 4.1 we are going to establish
that:

i) if
ˆ
P′λ
˜
x

=
ˆ
P′λ
˜
y
, then [Pλ]x = [Pλ]y ;

ii) if [Pλ]x = [Pλ]y , then
ˆ
P′λ
˜
x

=
ˆ
P′λ
˜
y

In order to establish i), we assume that
ˆ
P′λ
˜
x

=
ˆ
P′λ
˜
y
and

we will prove that [Pλ]x = [Pλ]y . Since
ˆ
P′λ
˜
x

=
ˆ
P′λ
˜
y
, by

de�nition of the quasi �at zones hierarchy of X, there exists a
path π = (x0, . . . , xk) in X such that x0 = x, xk = y, and
w({xi−1, xi}) < λ, for any i ∈ {1, . . . , k}. Since X is a subgraph
of G, the path π is also a path in G. Thus, the vertices x and y
belong to the same connected component of the λ-level graph
of G. Hence, we have

ˆ
P′λ
˜
x

=
ˆ
P′λ
˜
x
.
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We now establish ii) by contradiction. Therefore, we assume
that [P′λ]x 6= [P′λ]y and we will prove that [Pλ]x 6= [Pλ]y .
Since X is a spanning tree there exists a simple path π =
(x0, . . . , xk) such that x0 = x and y0 = y. As [P′λ]x 6= [P′λ]y ,
there exists an index i ∈ {1, . . . , k} such that w({xi−1},xi

) ≥ λ.
Let j be the lowest index in {1, . . . , k} such that w({xj−1},xj

) ≥
λ. Let X′ = (V,E(X)\{{xi−1, xi}}) and let C be the connected
component of X′ that contains the vertex x. Observe that any
edge u of G which is outgoing from C is such that w(u) ≥
w({xi−1, xi}) (otherwise the graph (V,E(X′) ∪ {w}) would be
connected and of weight less than the weight of X, which is a
contradiction with the fact that X is an MST of (G,w)). Observe
also that the vertex y belongs to V \ C (otherwise X′ would be
connected and of weight strictly less that the weight of X, which
is a contradiction with the fact that X is an MST of (G,w)).
Therefore, any path in G from x to y has an edge outgoing
from C. Thus, any path in G from x to y has an edge of weight
greater than or equal to λ. Hence, the vertices x and y belong to
two distinct connected components of the λ-level graph of G and
therefore, we have [Pλ]x 6= [Pλ]y .

Let us now prove the second proposition of Property 7. Let Y
be a subgraph of X such that Y 6= X and such that the quasi-
�at zones hierarchy of Y for w is the one of G for w. Thus,
we have C(wV` (Y )) = C(wV` (G)). By de�nition of (G,w), we
have C(wV` (G)) = {V } where ` = |E|. Therefore, we also
have C(wV` (Y )) = {V }. Hence, we deduce that V (Y ) = V and
that Y is connected. Thus, we have Y = X, since X is an MST
of (G,w). ut

Property 8 Let X be a subgraph of G such that

(1) the quasi-�at zones hierarchies of X and of G are the same;
and

(2) the graph X is minimal for (1), i.e., for any subgraph Y of X,
if the quasi �at zones hierarchy of Y for w is the one of G
for w, then we have Y = X.

Then, the graph X is an MST of (G,w).

Proof (by contradiction) Let us assume that X is not an MST
of (G,w). We distinguish three cases.

i. We �rst assume that X is not connected. Then the |E|-level
graph of X is not connected. Thus, the |E|-level partition
of X is not trivial, which is a contradiction with the fact
that quasi �at zones hierarchies of X and of G are the same
since G is connected and E is the range of w.

ii. We now assume that X is connected and that there exists an
MST Y of (G,w) which is a proper subgraph of X. Then, by
Property 7, the quasi-�at zones hierarchies of Y and of G are
the same, which is a contradiction with (2).

iii. We �nally assume that X is connected and that there is no
subgraph of X which is an MST for w. By the contraposition
of Lemma 6, we deduce that there is a subset S of V and
an edge v = {x, y} in E \ E(X) outgoing from S and of
weight less than the weight of any edge of X outgoing from S.
Let λ = w(v) + 1. It can be seen that x and y belong to the
same region of the λ-level partition of G. In order to complete
the proof, we will show that x and y do not belong to the
same λ-level partition of X, which constitutes a contradiction
with statement (1). To this end, we are going to show that
there is no simple path (hence, from the observation above
Property 7, no path) in the λ-level graph of X from x to y
. Since any path in the λ-level graph of X is a path in X, it
is su�cient to prove that any simple path π = (x0, . . . , xk)
in X such that x0 = x and xk = y is not a path in the λ-
level graph of X. Without without loss of generality, let us
assume that x belongs to S and that y belongs to V \ S.
Thus, there is an index i ∈ {1, . . . , k} such that xi−1 belongs

to S and xi belongs to V \ S. Since π is a path in X, the
edge u = {xi−1, xi} belongs to E(X). Therefore, u is an
edge of X outgoing from S. Hence, by de�nition of v, the
weight of u is greater than the weight v. Thus, the path π is
not a path in λ-level graph of X. ut
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