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Critical Crossover Functions for Simple Fluids:
Non-Analytical Scaling Determination of the Ising-Like
Crossover Parameter

Yves Garrabos1,2 · Carole Lecoutre1,2 ·
Samuel Marre1,2 · Bernard LeNeindre3,4

Abstract A non-analytical scaling determination of the Ising-like crossover parameter is
proposed considering the critical isochore of a simple fluid at finite distance from its critical
temperature. Themean crossover functions, estimated from the bounded results of themassive

renormalization scheme in field theory applied to the
(
�2

)2
d (n) model in three dimensions

(d = 3) and scalar order parameter (n = 1), are used to formulate the corresponding
scaling equations valid in two well-defined temperature ranges from the critical temperature.
The validity range and the Ising-like nature of the corresponding crossover description are
discussed in terms of a single Ising-like scale factor characterizing the critical isochore. The
asymptotic value of this scale factor can be predicted within the Ising-like preasymptotic
domain. Unfortunately, the absence of precise experimental data in such a close vicinity of
the critical point leads the direct testing impossible. A contrario, from our scaling equations
and the use of precise measurements performed at finite distance from the critical point, its
local value can be estimated beyond the Ising-like preasymptotic domain. This non-analytical
scaling determination only needs to make reference to the universal features estimated from
the mean crossover functions and to introduce a single master dimensionless length common
to all the simple fluids. This latter parameter guaranties the uniqueness of the physical length
unit used for the theoretical crossover functions and the fluid singular properties when the
generalized critical coordinates of the vapor-liquid critical point of each fluid are known.
Xenon case along its critical isochore is considered as a typical example to demonstrate the
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singleness of the Ising-like crossover parameter. With the measurements at finite temperature
range of the effective singular behaviors of the isothermal compressibility in the homogeneous
domain, and the vapor-liquid coexisting densities in the non homogeneous domain, our
scaling equations provide the local estimate of this crossover parameter as a function of the
temperature distance from the critical temperature. Our results compare favorably with the
single asymptotic value calculated only using four critical coordinates of xenon.

Keywords Critical crossover function · Crossover parameter · Critical isochore · Xenon

1 Introduction

It is now well-established that the universal features of one-component fluids close to their
vapor-liquid critical point are Ising-like in nature [1], i.e., conform with the singular univer-

sality close to the non-trivial fixed point of the so-called
(
φ2
)2
d=3 (n = 1)model [2–5] (d and

n are respectively the dimensions of the space and the order parameter density). These Ising-
like universal features are only related to the contributions of two relevant scaling fields and
a single irrelevant scaling field [6,7]. The leading singular behaviors [5] are then governed
by the universal values [8] of two independent critical exponents, while the contribution
of the confluent corrections to scaling is governed by the universal lowest value [8] of the
confluent exponent, noted� below. This simplest theoretical asymptotic description, strictly
valid within the so-called Ising-like preasymptotic domain (PAD), is predicted by the renor-
malization group theory from the estimation of the classical-to-critical crossover functions
[9] along the renormalized trajectory which joints the trivial (Gaussian) fixed point to the
non-trivial (Wilson–Fisher) fixed point (for details see [5]). As a main result of present con-
cern, the asymptotic singular behavior of the fluid property P∗

s,expt along the critical isochore
can be approximated by its following restricted two-term form of each infinite Wegner-like
expansion [10]

P∗
s,expt

(∣∣�τ ∗∣∣) = Π±
P

(∣∣�τ ∗∣∣)−πP
[
1 + a±

P

(∣∣�τ ∗∣∣)�
]

(1)

whereπP is the universal critical exponentwhich governs the Ising-like asymptotic power law
behavior of P∗

s,expt. The amplitudes Π±
P of the leading terms and a±

P of the first-order terms

of the confluent corrections depend on the selected fluid (noted f below). �τ ∗ = T
Tc

− 1
is the reduced temperature distance from the critical temperature Tc. In the case of fluid
properties interested in, we note that a generic additive background term is either subleading
with respect to the terms in Eq. (1), or is absent. In Eq. (1), the superscript ∗ labels a non-
dimensional quantity. The indices + and− indicate respectively the single, high- and the two,
low-temperature phase regions. � = ων is the universal confluent exponent. ω is the lowest
universal correction exponent related to the scaling contribution of an irrelevant field. ν is
the universal critical exponent which governs the Ising-like asymptotic power law behavior
of the correlation length ξ∗

expt.

The PAD extension where Eq. (1) is valid corresponds to |�τ ∗| ≤ L f
PAD [5]. As currently

mentioned in the literature since the 70’s,L f
PAD is a fluid-dependent parameter claimed small

(L f
PAD � 1) but generally of unknown value, except from the use of the phenomenological

master forms [11] of the mean crossover functions estimated from the massive renormaliza-
tion (MR) scheme.



Due to the universal scaling laws, only two critical exponents are independent (among
the complete {πP } set), while the lowest value of the correction exponent ω accounts for
all the confluent crossover corrections, leading to the three-exponent characterization of
the theoretical O (1) universality class. Correlatively, due to the universal combinations
and ratios between the Π±

P amplitudes (the so-called two-scale-factor universality) on the
one hand and the universal ratios between the a±

P amplitudes on the other, only two leading
asymptotic amplitudes among the complete

{
Π±

P

}
set and a single confluent amplitude among

the complete
{
a±
P

}
set make up the three fluid-dependent parameters which characterize the

Ising-like fluid behavior within the PAD. Therefore, the knowledge of L f
PAD appears as

the essential non-universal parameter to validate the three (two leading and one confluent)
amplitudes characterization along this primary critical path of each Ising-like critical fluid
[7,9,11].

Assuming the existence of the above Ising-like three-amplitude characterization, the prob-
lem of using renormalization group theory to develop the theoretical descriptions of the
crossover from the Ising-like critical behavior asymptotically close to the critical point to the
mean-field thermodynamic behavior away from the critical point has in principle been solved
about three decades ago [3,12–15]. However, for the crossover functions calculated from
the massive renormalization (MR) scheme [3], or the minimal-substraction renormalization
(MSR) scheme [12,13], as well as for the parametric forms of the scaled equations of state
[14,15], the fits [16–19] used the experimental data obtained at finite temperature distance
from Tc, i.e., in a temperature range well-beyond the PAD extension where Eq. (1) remains
valid. In such a case, the analytical backgrounds as well as the classical-to-critical crossover
behavior due to the Gaussian critical point further hindered the test of the asymptotic Ising-
like fluid behavior of Eq. (1) when approaching the non-trivial critical point. The observed
crossover behavior in one-component fluids needs to account for higher-order terms of the
Wegner-like expansions in order to carefully fit the measurements performed far away from
critical temperature. The unavoidable implicit constraint 1 � �τ ∗ > L f

PAD in the data fitting
analyses performed at finite distance from the vapor-liquid critical point, leads to the prac-
tical definition of the so-called extended asymptotic domain (EAD) L f

PAD < �τ ∗ ≤ L f
EAD

where the fit is thus claimed to be correct. In such a non-asymptotic domain, the choice of
the functional forms for fitting the data obtained within the EAD remains a puzzle for the
experimentalists whose objective is to find the fluid-dependent amplitudes characterizing
the PAD description (see Refs. [20,21] for an illustrative example). More generally, on the
basis of Wegner-like expansions alone, it still seems today difficult to manage the exponent
values of the confluent corrections due to several irrelevant or nonconfluent fields, while it
remains not easy to a priori select a restricted number of significants terms in the infinite,
low-convergentWegner-like expansions [10]. It was then necessary to fix the universal values
of the critical exponents and amplitude combinations to their Ising-like theoretical estimates
to observe that the existing theories provide a good description of the experimental thermo-
dynamic property data of many fluids, not only along the critical isochore [16–19], but also
in the entire thermodynamic plane as reviewed by Behnejad et al. [22] from the various use
of the parametric equations of state.

Therefore, the resulting fitting values of the amplitudes involved in the two-term asymp-
totic Eq. (1) were always interpolated values, i.e., highly dependent of the exact estimation
of the Ising-like critical limit and the number of the free parameters which are introduced in
the crossover theory to fit the experimental data at finite distance from the critical point. For
instance, the universal asymptotic description of the PAD from the upgraded MR crossover
functions needs to briefly be replaced in the context of the recent theoretical achievements



related to the corresponding Ising-like universal estimates. An extensive set of universal
values of the exponents and the amplitude combinations has been published, as shown for
example in Refs. [23–25]. These most recent results are useful for the comparison between
different theoretical asymptotic methods. A reader interested in such a detailed comparison
between the results obtained using the different theoretical methods can use Tables I and II
of Ref. [23] and Tables 3 and 4 of Ref. [24], or the summarizing Tables 5 and 12 of Ref. [25],
and can refer to the extensive list of references quoted by the authors.

However, the actual estimates of universal features extracted from the existing experi-
mental data cannot reach such theoretical levels of accuracy. Moreover, integrating (and then
fixing) the most precise theoretical estimates of Ising-like universal exponents, amplitude
ratios, and universal features of the sub-leading confluent correction terms in resummed
critical-to-classical crossover functions, or in parametric forms of the equations of state,
remains a theoretical challenge. It is plausible that the amplitudes of the corrections to scal-
ing in the theoretical methods have a residual impact on the accurate estimates of universal
quantities based on quite different models, in particular in the case of the correction expo-
nent ω. As a consequence, any resummation process of the infinite Wegner-like expansions
needs to precisely account for the error-bar propagations approaching the non-trivial critical
temperature when the leading and subleading terms are included. Accordingly, from the MR
renormalization scheme along the primary path with h = 0 that incorporates the contribution
of a single irrelevant field characterized by�, the interpolated results for the PAD description
are provided by the min and max estimates [5] of the upgraded crossover functions, despite
the probable underestimations of the errors using field-theory critical exponents values. De
facto, only such (resummed or implicit) calculated theoretical functional forms of the infi-
nite Wegner-like expansions, estimated along the renormalized trajectory, can be used to fit
the fluid data at finite distance to Tc introducing a controlled limited number (three) of free
nonuniversal parameters. From a crossover theory based on the parametric equation of state,
the practical results of the interpolated PADdescriptionwith three-amplitude characterization
of f are not so easy to analyze due to the effective number of incorporated free parameters
larger than three. This effective number is needed to account for instance for the strength and
shape of the physical crossover [14], as well as the small contribution of the non-symmetrical
order parameter [1] and the hypothetized asymmetric fluid criticality accounted for through
the mixing of the physical fields [26]. Nevertheless, since about 25 years, the fitting values of
the leading amplitudes, such as Π±

P in Eq. (1), seem to be conform with the two-scale-factor
universality of the Ising-like systems. Accordingly, the positive, non-zero fitting values of the
amplitudes of the leading corrections to scaling appear as a well-established experimental
feature in simple fluids, such as a±

P > 0 in Eq. (1), despite the large uncertainties (∼50%) in
the corresponding interpolated values of a±

P ∼ 1 or some inconsistency [27] in the resulting
estimation of the confluent universal ratios.

It is then essential to note that an alternative approach of the Ising-like PAD description
conform with the above three-amplitude characterization can be made without any free fluid-
dependent parameters for a one-component fluid whose the generalized critical coordinates
of the gas-liquid critical point are known [11]. Indeed, in such a primary path where the
Ising-like theoretical limit is well-defined, the ad hoc mean estimates of these crossover
functions given in Ref. [9] were consistent with all the universal features expected from the
field theoretical method, especially the universal values of the leading confluent amplitude
ratios. Moreover, by construction of the three-term multiplicative form, the mean crossover
functions given in Ref. [9] provide a single Ising-like PAD description self-consistent with
the calculated universal quantities of Ref. [8]. The singular behavior of each one-component
fluid approaching the vapor-liquid critical point must then be predicted only using two fluid-



dependent scale factors (noted ϑ , ψρ) for the relevant fields and a single critical wavelength
(noted g0), which can be well-defined in terms of the four generalized critical coordinates
(noted Tc, pc, ρc and γ

,
c ) of the gas-liquid critical point, as recently analyzed in the xenon

isothermal susceptibility case [21]. The determination of ϑ , ψρ , and g0 is made without
any adjustable parameter and takes advantage of the Ising-like master singular behavior of
the one-component fluid subclass described by the master crossover functions defined in
Ref. [11]. As a result, the complete sets of leading amplitudes [such as Π±

P in Eq. (1)] and
confluent amplitudes [such as a±

P in Eq. (1)], are calculated using ϑ , ψρ , and g0. The Ising-
like PAD description characterized by Eq. (1) is thus accomplished through the noticeable
exchange between the three selected amplitudes of Eq. (1) and the three nonuniversal para-
meters introduced in the crossover functions. Moreover, the knowledge of ϑ also infers the
unequivocal estimation of L f

PAD, which means that the two-term singular behaviors, as well
as their temperature extension are well known. Finally, the Ising-like PAD description only
requires knowledge of the location of the vapor-liquid critical point in the experimental phase
surface of f , as initially postulated in Refs. [28–30].

Therefore, the main objective of the present work is not to develop a new crossover
theory, but to show that the three parameter characterization of the fluid PAD description
without adjustable parameter can numerically be validated by using the mean crossover
functions at finite distance from Tc along the critical isochore. The improvement over the
currently available understanding in the fluid crossover problem in a nonasymptotic situation
is thus the derivation of the nonanalytical scaling equations incorporating a single local
crossover parameter (noted ϑL below). The resulting local value of this crossover parameter
can be used to control the Ising-like extent of the known three-parameter PAD description,
asymptotically valid along the primary path. As this control is made numerically without
adjustable parameter, it is thus essential to quote the theoretical values of the exponents and
amplitudeswith quite a large number of digits in order tomaintain the required resolution from
the error-bar estimates of the min and max results given in Ref. [5]. In addition, performing
this control along the primary critical path where the Ising-like critical limit is well-defined
is of great importance to probe the singleness of the Ising-like crossover parameter which
was never previously demonstrated without the use of free fluid-dependent parameters.

Correlatively, incorporating more than three free parameters in a crossover theory differs
from the above predictive approach without adjustable parameter applied to the one-
component fluid subclass with similar short-ranged molecular interaction. More than three
nonuniversal parameters generally leads to unavoidable implicit intercorrelations in the result-
ing characterization for the expected PAD behavior of the physical systems belonging to the
O (1) universality class. In the case of simple fluids, such intercorrelations cannot be con-
trolled due to the absence of precise experimental data in the PAD range closest to the critical
point (in addition to the uncontrolled supplementary effect accounting for the hypothetized
asymmetric fluid criticality). A fourth non-universal crossover parameter can for instance be
related to the contributions of one supplementary irrelevant field. In such a case, the addition
of another confluent exponent in the Wegner expansions seems needed to maintain the the-
oretical coherence. Its can also be related to a more complex physical understanding of the
microscopic nature introduced in the model, such as for example, an additional reference to
a mesoscopic length or a molecular modification of the range of interaction, as in the numer-
ical description [31] of the results for the three-dimensional Ising model. Such a microscopic
complexity does not exist in simple fluids where the (Lennard–Jones-like) molecular inter-
actions are certainly short-ranged. Assuming the existence of only two independent relevant
fields and a single irrelevant field in the case of such simple fluids, the critical crossover limit



is thus expected to be universal, except only three nonuniversal parameters characterizing
each simple fluid. At the opposite, going away from the vapor-liquid critical point to reach
a hypothetized classical critical point is out of the scope of our modelling strategy to under-
stand the Ising-like nature of the simple fluids without adjustable parameter. Indeed, since
the 80’s until today, no theoretical progress has been able to correctly account for the abrupt
physical crossover behavior observed beyond the extended critical asymptotic domain when
ξexpt (|�τ ∗|) � αc. It is illustrated by the narrow temperature range where the true crossover
behavior occurs for the effective exponents γe (see Fig. 1 of Ref. [16] for the isothermal
compressibility case) and βe (see Fig. 3 of Ref. [32] for the order parameter density case).

In the present work, the required non-analytic scaling equations valid beyond the PAD
are formulated using the effective power law forms FP,e,th (t) = Π±

P,e,th (t) t−πP,e,th(t) of the

mean crossover functions,whereπP,e,th(t) = − ∂Ln[FP,th(t)]
∂Lnt is the effective exponent [33] and

Π±
P,e,th (t) is the related effective amplitude. Hence, the main goal of our present description

performed beyond the PAD is the non-analytical and unequivocal scaling computation of the
non-universal quantities, noted ϑ±

L , as functions of |�τ ∗| above (+) and below (−) Tc. ϑ
±
L

are introduced through the linear forms t = ϑ±
L |�τ ∗|, where t is still the temperature-like

field of the
(
φ2
)2
d=3 (n = 1) model. However, as �τ ∗ corresponds to a finite temperature

range such that |�τ ∗| > L f
PAD, we have no reason to assume that identities ϑ+

L = ϑ−
L ≡

ϑ will be satisfied. In contrast, the local values of ϑ±
L (|�τ ∗|) appear to be numerically

correlated to the local estimates of the theoretical pairs
{
Π±

P,,th;πP,e,th

}
, only using the

generalized critical coordinates of the vapor-liquid critical point. We can then find ϑ±
L from

the tangent envelop of any continuous function fP (|�τ ∗|) that fits the data measurements
of the singular property P∗

s,expt over a limited temperature range �τ ∗
min ≤ |�τ ∗| ≤ �τ ∗

max

such as �τ ∗
min > L f

PAD and �τ ∗
max ∼ L f

EAD. The conformity with the asymptotic Ising-

like universal features calculated in the MR scheme of the
(
φ2
)2
d=3 (n = 1) model [3,5] is

then maintained. This local characterization can thus be formulated to describe the fluid
data away from the immediate vicinity of the critical point. That means that our additional
non-analytical scaling equations can be useful in a temperature range �τ ∗ > L f

PAD where
the deviations from Eq. (1) and the measured fluid properties become significant. This goal
will be schematically illustrated below for the susceptibility case, through Fig. 1, where the
inserted part also puts in evidence the meaningfull digits needed for accurate estimations of
the non-universal parameters. Such a determination of the three non-universal parameters
is then essentially different (while the extracted final results are similar) from the initial
adjustement of fluid-dependent free parameters performed in Ref. [16] by a minimization
of fitting errors over the experimental temperature ranges. Moreover, our present method
provides the quantitative criteria to descriminate the physical conclusions which can be
drawn about the fluid experiments performed either within the PAD or beyond the PAD,
extending then the approach given in Ref. [21] for the xenon susceptibility case.

To illustrate our approach that strictly avoids adjusting the fluid-dependent free parameter
ϑ±
L , xenon is used as a typical example of a (non-quantum) simple fluid, due to the extensive

and accurate experimental data available along its critical isochore. Indeed, the two functions
fP (|�τ ∗|) of present concern are: (i) the very precise fitting results of Güttinger and Cannell
[20] for the susceptibility data in the homogeneous domain (T > Tc) and (ii) the very precise
fitting results of Närger and Balzarini [34] for the symmetrical order parameter density data
in the non-homogeneous domain (T < Tc). In complement, we note that the observed non
deviation from the rectilinear density diameter [34–36] and the high-symmetry nature of



the experimental thermodynamic properties of xenon [35,37] avoid having to consider the
effects of odd terms and mixing fields introduced in an effective scaling theory [1,38]. That
allows us to verify the uniqueness of the ϑ±

L values and its exact matching with ϑ .
The paper is organized as follows. Section 2 gives a brief analysis of the Ising-like features

controlled by the ad hoc construction of the MR mean crossover functions given in Ref. [9].
The local three-parameter characterization of a simple fluid beyond the Ising-like preasymp-
totic domain is then schematically illustrated in Sect. 3 using the isothermal compressibility
case above Tc. The non-analytic equations to calculate the local values of the crossover para-
meter ϑ±

L are provided in Sect. 4 and numerically solved analyzing the precise experimental
fitting results for the isothermal compressibility case above Tc and the order parameter den-
sity case below Tc in the xenon case. Two remarks and a conclusion are given in Sect. 5. For
convenience, Appendix 1 recalls the useful notations, definitions and expected estimations of
the amplitudes and scale factors corresponding to the MR three-parameter characterization
of any one-component fluid within the Ising-like preasymptotic domain. Special attention is
given to demonstrate that these estimations only use four well-defined critical coordinates of
the vapor-liquid critical point while the main literature sources in xenon case are used to sup-
port the needed numerical estimates. Appendix 2 gives an illustration of the non-analytical
scaling determination of the very-precise local value of the crossover parameter ϑ+

L , based on
the effective pure power law fκT (�τ ∗) = �+

e (�τ ∗)−γe of the isothermal compressibility,
noting that such effective power laws were commonly used in the 80’s to represent the fluid’s
singular behavior in a restricted temperature range.

2 Ising-Like Characterization of a Simple Fluid Using the MR Crossover
Functions

2.1 Distinction Between the Ising-Like Preasymptotic Domain and the Ising-Like
Extended Asymptotic Domain

As explained in detail in Ref. [9], the dimensionless ad hoc construction of the MR mean
crossover functions provides the best control of the error-bar amplitude and propagation of
their relatedmin andmax estimations given inRef. [5],when approaching the non-trivial fixed
point. The resulting mean crossover functions are thus written in the following convenient
form

Pth (t) = Z
±
P t

−eP�P,th

(
t D(t)

)
(2)

where the following well-defined two-term Wegner-like expansion

PPAD,th (t) = Z
±
P t

−eP
(
1 + Z

1,±
P t�

)
(3)

characterizes the universal Ising features estimated in the asymptotical Ising-like limit t → 0.
Indeed, in Eq. (2), each function �P,th

(
t D(t)

)
is given in the form of a three-term product

of the variable t D(t). The exponent function D(t) = �MFS2
√
t+�

S2
√
t+1

is independent of Pth and
expresses the crossover of the effective confluent exponent which varies between� and�MF

in the complete range t = {0,∞}. It is then possible to define a single theoretical crossover
temperature t� (noted t∗0 in [9]) given by

t� �
(

1

S2

)2 ∼= 1.9 × 10−3 (4)



where D (t) takes the effective mean value D (t�) = �+�MF
2 . Consequently, t� characterizes

the exchange between the prominent Ising-like crossover nature due to � = 0.50189 when
approaching the non-trivial fixed point [t � t�], to the prominent mean field-like crossover
nature due to �MF = 1

2 when approaching the trivial fixed point [t � t�], along the
renormalized trajectory.

In the following, we are only interested in the Ising-like universal domain t ≤ t� since we
have already noted that the Ising-like critical crossover in one-component fluids stops before
they display a true classical behavior certainly not accounted for by the classical behavior
governed by the trivial fixed point in field theory. More precisely, it was introduced in [9] the
following common temperaturelike borderline

LIsing
PAD = � t� � 1.9 × 10−6 (5)

with � ∼= 10−3, which distinguishes, either the Ising-like preasymptotic domain t � � t�
where the restricted Eq. (3) is valid, or the intermediate Ising-like crossover domain � t� <

t < t� where it is needed to consider the complete Eq. (2). In the latter case, Eq. (2) can
also account, in a practical manner (see below Sect. 3), for many sources of nonuniversality
discarded or assumed small in the MR scheme because they are unessential in the vicinity of
the critical point.

2.2 Brief Recall of the Expected PAD Description

All the supporting materials involved in the expected PAD description using Eq. (3) were
already published and mainly summarized in Ref. [11] for any one-component fluid f whose
generalized (four) critical point coordinates are known. For self-consistent lecture of the
present paper, they are recalled in Appendix 1.

Hereafter we shall consider three theoretical crossover functions FP,th (t, h = 0) defined
in Ref. [9], namely, the dimensionless correlation length �th (t) and the dimensionless mag-
neticlike susceptibility χth (t) above Tc, and the dimensionless magnetizationlike density
mth (|t |) below Tc. t is the theoretical temperaturelike field and h = 0 is the zero value
of the external ordering (magneticlike) field. Selecting these three functions guaranties that
the same single length unit is used to reduce the correlation and thermodynamics proper-
ties since the dimensionless quantity (χth)

−1 (mth)
2 (�th)

3 leads to the universal amplitude
combination Qc for the critical point limit |t | → 0.

The theoretical functions are then used for analyzing three (Ising-like-similar) fluid prop-
erties along the critical isochore (�ρ̃ = 0) of a one-component fluid (labelled f ) with a
vanishing external (magnetic-like) field (�μ̃ = 0).�ρ̃ = ρ−ρc

ρc
is the reduced order parame-

ter density and �μ̃ = μ̃− μ̃c is the conjugated ordering field, with μ̃ = μρρc
pc

(μ̃c = μρ,cρc
pc

).
ρ is themass density andμρ is the conjugated chemical potential per mass unit. The subscript
ρ refers to a specific (per mass unit) quantity. The subscript c refers to a critical parameter
of f , such as the critical pressure pc. The distance to the vapor-liquid critical point is then
only defined by the reduced temperature difference �τ ∗ = T−Tc

Tc
where T is the temperature

and Tc the critical temperature of f . The selected singular properties are the dimensionless
correlation length ξ∗

expt (�τ ∗), the dimensionless isothermal compressibility κ∗
T,expt (�τ ∗) in

the homogeneous domain �τ∗ > 0, and the spontaneous non-zero value of the (symmet-
rical) dimensionless order parameter density �ρ̃LV,expt (|�τ ∗|) in the non-homogeneous
domain �τ ∗ < 0. In this fluid case, the dimensional correlation length ξ corresponds to
the correlation length that is obtained by considering the small-momentum behavior of
the structure factor, while the normalized thermodynamic description of f in the grand



canonical ensemble considers the quantities per particle (using thus the subscript p̄). The
dimensionless quantity β

(
χT, p̄

)−1
(�nLV )2 ξ3 is then the analog of (χth)

−1 (mth)
2 (�th)

3,

where β is the inverse of an energy reference, χT, p̄ =
(

∂n
∂μ p̄

)

T
is the isothermal suscepti-

bility per particle, and �nLV = nL − nV is the difference in number density of particles
between the liquid and vapor coexisting phases below Tc. n is the number density, with
nm p̄ = ρ and

μ p̄
m p̄

= μρ , where m p̄ is the (molecular) mass of the particle. We recall that

χT, p̄ = (
m p̄

)−2
χT,ρ = n2κT , where χT,ρ =

(
∂ρ

∂μρ

)

T
is the isothermal susceptibility per

mass unit and κT = 1
n

(
∂n
∂p

)

T
= 1

ρ

(
∂ρ
∂p

)

T
is the isothermal compressibility. The correspond-

ing dimensionless quantities ξ∗ and κ∗
T are obtained using the length

(
αc =

(
kBTc
pc

) 1
3
)
and

energy ((βc)
−1 = kBTc) units, while �ρ̃LV = �nLV

m p̄
ρc

.
Therefore, the characterization of the Ising-like PAD description takes the set forms

S
{MR}
A =

{
Z
1,+
χ ;

(
Z

+
ξ

)−1 ;
(
Z

+
χ

)−1
}
, S{1 f }

A =
{
Z1,+

χ ;Z+
ξ ;Z+

χ

}
, and SA, f =

{
a+
χ ; ξ+;�+

}

made of three independent amplitudes. Each set (where subscript A recalls the amplitude
nature of the involved parameters) characterizes, successively, the theoretical MR mean
crossover functions for the O (1) universality class, the master crossover functions for the
{1 f } universality subclass and, finally, any one-component fluid f . This expected Ising-like
PAD description only requires the knowledge of the location of the vapor-liquid critical
point in the experimental phase surface of f . Indeed, the four critical coordinates of f are
used to define: (i) the energy βc and length αc units involved in the dimensionless reduc-
tion process of the thermodynamics properties and the correlation length and, (ii) the two
dimensionless critical numbers Yc and Zc which are respectively the characteristic scale
parameters of the relevant fields along the critical isochore and the critical isotherm of f .
That defines the three non-universal parameter set S{1 f }

SF, f = {
Yc;αc; Zc

}
(where subscript

SF recalls the scale factor nature of the involved parameters) of each fluid f belonging
to the {1 f } universality subclass [28–30]. On the other hand, the three non-universal scale
factor set S{MR}

SF, f = {
ϑ; g0;ψρ

}
of each fluid f belonging to the O (1) universality subclass

are thus introduced in the mean crossover functions under the form of two characteristic
scale factors (ϑ and ψρ) and a single coupling constant (g0). The latter g0 has the con-
venient wavelength dimension at d = 3 to take the practical role of a finite wavelength
cutoff, defined at the vapor-liquid critical point [16]. ϑ is defined by the asymptotical lin-
earized approximation t = ϑ�τ∗ when t → 0 and �τ ∗ → 0 [6] along the critical isochore
of f . ψρ is associated to the Ising-like asymptotic singular behaviors along the critical
isotherm of f , by using the similar asymptotical linearized approximation when the inten-
sive fields h → 0 and �μ̃ → 0 or, equivalently, the conjugated densities mth → 0 and
�ρ̃ → 0. The inverse wavelength (g0)−1 is the natural microscopic length unit for the
comparison of �th (t) to the dimensional correlation length ξexp (�τ ∗), through the fitting
equation �PAD,th (t) = g0ξexpt (�τ ∗). The estimation of ϑ , ψρ , and g0 are made without any
adjustable parameter when the four critical coordinates of f are known. These determinations
take advantage of the Ising-like master singular behavior of the one-component fluid subclass
described by themaster crossover functions defined in Ref. [11], introducing the three-master
scaling constant set S{1 f }

SC = {
�{1 f };L{1 f };�{1 f }} (where subscript SC recalls for scaling

constants), which links the corresponding Ising-like fields. As a result, the unequivocal rela-
tions between the scale factor sets S{MR}

SF, f = {
ϑ; g0;ψρ

}
and S{1 f }

SF, f = {
Yc;αc; Zc

}
, and



finally the amplitude set SA, f =
{
a+
χ ; ξ+;�+

}
can be easilly written, noting that the fol-

lowing master constant L{1 f } = g0αc = 25.585 guaranties the uniqueness of the length unit.
Consequently, the complete fluid sets of leading amplitudes [such asΠ±

P in Eq. (1)] and con-
fluent amplitudes (such as a±

P in Eq. (1)), can be calculated using ϑ ,ψρ , and g0. The resulting
universal asymptotic Ising-like features (including the universal features related to the first
order confluent corrections) of the {1 f } universality subclass are thus exactly conform with
the ones of the O (1) universality class, as recalled in Appendix 1.

Here, introducing the complete theoretical set of the universal confluent amplitudes Z1,±
P

involved in the MR mean crossover functions, it is essential to underline the following
unequivocal scaling equations which characterize the PAD description

ϑ =
(

a±
P

Z
1,±
P

) 1
�

(6)

whatever the selected P . Indeed, Eq. (6) demonstrates that the single fluid scale factor ϑ

characterizes the first order contribution of the lowest confluent corrections to scaling to be
conform with the corresponding Ising-like universal ratios estimated in the MR scheme. In
addition, the knowledge of ϑ also infers the unequivocal estimation of

L f
PAD = LIsing

PAD

ϑ ( f )
(7)

whichmeans that the two-term singular behaviors, as well as their validity temperature range,
are well estimated. Similarly, as the dimensionless correlation length ξ∗

expt = ξexpt
αc

for f is
necessarily expressed in unit of the size αc of the critical interaction cell [28], the introduction
of L{1 f } = g0αc leads to the following convenient form of the fitting equation

�th (t)

L{1 f } ≡ ξexpt (�τ ∗)
αc

(8)

Equation (8) is a direct estimation of the ratio between long-range critical fluctuations and
short-range microscopic interactions in f , i.e., a key parameter for distinguishing the critical
and regular crossover regimes. Using the MR mean crossover function of the correlation
length given in [9] and the above value LIsing

PAD of Eq. (5), �th (� t�) = 1916. Therefore, the

Ising-like preasymptotic domain of interest corresponds to �th � 1900, i.e.,
ξexpt(�τ∗)

αc
≥

75 for any selected f . This large and increasing value of
ξexpt(�τ∗)

αc
� 1 for �τ ∗ → 0

confirms the expected dominant effect of the long-range critical fluctuations in the fluid
PAD. Unfortunately, as mentionned in the introduction, there is no experimental data to
validate with the required precision this expected PAD description, even fixing the critical
exponents to their estimated theoretical values.

2.3 MR Extended Asymptotic Domain Beyond the Ising-Like Preasymptotic
Domain

The main concrete progress to formulate a complete answer to the Ising-like crossover can
be made analyzing another non-universal feature of the MR mean crossover functions. At
the well-defined crossover temperature-like t = t� of Eq. (4), �th (t�) = 28.8 from [9], i.e.,
�th (t) ∼ L

{1 f } = 25.585. Therefore, the Ising-like crossover behavior where the theoretical
confluent exponent function (which is property non-dependent) takes the effective mean



value �+�MF
2 , also corresponds to the condition �th (t) ∼ L

{1 f }. Accounting for the previous
PAD extension �th � �th (� t�) = 1916, we are then concerned by the use of Eq. (2) in the
two-decade range 2000 � �th � 20, typically.

However, the estimation of the validity range of Eq. (2) can still be refined away from
the non-trivial fixed point when its application is restricted to f . Indeed, from Eq. (8),
the condition �th (t) ∼ L

{1 f } � 25.585 corresponds to the condition ξexp (�τ ∗) ∼ αc,
where the fluid correlation length is of the order of the size of the fluid critical interaction
cell [28]. Accordingly, for any fluid case, the experimental condition ξexpt (�τ ∗) � αc can
be well-understood as related to the Ising-like prominent nature of the crossover behavior
for �th (t) ≥ �th (t�). However, our previous analyses of the validity range for the master
singular behavior of the {1 f }-subclass have shown that the scaling singular behavior of
correlation length of seven one-component fluids [39] can only be observed correctly for
ξexp
αc

� 3, typically. Fromsuch a practical limiting condition, the equivalent extension �th (t) �
(2.5 − 3)×�th (t�) � 70−90 can be defined for theMR theoretical correlation length range
of interest. More precisely, the following discussion shows that the realistic limiting range
�th � 2.6�th (t�) � 75 can be chosen, leading to estimate the extension of the corresponding
temperaturelike range of the Ising-like EAD

t ≤ LIsing
EAD = 3.9 × 10−4 (9)

Here Ising-like EAD means that practically a single scale factor can be used for the rele-
vant field and the irrelevant field which are accounted for along this primary critical path.
Using thus the asymptotic value of ϑ provided by our expected PAD description of f , the
corresponding expected EAD extension for f corresponds to

�τ∗ ≤ L f
EAD = LIsing

EAD

ϑ
(10)

In addition, we remark that Eq. (8) provides a useful tool to express any singular thermody-
namic property as a function of either �τ ∗ or �th (as illustrated in figures below using the
asymptotic value of ϑ calculated in Appendix 1 for the xenon case).

Now, the complete comparison between experimental results for f and crossover theories
can cover several decades above or below its Tc value, but clearly distinguishing the physical
expected description within the PAD from the unknown one beyond the PAD. In the latter
case, the intrinsic difficulties associatedwith the usual fitting over a limited temperature range
have been illustrated in the recent re-analysis of the critical xenon data [21] from the Earth
experiments, performed by Güttinger and Cannell [20]. Simultaneously, we have noted that
a relatively complete set of xenon leading amplitudes Π±

P exists in the litterature (see for
example Tables 3 and 41 in Ref. [21]), despite their extraction from measurements largely
beyond the PAD. However, even for such extensive xenon description assumed conform with
the two-scale-factor universality valid for the Ising-like asymptotic limit�τ ∗ → 0, it remains
challenging to carefully probe the uniqueness and understand the physical critical nature of
the third parameter, characteristic of the confluent singular behavior at large distance away
from Tc.

1 In Tables 2, and 4 of Ref. [21], the reported data in columns 4 and 5 are not correct since � is not used
in related Ref. [50]. Therefore, n.u. should be used in column 4 and no value of a1,+χ should be reported in
column 5



3 Fluid Characterization Beyond the Ising-Like Preasymptotic Domain

3.1 Fitting Equations Using the MR Mean Crossover Functions Beyond the PAD

The description of the fluid singular property P∗
s,exp (�τ ∗) in the finite temperature range

such as �τ ∗ > L f
PAD, generally uses a truncated Wegner expansion, which involves a finite

serie of correction-to-scaling terms higher than the first leading one given in Eq. (1) [or Eq.
(3)]. The validity of this truncated expansion can be observed a posteriori over the extended
asymptotic domain defined by �τ ∗ ≤ L f

EAD. Unfortunately, ignoring Eq. (10), the resulting

experimental extension L f
EAD appears highly dependent on the number and the nature of the

several correction-to-scaling terms selected in the finite serie. Such a truncated description
in the finite intermediate range L f

PAD < �τ ∗ ≤ L f
EAD is not able to evaluate any theoretical

estimate. The main reason is that we cannot solve new correlative difficulties concerning the
effective number (which can thus be greater than three) and the actual nature (which can
originate from different analytical and confluent effects in the theoretical schemes) of the
fluid-dependent parameters.

Some of these difficulties to describe P∗
s,exp (�τ ∗) can be by-passed by using the

mean crossover function FP,th (t) defined in [9], despite the absence of information con-
cerning the extended asymptotic domain of f and the non-evaluation of the effective
influence of the numerous corrections neglected in the massive renormalization scheme of

the
(
φ2
)2
d=3 (n = 1) model (see [9] for details). For this purpose, the fitting equation of

P∗
s,exp (�τ ∗) must then be written as follows [5,11]

P∗
s,exp

(
�τ ∗) = P

∗
0,LZP

(
�τ ∗)−eP �P,th

(
t D(t)

)
(11)

where the inserted adjustable fluid-dependent parameters are the (property-dependent) pref-
actor P∗

0,L and the crossover parameter ϑ±
L introduced through the relation:

t = ϑ±
L�τ ∗ (12)

We note that the subscript L underlines the fact that the fitting determination of such a fluid-

dependent pair
{
P

∗
0,L, ϑL

}
is performed beyond the PAD. Anticipating the main difference

with our non-analytical scaling method proposed below, we underline the fact that, in a joint
fitting process of all the singular properties along the critical isochore, ϑL is expected to have
the same single value above or below Tc, i.e., ϑL = ϑ+

L = ϑ−
L . In Eq. (11), FP,th (t) is now

splitted in a leading power law term P
∗
0,LZP (�τ ∗)−πP , only expressed as a function of the

physical temperature field �τ ∗, and in a confluent function �P,th
(
t D(t)

)
, only dependent

on ϑ±
L , through Eq. (12). The fluid-dependent, property-dependent prefactor P∗

0,L accounts
for the interpolated asymptotic singular behavior of P∗

exp for �τ ∗ → 0, while the resulting

fitting value ϑL = ϑ+
L = ϑ−

L is a non-universal parameter which characterizes the finite

intermediate range L f
PAD < �τ ∗ ≤ L f

EAD, as mentioned in the Introduction. Here interpo-
lated means that the above leading pure power law using P

∗
0,L as a free parameter cannot

directly be supported by (non-available) experimental measurements within the PAD.
Among the prefactors P

∗
0,L involved in Eq. (11), only two (noted L

∗
0,L, X

∗
0,L in next

section), are independent and selected as two characteristic asymptotic parameters of f to
be conform with the two-scale-factor universality. In a fitting process where the identities
ϑL = ϑ+

L = ϑ−
L are assumed, ϑL is the third characteristic crossover parameter of f , from



which the expected upper limit of the fluid extended asymptotic domain can be defined from

L f
EAD = LIsing

EAD
ϑL .

3.2 Characteristic Physical Parameters Using MR Crossover Functions Beyond
the PAD

Accordingly with Eq. (11), the fitting equations of ξ∗
expt, κ

∗
T,expt, and �ρ̃LV,expt for a simple

fluid are:

ξ∗
expt

(
�τ ∗) = L

∗
0,L

Z
+
ξ (�τ ∗)ν �+

ξ

(
t D(t)

) (13)

κ∗
T,expt

(
�τ ∗) = X

∗
0,L

Z
+
χ (�τ ∗)γ �+

χ

(
t D(t)

) (14)

�ρ̃LV,expt
(∣∣�τ ∗∣∣) = M

∗
0,LZM

(∣∣�τ ∗∣∣)β �M

(
|t |D(|t |)) (15)

where the Ising-like universal value of Qc must be recovered through the following prefactor
combination

(
L

∗
0,L

)d

(
M

∗
0,L

)2

X
∗
0,L

= 1 (16)

From fitting Eqs. (13) and (14), the expected new three-parameter characteristic set of f is

S{MR}
1CP,L, f = {

ϑL;L∗
0,L;X∗

0,L
}

(17)

The above set replaces the characteristic set S{MR}
SF, f = {

ϑ; g0;ψρ

}
previously defined from

thePADdescription of f . Obviously,when the identityϑ ≡ ϑL is assumedvalid, unequivocal

links can be obtained between
{
ϑ;ψρ

}
and

{
L

∗
0,L;X∗

0,L
}
(see Appendix 1). In Eq. (17), the

subscript 1CP,L, f recalls for the use of the single crossover parameter ϑL for f until the

upper limit �τ ∗ < L f
EAD = LIsing

EAD
ϑL( f ) , where the value of L

Ising
EAD given by Eq. (9) remains to be

confirmed from our following MR theoretical description of the Ising-like EAD.
Therefore, the noticeable asymptotic feature of Eqs. (13) to (15) appears in each leading

term in which ϑL is no longer involved in the asymptotic scaling part of the critical behavior
expressed in terms of the physical field�τ ∗. Moreover,X∗

0,L andL∗
0,L are two prefactors that

characterize the asymptotic Ising-like nature of xenon, provided that all the non-dimensional
extensive variables are expressed with the same length unit [7]. Correlatively, the same value
of ϑL above and below Tc exclusively controls the magnitude of many correction terms to
scaling. Thatmeans thatϑL can also integrate some effects of the neglected terms linked to the
supplementary confluent exponents (noted �2, �3, etc.) associated to additional irrelevant
operators, accounting then for practical numerical approximations such as �2 ≈ 2�, �3 ≈
3�, etc. ϑL can also integrate the contributions of analytical powered terms �τ ∗, (�τ ∗)2,
etc., accounting for approximations such as 2� ≈ 1, 4� ≈ 2, etc., when (kB) T replaces
(kB) Tc in the energy unit and in the dimensionless form of the temperature distance to the
critical temperature, or when we consider the Massieu forms of the singular thermodynamic
potentials. The determination of ϑL is then equivalent to the determination of the effective
extension L f

EAD. As suggested in Ref. [5], from fitting at least three singular properties along
the critical isochore (among the correlation length, the susceptibility, the specific heat in the



homogeneous and non homogeneous domains, and the coexisting density measurements in
the non-homogeneous domain), one must verify the uniqueness of the ϑL value.

To avoid this large fitting task, we can now use an alternative remarkable facet of the
Ising-like universality of each mean crossover function FP (t). Indeed, beyond the Ising-like
preasymptotic domain, we can introduce the effective universal behavior of its local expo-

nent πP,e,th (t) = − ∂Ln[FP,th(t)]
∂Ln(t) , as initially proposed by Kouvel and Fisher [33]. It is then

immediate to asymptotically transform (only using P
∗
0,L) each theoretical universal function

FP,e,th
(
πP,e,th

)
into its fluid asymptotic property Π±

P

(
πP,th

)
valid for the Ising limit πP,th.

Moreover, t� is a convenient sensor for a relative comparison with the t-values of the critical-
to-classical crossing temperatures, where the πP,e,th (t) functions cross their mean crossover

values πP, 12

(
tπ

P, 12

)
= πP,th+πP,MF

2 (see Fig. 4 in [9]). Considering for example the corre-

lation length and susceptibility cases, tν 1
2

∼= 3 × 10−3 and tγ 1
2

∼= 4 × 10−3, respectively,

with �th

(
tν 1

2

)
= 22.2 and �th

(
tγ 1

2

)
= 18.8. These latter values are of the same order

as �th (t�) � 28.8, as well as the dimensionless master length L
{1 f } = 25.585. Therefore,

the Ising-like prominent nature of any function FP,e,th
(
πP,e,th

)
, defined by the condition

πP,e,th (t) ⊂
{
πP , πP, 12

}
, is similar to the Ising-like prominent nature of the confluent func-

tion D(t) in the temperature-like range t � t�. The use of the crossover behavior calculated
in the

{
FP,e,th;πP,e,th

}
diagrams permits to distinguish, in a self-consistent manner, the

expected functional forms where the non-universal parameters (P∗
0,L, ϑ±

L ) are involved in
each PAD or EAD range. Such functional forms are illustrated in the next section using the{
Z

+
χ,e; γe,th

}
diagram for the susceptibility case already considered in the Appendix 2 of Ref.

[11]. We limit however our present interest to the direct functional links between the MR
mean crossover function and the theoretical-Ising-like susceptibility of an hypothetic fluid f
satisfying the related Ising-like universal features.

3.3 Functional Forms for the Isothermal Susceptibility Case Above Tc

The estimated theoretical behaviors of the effective exponent γe,th (t) and the effective ampli-
tude Z+

χ,e (t) are obtained from the equations

γe,th (t) = −∂Ln [χth (t)]

∂Lnt
(18)

Z
+
χ,e (t) = χth (t)

t−γe
(19)

where χth (t) is given in [9]. By eliminating explicit t in Eqs. (18) and (19), over the complete
range γMF ≤ γe,th (t) ≤ γ , the theoretical crossover behavior results in the form of the
universal (mixed red) upper curve of implicit equation Z

+
χ,e

(
γe,th

)
, labeled �3 (1)-MR in

Fig. 1.
Similarly, from the MR PAD description given in Appendix 1, we are able to calculate

the expected classical-to-critical crossover of any one-component fluid f over the complete
range γMF ≤ γe (�τ ∗) ≤ γ . Indeed, γe (�τ ∗) and �+

e (�τ ∗) of f can be obtained from the
equations

γe
(
�τ ∗) = −

∂Ln
[
κ∗
T,MR (�τ ∗)

]

∂Ln (�τ ∗)
(20)





Anticipating the matching (observed in the lower part of Fig. 1 and explained in next
section) between the true experimental (full blue) curve �+

e

(
γe,expt

)
and the theoretical

(dotted red) curve for f , it remains to define the related “physical” functional links illustrating
the respective role of the two unknown fluid-dependent parameters X∗

0,L and ϑ+
L involved in

fitting Eq. (14). We recall that ϑ+
L must be introduced using the arbitrary relation

t = ϑ+
L�τ ∗ (22)

only considering the finite temperature range �τ ∗ > 0 well beyond the PAD.

The first range γ − γe,th � Z
1,+
χ �

(
LIsing
PAD

)� ≈ 0.006 corresponds to the Ising-like

preasymptotic domain (see the grey area in Fig. 1) where the experimental data are absent
(or of limited precision). Then, this small domain can only be magnified in the theoretical
insert of Fig. 1 for the close vicinity of the Ising-like limiting point of theoretical coordinates{
γ ;

(
Z

+
χ

)−1
}
(upper cross in Fig. 1). The curve aT corresponds to the asymptotic singular

behavior of the derivative

(
∂Z+

χ,e
∂γe

)

γe→γ

[11], of equation

(
∂Z+

χ,e
∂γe

)

γe,th→γ

=
(
Z

+
χ

)−1

⎧
⎪⎨

⎪⎩
1 +

(
γ−γe,th

�

∣∣
∣Z1,+

χ

∣∣
∣

)−
(

γ−γe,th
�

)

(

1 − log

[
γ−γe,th

�

∣∣
∣Z1,+

χ

∣∣
∣

]) (
γ−γe,th

�

)}
(23)

The vertical double arrow (1) indicates the logarithmic divergence of

(
∂Z+

χ,e
∂γe

)

γe,th→γ

never

directly estimated from the asymptotic theoretical approaches (see also part (b) of Fig. 5 in
Ref. [11]). We note the significant difference between the curve aT and the curve (S). The

latter one corresponds to the linearized slope ζ+
χ,0 =

(
Z

+
χ,max

)−1−
(
Z

+
χ,min

)−1

γmin−γmax
= 0.007171

0.0025875 � 2.8
between the respective bounded coordinates of points A and B (see inserted table in Fig. 1
and Ref. [5] for the data sources). Indeed, the curve (S) illustrates the analytical error-bar

correlation between the Ising values of γ and
(
Z

+
χ

)−1
. Moreover, the magnified scales of

the inserted part of Fig. 1 illustrate the fact that all the quoted digits in the present work are
meaningfull to reveal this amazing theoretical asymptotic behavior.

Accordingly, the Ising-like limiting point of f (xenon here, as explained just above),

with coordinates

{
γ ;�+ = X

∗
0,L

(
Z

+
χ

)−1
}
, corresponds to the ending lower cross of the

curve Xe − MR. Similarly, the curve aP corresponds to the asymptotic singular behavior

of
(

∂�+
e

∂γe

)

γe→γ
. The double arrow joigning the two crosses at γe = γ schematizes the

amplitude transformation fγ
(
X

∗
0,L

)
≡ X

∗
0,L where ϑ+

L has disappeared. X∗
0,L only governs

the universal matching of the Ising-like limiting point. Therefore, the introduction of the true
leading value of �+ fixes the value of X∗

0,L using the following Eq. [11]

X
∗
0,L = (

L
{1 f })d (ψρ

)2
ϑ−γ

= (
L

{1 f })d (�{1 f })2 (�{1 f })−γ
(Yc)−γ (Zc)

−1
(24)



On the top Eq. (24), the value of X∗
0,L depends on the three asymptotic scale factors ϑ , L{1 f }

(or g0), and ψρ . However, the master constant L{1 f } fixes g0, knowing αc. Therefore, ϑ and
ψρ (the latter reflecting the extensive nature of the susceptibility) are the two characteristic
parameters of f , in conformity with the two-scale factor universality. Similarly, in the bottom
Eq. (24), we recall that�{1 f } and�{1 f } are the master constants, which guaranty that Yc and
Zc are the two fluid-dependent parameters unequivocally linked to ϑ and ψρ , respectively
(see Appendix 1).

The comparison between the critical divergence of the initial slope (curves aT and aP) at
the ending points provides the second characteristic constraint of the Ising-like preasymptotic
domain. In principle, this second constraint must provide the unambiguous determination of

the Ising-like scale factor ϑ [through ϑ =
(

a+
χ

Z
1,+
χ

) 1
�

, expressing Eq. (6) for χ ]. Nevertheless,

our present geometrical description of the Ising-like preasymptotic domain given in the insert
of Fig. 1 underlines the theoretical (and a fortiori experimental) challenging difficulties to
provide the precise asymptotic characterization of the correction-to-scaling when a property
reaches the Ising-like limiting point along a curve of universal, but infinite, slope for any
Ising-like system (see also the discussion of the needed singular increase of the required
precision in the last part of Appendix 2).

In the second range 0.12 � γ − γe � 0.015, which corresponds to a temperature range
largely beyond the Ising-like preasymptotic domain, the expected variations of Z+

χ,e

(
γe,th

)

and�+
e (γe) are smooth and continuous. That implies that the fluid isothermal compressibility

data obtained in the restricted temperature range�τ ∗
min ≤ �τ ∗ ≤ �τ ∗

max can be fitted by any
continuous function κ∗

T,expt = fκT (�τ ∗). Applying then Eqs. (20) and (21), we expect to find
at least one physical point P having the coordinates

{
γe,expt;�+

e,expt

}
in Fig. 1. Its matching

condition with the lower curve Xe − MR and its relation with the corresponding theoretical
point T in the upper curve �3 (1)-MR can be analyzed in terms of the two free parameters
X

∗
0,L and ϑ+

L . For the condition γe,th (t) = γe,expt (�τ ∗), a two parameter transformation

fγe
(
X

∗
0,L, ϑ+

L
)
, schematized by a double arrow inFig. 1, insures the correspondence between

T and P. The definition fγe
(
X

∗
0,L, ϑ+

L
)
is given in the next Section from an experimental

restricted Wegner-like expansion while Appendix 2 explains the use of an experimental
effective single power law in xenon case.

4 Non-Analytical Scaling Determination of the Ising-Like Crossover
Parameter: Xenon Case as a Typical Example

4.1 The Isothermal Susceptibility Case Above Tc

To find the explicit form of fγe
(
X

∗
0,L, ϑ+

L
)
, we use the Güttinger and Cannell’s susceptibility

data of xenon [20] fitted by the following (four terms) Wegner-like expansion (labeled GC4)

κ∗
T,expt (�τ ∗) = �+ (�τ ∗)−γ

[
1 + a+

1χ (�τ ∗)� +
a+
2χ (�τ ∗)2� + a+

3χ (�τ ∗)3�
] (25)

Equation (25) is valid over the reduced temperature range �τ ∗
min ≤ �τ ∗ ≤ �τ ∗

max , with
�τ ∗

min = 9.115×10−5 and�τ ∗
max = 1.95×10−2. The critical exponentsγ = 1.241 and� =



0.496were fixed to the theoretical values calculated at the time by LeGuillou and Zinn-Justin
[40] from the renormalization-group approach. The values of the adjustable parameters were
�+ = 0.0577 (±0.0001), a+

1χ = 1.29 (±0.03), a+
2χ = −1.55 (±0.2), a+

3χ = 1.9 (±0.5) (the
error bars quoted are one standard deviation allowing for the correlation between parameters,
with an uncertainty of ±0.5mK on the Tc value, see Appendix 2). Eliminating then the
variable �τ ∗ by the combination of Eqs. (20) and (21) where κ∗

T is given by Eq. (25),
we obtain the (full blue) curve �+

e

(
γe,expt

)
labeled Xe − GC4 in the lower part of Fig. 1.

The matching with the curve Xe − MR is noticeable over the complete experimental range.

That confirms that the transformation fγe
(
X

∗
0,L, ϑ+

L
)
must contain both constraints needed

to satisfy the (point) position and the related (tangent) direction. Therefore, the scaling
nature of the crossover matching beyond the Ising-like preasymptotic domain is significantly
different in the non-analytical scaling procedure which either eliminates or accounts for the

contribution of the leading term fγ
(
X

∗
0,L

)
≡ X

∗
0,L at γe,th ≡ γe,expt. In the latter situation,

X
∗
0,L can be replaced by its estimate in term of the true leading amplitude �+, as seen below.
In the first case where the contribution of the leading term is ignored, Eq. (14) is mainly

equivalent to a prominant constraint in position, which can be expressed by the following
relation between the effective exponents

γe,expt
(
�τ ∗) ≡ γe,th

[
ϑ+
L
(
�τ ∗)] (26)

We numerically solve Eq. (26), using Güttinger and Cannell’s fitting results given by Eq.
(25), then providing the γe (�τ ∗) and ϑ+

L (�τ ∗) values as functions of �τ ∗. Both results are
shown by the (full blue) curve labeled GC4 in Fig. 2a [γe as a function of �τ ∗], and the (full
green) curve labeled 1 in Fig. 2b [ϑ+

L as a function of �τ ∗], respectively. In part (a), we note
that the experimental curve matches the (full red) curve labeled MR, which was obtained
from Eq. (18) and S{MR}

SF,Xe = {
ϑ; g0;ψρ

}
values given in Table 1 of Appendix 1. Obviously,

this part (a) is similar to Fig. 1 of Ref. [16], which has shown the existence of a single free
value of ϑ+

L (= 0.0191 ± 0.085) from a fit of the same data using the theoretical crossover
max MR6 function [3] calculated at the time. In part (b) (and (c), see below Sect. 4.3), the
results are reported over the experimental range illustrated by the horizontal (blue) segment
labeled GC. We note that the corresponding calibration temperature of the Güttinger and
Cannell’s data is indicated by the vertical arrow labeled �τ ∗

or.
In the second case that accounts for the contribution of the leading term, it is necessary to

introduce the following scaling relation between the effective amplitudes

�+
e = (

ϑ+
L
)γ−γe

X
∗
0,LZ

+
χ,e (27)

Now, the non-analytical scaling transformation

fγe
(
X

∗
0,L, ϑ+

L
) = X

∗
0,L (ϑL)γ−γe (28)

is explicit in Eq. (27) and both constraints in position and direction are correctly taken into
account. This transformation takes an effective power law form of the crossover parameter
ϑ+
L , while the prefactor X∗

0,L has (as expected above) the same value whatever the value of
γe,expt

(= γe,th
)
. Equation (28) distinguishes each proper nature of the asymptotic prefactor

X
∗
0,L and the field scale factor ϑ+

L . Therefore, we can use the following equation

�+ = X
∗
0,L

(
Z

+
χ

)−1
(29)







�+
e

�+ = (
ϑ+
L
)γ−γe

Z
+
χ,e

(
Z

+
χ

)−1 (30)

and leads to the unequivocal determination of ϑ+
L when �+, γe and �+

e are known, through
the non-analytical scaling equation

ϑ+
L =

(
1

Z
+
χ Z

+
χ,e

× �+
e

�+

) 1
γ−γe

(31)

More generally, Eq. (31) valid for L f
PAD < �τ ∗ � L f

EAD, has equivalent Ising-like nature as

the scaling equation ϑ =
(

a+
χ

Z
1,+
χ

) 1
�

(expressing Eq. (6) for χ), valid for �τ ∗ � L f
PAD. In

xenon case, we have numerically solved Eq. (31) at fixed γe, using Eq. (25) and χth (t) given
in [9], with �+ (Xe) = 0.057824. The resulting value ϑ+

L (�τ ∗) corresponds to the curve
labeled 2 in Fig. 2b.

As previously mentioned, the upper horizontal axis gives the related value of �th (t)
with t = ϑ�τ∗ > 0 and ϑ (Xe) = 0.0211752 (see Table 1 in Appendix 1). The values
of γe indicated by the black, red and brown horizontal arrows, respectively, correspond to
the specific values � 1

2
, ν 1

2
, and γ 1

2
. The corresponding values of �th (t) are given by the

respective colored vertical arrows in the range �th � 20 − 30. The right corner symbol on
the MR curve indicates the extension LXe

EAD of the Ising-like extended asymptotic domain
(where �th � 2.6�th (t�) � 3L{1 f } � 75). Assuming then that ϑL ≡ ϑ (Xe) = 0.0211752,
the xenon extended asymptotic domain cannot exceed the following upper limit

�τ ∗ < LXe
EAD = LIsing

EAD

ϑ
� 1.84 × 10−2 (32)

i.e., T − Tc < TcLXe
EAD � 5.3K in the homogeneous domain. Similarly, the square symbol

corresponds to the master crossover temperature (where �th � L
{1 f } = 25.585, i.e., when

the correlation length is of the order of the size of the microscopic interaction). Two vertical
dotted lines show the respective extensionsLXe

PAD andLXe
EAD of the Ising-like pre- and extended

asymptotic domains (see the horizontal arrows labeled PAD and EAD, respectively).

4.2 The Order Parameter Density Case

The above approach for the susceptibility case can be easily duplicated to the order parameter
density case, introducing now the following arbitrary relation

t = ϑ−
L
∣∣�τ ∗∣∣ (33)

We consider the vapor-liquid coexisting density datameasured byNäger andBalzarini [34] in
two different samples of xenon, which were fitted by the following (three term) Wegner-like
expansion:

�ρ̃LV,expt (|�τ ∗|) = B |�τ ∗|β
[
1 + a1M |�τ ∗|�

+ a2M |�τ ∗|2�
] (34)

For the fits, the exponents β = 0.327 and � = 0.5 were held fixed. For sample No. 1,
the corresponding values of the adjustable parameters are B = 1.479 (±0.011), a1M =
1.15 (±0.19), a2M = −2.6 (±1.0) (with an uncertainty of ±1mK on the Tc value). This
fitting result is labeled NB3a . For sample No. 2, the fit results are B = 1.470 (±0.010),



a1M = 1.20 (±0.17), a2M = −2.8 (±1.1) (with an uncertainty of ±2mK on the Tc value),
and the label is NB3b.

We do not report here the similar complete descriptions of the effective power laws
ZM,e |t |βe and Be |�τ ∗|βe . We merely recall that they allow us to construct the theoretical
and experimental curves of respective equations ZM,e (βe) and Be (βe). The latter equations
introduce the two-parameter transformation

fβe
(
M

∗
0,L, ϑ−

L
) = M

∗
0,L

(
ϑ−
L
)βe−β

, (35)

which is similar to the one fγe
(
X

∗
0,L, ϑ+

L
)

= X
∗
0,L

(
ϑ+
L
)γ−γe for the susceptibility case [see

Eq. (28)]. Thus the only needed material to obtain ϑ−
L concerns the universal feature of the

matching between the Ising-like limiting points at βe = β. Here, the limiting transformation

reads fβ
(
M

∗
0,L

)
≡ M

∗
0,L. The corresponding fluid value ofM

∗
0,L can be obtained using the

following relations [11]

M
∗
0,L = (

L
{1 f })d ψρϑβ

= (
L

{1 f })d �{1 f } (�{1 f })β (Yc)β (Zc)
− 1

2
(36)

which satisfy the two-scale factor universality through the analytical combination [see Eq.
(16)] with X

∗
0,L of Eq. (24) and L

∗
0,L of following value [11]

L
∗
0,L = (

L
{1 f })−1

ϑ−ν

= (
L

{1 f })−1 (
�{1 f })−ν

(Yc)−ν
(37)

The asymptotic dependence of the scale factors ϑ and ψρ is thus properly accounted for,
i.e., in conformity with the two-scale factor universality of asymptotical scaling. In that pure
power law scheme, the introduction of the true leading value of B (Xe) = 1.46762 to replace
M

∗
0,L complements our previous introduction of �+ (Xe) = 0.057824 to replace X∗

0,L.
Accordingly, we can formulate two matching equations for βe and ϑ−

L , similar to the ones
for γe [see Eq. (26)] and ϑ+

L [see Eq. (31)]. In the first case using the single constraint in
position, we numerically solve the following equation

βe,expt
(∣∣�τ ∗∣∣) ≡ βe,th

[
ϑ−
L
(∣∣�τ ∗∣∣)] (38)

The theoretical red curve labeled MR of equation βe,th
[
ϑ (|�τ ∗|)] and the experimental

blue curve labeled NB of equation βe,expt
[
(|�τ ∗|)] are reported in Fig. 3(a). Note that the

differences provided by the use of Eq. (34) with two different parameter sets that refer to the
samples N° 1 and 2, respectively, are not visible at the thickness scale of the experimental
blue curve NB in this figure part (a). This part (a) is similar to Fig. 3 of Ref. [32], which
was designed from the experimental data available at the time of the development of the min
and max MR6 crossover functions, but not analyzed as the non-homogeneous domain was
not theoretically investigated. The corresponding curves ϑ−

L (|�τ ∗|) (with the label 1) are
reported in Fig. 3b (where NB3a corresponds to the full pink line, while NB3b corresponds
to the dotted pink line).

In the second case, using both constraints in direction and position, the pure ϑ−
L -

dependence is obtained computing numerically the non-analytical scaling equation

ϑ−
L =

(
ZM

ZM,e
× Be

B

) 1
βe−β

(39)



Equation (39) is similar with Eq. (31) and thus Ising-like similar with Eq. (6) expressed for

the order parameter case

(

ϑ =
(

aM
Z
1
M

) 1
�

)

. The curves ϑ−
L (|�τ ∗|) of Eq. (39) are labeled 2

in Fig. 3b (with a full green line for NB3a and a dotted green line for NB3b).
In Fig. 3, the available (experimental) temperature range is now illustrated by the horizontal

blue segment labeled NB and all the other symbols and labels are similar to the ones in
Fig. 2 for the isothermal compressibility case. As the theoretical crossover function of the
correlation length in the non homogeneous domain is not given in Ref. [5], we have used
the realistic approximation �−

th (t < 0) = �th(t>0)
1.96 to label the upper horizontal axis of Fig.

3. The values of βe indicated by the black, green and purple horizontal arrows, respectively,
correspond to � 1

2
, β 1

2
, and γ −

1
2

(in the non homogeneous region). The related values of

�−
th (t) are given by the respective colored vertical arrows in the range �−

th � 10 − 60.
Here we observe that the crossing temperature for γ −

1
2
is slightly greater than LXe

EAD (where

�−
th � 2.6�−

th (t�) � 3L{1 f } � 75) but lower than
∣
∣�τ ∗

�

∣
∣ = t�

ϑ
� 9 × 10−2 (see the lower

vertical arrow in Fig. 3c), where �−
th � L

{1 f } = 25.585.

4.3 Comparison Between ϑ±
L and ϑ

The relative comparison between ϑ±
L and ϑ values for xenon is made in parts (c) of Figs.

2 and 3, using the residuals R%
(
ϑ±
L
)
ϑ

= 100

(
ϑ±
L
ϑ

− 1

)
(expressed in %). In each figure

the residuals refer to ϑ±
L obtained as a local numerical solution of Eqs. (26) and (38) (curves

labeled 1) and Eqs. (31) and (39) (curves labeled 2) respectively. The curves labeled m
correspond to the respective mean values between curves 1 and 2. In the range �τ ∗ <

10−2, a noticeable increase of the residuals is observed approaching the critical temperature.
That reflects the difference between the Ising values of the critical exponent (γ = 1.241,
β = 0.327) used in the experimental fits and the ones (γ = 1.2395935, β = 0.3257845)
used in the MR scheme. The upper limit of the fitting agreement with a single crossover
parameter corresponds to the abrupt increase of the residuals at large temperature range
(i.e., �τ ∗ > 10−1 in Fig. 2c and |�τ ∗| > 2 × 10−2 in Fig. 3c). The expected identity
ϑ ≡ ϑ±

L in xenon case, is here observed in the green area on each figure. The error-bar
of ±15% underlined in this green area corresponds to an error-bar lower than 1% for the
related effective amplitude (see Appendix 2 in the �+

e case). The corresponding values
1.5 × 10−2 � �τ ∗ � 10−1 in Fig. 2c and 2 × 10−3 � |�τ ∗| � 7 × 10−3 in Fig. 3c, are at
least one and a half order of magnitude larger than LXe

PAD � 0.9×10−4. Moreover, as clearly
indicated on both figures, the condition LXe

EAD < �τ ∗� demonstrates the Ising-like nature of
the extended asymptotic domain for critical xenon and confirms the scaling role of Eqs. (31)
and (39).

Before to formulate the conclusive remarks, it is essential to recall the main consequences
of the identity ϑ ≡ ϑ±

L . This identity was validated from two distinct properties measured at
finite distance from Tc along the critical isochore, above and below Tc. The three-parameters
characterization of the asymptotic Ising-like nature of xenon was then given by the amplitude

set
{
a+
χ ; ξ+;�+

}
of Table 1 in Appendix 1, or the MR parameter set

{
ϑ; g0;ψρ

}
of same

Table 1, while the Ising-like universal features were validated by the control of the PAD
description for the selected three different experimental properties. Therefore, ϑ is well the
single non-universal scale factor that characterizes the xenon critical isochore, while, as a



correlated Ising-like result, ψρ is well the single non-universal scale factor that characterizes
the xenon critical isotherm (despite a non available validation from the analysis of a still
missing measurement of a xenon singular property along the critial isotherm). These two,
non-dimensional, characteristic scale factors ϑ and ψρ introduced in the MR theoretical
asymptotic description of the O (1) universality class are linked, respectively, to the two,
non-dimensional characteristic critical factors Yc and Zc defined at the exact critical point
from the master phenomenological description of the one-component fluid subclass. The
links only need to use the unique length unit for correlation and thermodynamic dimensional
properties, where it is obvious that the master quantity L

{1 f } has thus the subtle double role
to get simultaneously the required link between αc and (g0)−1 and to account for critical
length dimensions of the bare (physical) quantities [9]. Finally, the above xenon description
validated at finite distance from Tc includes the implicit interpolated PAD description. Here
we recall that interpolated means that the resulting theoretical description of the temperature
range 0 < �τ ∗ � LXe

PAD occurs without the support of the experimental data, only using
the relative susceptibility data and the relative turbidity data of Güttinger and Cannell [20]
(added to their corresponding reference susceptibility and turbidity data at Tc + 0.6677K),
and the vapor-liquid coexisting density data of Näger and Balzarini [34], measured in the
temperature range LXe

PAD < |�τ ∗| ≤ LXe
EAD.

5 Remarks and Conclusion

As the single numerical value of the non-universal parameters ϑ±
L appears to be governed by

the susceptibility and coexisting density data measurements at the largest possible tempera-
ture distance beyond the Ising-like preasymptotic domain,we can formulate two summarizing
remarks before concluding.

5.1 Similarity Between the Three-Parameter Crossover Models

The first remark concerns the impact of the application of different crossover models on
the fitting results obtained using the same data measurements. Indeed, for all the models, it
appears that a single free parameter can be defined as a non-universal temperature scaling

factor (so-called temperaturelike Ginzburg number), similar to
(
ϑ±
L
)−1

. Such a result can
be explained only assuming a remarkable collapse of their theoretical Ising-like crossover
shapes on the upgraded MR7 ones, only using the theoretical estimates of three universal
independent amplitudes involved in each model PAD description. This collapse is expected
similar to the MR-master collapse described in Ref. [11] and recalled in Appendix 1. That
expected modelling similarity will be formalized in a forthcoming paper.

5.2 Effective Singular Behavior of the One Component Fluids at Finite
Temperature Distance from Tc

The second remark, complemented by the detailed analysis of the Güttinger and Cannell’s
susceptibility data given in Appendix 2, provides an additional view of the effective uni-
versality analyzed in the 80’s on the basis of scaled equations of state formulated in terms
of two non-universal parameters. The finite temperature range such as �τ ∗ > L f

PAD was
largely investigated in the seventies [41], when the scaling approach of fluid universality was
based on the effective “universal” values of the exponents (as for example γe,EOS = 1.19,
and βe,EOS = 0.355 [41,42] involved in the effective rescaled formulation of a parametric



equation of state). Today, it is well-admitted that the effective critical exponents introduce
an inconsistency into the use of renormalization group results which clouds the analysis of
experimental data. However, in that effective description, the Ising-like nature of the fluid f
was mainly accounted for by introducing only two adjustable parameters in the equation of
state, as only two effective exponents are assumed free (an uncorrect hypothesis since only
two critical exponents are free in the critical asymptotic limit �τ ∗ → 0). Despite this theo-
retical inconsistency, the practical number of fluid-dependent parameters was then conform
to our present analysis in the intermediate temperature range L f

PAD ≤ �τ ∗ ≤ �τ ∗
�. In the

light of the present work, the main reason which explains this effective scaled universality
[43] is not directly the two-scale factor universality but the uniqueness of the scale factor
which characterizes the confluent corrections to scaling due to a single irrelevant scaling
field, as demonstrated precisely in Appendix 2.

5.3 Conclusion

This work, restricted to the simple fluid critical isochore to control the number (three) of
fluid-dependent parameters, gives a new and well-defined procedure to analyze the experi-
mental results selecting one particular theoretical method (field theory crossover) to obtain
accurate results along this critical path. Indeed the three fluid-dependent parameters ϑ , g0,
and ψρ needed to take benefit of the Ising-like universal features predicted by the massive
renormalization scheme asymptotically close to the non-trivial fixed point can be predicted
from the four generalized coordinates of the vapor-liquid critical point. Using such expected
description only validwithin the Ising-like preasymptotic domain, we have shown that, when
the energy (kBTc) and length (αc) units are known, the mean crossover functions for both
the susceptibility in the homogeneous domain and the order parameter density in the non
homogeneous domain provide access to the convenient explicit scaling equations (above
and below Tc) to determine the local value of a single non-universal parameter ϑ±

L in both
(T ≷ Tc) temperature ranges beyond the Ising-like preasymptotic domain. The Ising-like,
scale-factor nature of this critical parameter remains evident using the dimensionless master
value L

{1 f } = αcg0 = 25.585 of a single characteristic length of the one-component fluid
subclass. We have then clearly shown that the resulting value of the non-analytic scaling
equations are entirely governed by the data measurements which are accounted for correctly
by the theoretical crossover description at the largest possible distance from the critical
point. Finally, the magnitude of the resulting deviations and the temperature range where
these deviations become significant to invalidate the uniqueness of the non-universal para-
meter defined by the identity ϑ ≡ ϑ±

L , are accounted for exactly in the Ising-like extended

asymptotic domain �τ ∗ ≤ L f
EAD, corresponding to the theoretical correlation length range

�th (t = ϑ�τ ∗) � 2.6�th
(
t� = ϑ�τ ∗

�

) � 3L{1 f } � 75. Here t� =
(

1
S2

)2 ∼= 1.9× 10−3 is

the crossover temperature that characterizes the exchange between the prominent Ising-like
nature of the confluent exponent due to the value � = 0.50189 approaching the non-trivial
fixed point [t � t�], and its prominent mean-field-like nature due to the value �MF = 1

2
approaching the Gaussian fixed point [t � t�]. The main consequence is that the relevant
scaling field and the single irrelevant confluent field have the same Ising-like, fluid-dependent
scale factor along the critical isochore. Xenon is selected here as being the single one-
component fluid with accurate measurements of two distinct singular properties above and
below Tc to support the procedure. Therefore, thanks to the precise estimates of the universal
features from theMR scheme along the primary path at h = 0, xenon close to its vapor-liquid
critical point is now an Ising-like standard without adjustable parameters along its critical



isochore, similar to the O (1) symmetric
(
�2

)2
field theory and the N = 1-vector model of

three-dimensional (3D) Ising-like systems.
From this Ising-like standard situation provided by critical xenon, the real extension and

amplitude of the singular behavior of the fluid properties can be estimated in a similar manner
for any one-component fluid for which the vapor-liquid critical point is localized in the pV T
phase surface, thanks to the use of the master crossover functions given in [11] and/or the
CMM model of the equation of state given in [21]. Therefore, the comparisons between
simple fluid experiments and theory will be improved as they can be performed, now [44]
and in the future, without adjustable non-universal parameter.
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Appendix 1: Expected Fluid Characterization Within the PAD

MR Characterization of the PAD for the O (1) Universality Class

The PAD description from the three theoretical mean crossover functions [9] of present
interest writes as follows:

�PAD,th (t) =
(
Z

+
ξ

)−1
t−ν

(
1 + Z

1,+
ξ t�

)
(40)

χPAD,th (t) =
(
Z

+
χ

)−1
t−γ

(
1 + Z

1,+
χ t�

)
(41)

mPAD,th (|t |) = ZM |t |β (1 + Z
1
M |t |�) (42)

where the theoretical amplitude set,

S
{MR}
A =

⎧
⎪⎪⎨

⎪⎪⎩

Z
1,+
χ = 8.56347

(
Z

+
ξ

)−1 = 0.471474
(
Z

+
χ

)−1 = 0.269571

⎫
⎪⎪⎬

⎪⎪⎭
(43)

is here selected to characterize the universal asymptotic singular behavior of the N = 1-vector
model in three dimension for the O (1) universality class.2 Indeed, in Eqs. (40) to (42), the
remaining theoretical amplitudes Z1,+

ξ = 5.81623, ZM = 0.937528, and Z
1
M = 7.70712 are

conform with the following universal combinations

(
Z

+
ξ

)−d
Z

+
χ (ZM )2 =

(
R+

ξ

)d

RC
= Qc (44)

Z
1,+
ξ

Z
1,+
χ

= 0.67919 (45)

Z
1
M

Z
1,+
χ

= 0.9 (46)

2 The related exponent set is {ν = 0.6303875, γ = 1.2395935,� = 0.50189}, with the quoted precision
needed by the contruction of themean crossover functions [9] (asmentioned in the Introduction). Consequently,
β = 1

2 (dν − γ ) = 0.3257845 in Eq. (42) and α = 2− dν = 0.1088375 when the specific heat case is added
to close the hyperscaling universality analysis along the critical isochore.



with RC = αZ+
C

Z
+
χ (ZM )2

= 0.0574, R+
ξ =

(
Z

+
ξ

)−1 (
αZ+

C

) 1
d = 0.2697, and Qc = 0.3418 [8]

(see the definition of Qc in the Introduction). The theoretical amplitude Z
+
C = 1.719788

corresponds to the specific heat case above Tc.3

The estimated validity range t ≤ LIsing
PAD of Eqs. (44) to (46) extends to

LIsing
PAD � �

(
1

S2

)2 ∼= 1.9 × 10−6 (47)

with � = 10−3 and S2 = 22.9007 [9].

Master Description of the PAD for the {1 f }-Universality Subclass

The above MR PAD description can now be restricted to the so-called master description of
the PAD for the {1 f }-subclass [11], by introducing only three constant scale factors �{1 f },
�{1 f }, L{1 f }, through the following asymptotic equations:

t = �{1 f }T ∗
h = �{1 f }H∗

�PAD,th (t) = L
{1 f }�∗ (T ∗)

(48)

where T ∗ andH∗ are the master temperature-like and magnetic-like fields, respectively. The
master constant set S{1 f }

SC ,

S{1 f }
SC =

⎧
⎨

⎩

�{1 f } = 4.288 × 10−3

L
{1 f } = 25.585

�{1 f } = 1.75505 × 10−4

⎫
⎬

⎭
(49)

characterizes the {1 f }-subclass to be conform with the universality class of the three-
dimensional, uni-axial, Ising-like systems. Indeed, the three corresponding master equations
can be written as follows:

�∗ (T ∗) = Z+
ξ T ∗−ν

(
1 + Z1,+

ξ T ∗�
)

=
(
L

{1 f })−1
�PAD,th (t) (50)

X ∗ (T ∗) = Z+
χ T ∗−γ

(
1 + Z1,+

χ T ∗�
)

=
(
L

{1 f })d (�{1 f })2 χPAD,th (t) (51)

M
(∣∣T ∗∣∣) = ZM

∣∣T ∗∣∣β
(
1 + Z1

M

∣∣T ∗∣∣�
)

=
(
L

{1 f })d �{1 f }mPAD,th (|t |) (52)

where the master amplitude set,

S{1 f }
A =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z1,+
χ = Z

1,+
χ

(
�{1 f })� = 0.555

Z+
ξ = (

L
{1 f })−1 (

�{1 f })−ν
(
Z

+
ξ

)−1 = 0.5729

Z+
χ = (

L
{1 f })d (�{1 f })2 (�{1 f })−γ

(
Z

+
χ

)−1 = 0.11975

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(53)

then characterizes the master descriptions of the PAD for the {1 f }-subclass. Additional mas-

ter amplitudes Z1,+
ξ = Z

1,+
ξ

(
�{1 f })� = 0.37695, ZM = (

L
{1 f })d �{1 f } (�{1 f })β

ZM =
0.4665, and Z1

M = Z
1
M

(
�{1 f })� = 0.4995 are conform with Eqs. (44) to (46). For the

3 Our present scaling approach uses the correlation length and the susceptibility as independent properties in
terms of the two-scale-factor universality. We can then ignore the universal critical value of the background
constant of the heat capacity, which is generally mixed with the non-universal contribution of the regular
background terms in the one-component fluid case.



specific heat case above Tc, the master amplitude Z+
C = (

L
{1 f })d (�{1 f })2−α

αZ+
C =

0.104324 closes the hyperscaling universality in conformity with the universal value of

R+
ξ = (

Z+
C

) 1
d Z+

ξ = 0.2696 (with RC = Z+
C Z+

χ

(ZM )2
).

The master extension L{1 f }
PAD of the Ising-like preasymptotic domain of the {1 f }-subclass

corresponds to

L{1 f }
PAD = LIsing

PAD

�{1 f } ∼= 4.7 × 10−4 (54)

Physical Description of the PAD for a (Non-quantum) One-Component Fluid

Three Amplitude Characterization of the Simple Fluid PAD

Dimensionless Eq. (1) for the correlation length ξ∗
expt (�τ ∗) and the isothermal compress-

ibility κ∗
T,expt (�τ ∗) in the homogeneous domain �τ ∗ > 0, and for the spontaneous

non-zero value of the (symmetrical) order parameter density �ρ̃LV,expt (|�τ ∗|) in the non-
homogeneous domain �τ∗ < 0, can be written as follows

ξ∗
expt

(
�τ ∗) = ξ+ (

�τ ∗)−ν
[
1 + a+

ξ

(
�τ ∗)�] (55)

κ∗
T,expt

(
�τ ∗) = �+ (

�τ ∗)−γ
[
1 + a+

χ

(
�τ ∗)�] (56)

�ρ̃LV,expt
(∣∣�τ ∗∣∣) = B

∣∣�τ ∗∣∣β
[
1 + aM

∣∣�τ ∗∣∣�
]

(57)

where
�ρ̃LV,expt = ρL − ρV

2ρc
(58)

is the reduced density difference between the liquid (ρL ) and vapor (ρV ) coexisting phases.
Among the three leading amplitudes ξ+, �+ and B, only two are characteristic of the

fluid while among the three confluent amplitudes a+
ξ , a+

χ , and aM , only one is a characteristic
crossover-like parameter of the fluid. Selecting here the characteristic amplitude set

SA, f =
{
a+
χ ; ξ+;�+} (59)

the remaining amplitudes B, a+
ξ , and aM of Eqs. (55) to (57) can thus be calculated using the

universal amplitude ratios and combinations of Eqs. (44) to (46) with R+
ξ = (

A+) 1
d ξ+ and

RC = A+ �+
B2 . A

+ is the additional leading amplitude of the asymptotic singular behavior of
the specific heat at constant volume along the critical isochore in the homogeneous domain
�τ ∗ > 0.

Four Critical Parameters as Entry Data

The entry material to estimate SA,Xe =
{
a+
χ ; ξ+;�+

}
is provided by the following minimal

set of four critical coordinates (neglecting here the quantum effects [39,45])

Qmin
c,ap̄ =

{
Tc; pc; v p̄,c; γ

′
c

}
(60)

which localizes the fluid critical point on the phase surface of equation of state�
p
ap̄

(
p, v p̄, T

)

= 0. The subscript ap̄ recalls for a thermodynamic description that starts from the Helmholtz



free energy of the xenon particle. v p̄ = m p̄
ρ

= 1
n is the molecular volume and γ

′
c is the

common critical direction at the critical temperature of the critical isochoric line and the
saturation pressure curve in the p; T diagram.

Using Eq. (60), the length and energy units are

αc =
(
kBTc
pc

) 1
d = (βc pc)

− 1
d (61)

(βc)
−1 = kBTc (62)

respectively (with d = 3), while pc ∼ [ energy
volume

]
scales all the energy densities for a fluid

of constant total volume unit (V = 1). Therefore, ξ∗
expt = ξexpt

αc
in Eq. (55) and κ∗

T,expt =
κT,expt pc in Eq. (56), with ξ+ = ξ+

0
αc

and �+ = �+
0 pc, where ξexpt, κT,expt, ξ+

0 , and �+
0

are the related dimensional quantities. The superscript star labels dimensionless quantities
obtained only using αc and (βc)

−1 when the thermodynamic properties are normalized per
particle [28–30].

However, Eq. (58) also introduces the practical dimensionless form ρ̃ = ρ
ρc

of the (mass)

density, which complements the practical dimensionless forms μ̃ = μρρc
pc

of the conjugated
chemical potential μρ per mass unit [37,42] . The practical dimensionless variables that use
critical parameters such as ρc and ρc

pc
are then decorated by a tilde. The definition of μ̃ρ

introduces another unit pc
ρc

∼ [ energy
mass

]
for specific energies, which differs from

(
m p̄βc

)−1 by
the usual critical compressibility factor Zc defined as

Zc =
pc
ρc

(
m p̄βc

)−1 = pcm p̄

ρckBTc
(63)

m p̄ = M
N , where M and N are the total mass and total particle number of the fluid system,

respectively. Similarly, the constant total mass unit (M = 1) of the fluid system introduces the
critical specific volume vc,M=1 = 1

ρc
, which differs from the volume of the critical interaction

cell vc,I = kBTc
pc

= (αc)
d [28] by the critical mass factor

m p̄
Zc

= vc,M=1
vc,I

(i.e., the mass of the
critical interaction cell). That provides alternative choice between two pairs of energy and
length units which originate from thermodynamics normalized, either per particle, or per
mass unit, respectively. However, at exact critical point (�τ ∗ = 0;�ρ̃ = 0), the amount of
matter

m p̄
Zc

is precisely contained within the microscopic interaction cell and the extensive

nature of the fluid remains only characterized by 1
Zc

, i.e., the particle number which fill

this critical interaction cell. Along the critical isochore, 1
Zc

= constant is like a constant

coordination number (of typical value ∼ 3.5). Only vc,I = (αc)
d takes physical meaning in

terms of the short ranged molecular interactions between the interacting 1
Zc

particles, leading
to better understanding of the correlation length value when it is measured in unit of αc, i.e.,
in unit of the critical interaction cell size [28–30].

In such a description in terms of the properties of the critical interaction cell, it is then
essential to note that the use of Eq. (60) gives unequivocal access to the two characteristics
scale factors Zc and Yc of each one-component fluid belonging to the {1 f }-subclass of
universality. Zc is then the first asymptotic scale factor, characteristic of the singular master
behavior of the one-component fluid along the critical isotherm while the second scale factor
Yc, characteristic of the singular master behavior of the one-component fluid along the critical
isochore, is

Yc = γ
′
c
Tc
pc

− 1 (64)



In Eq. (64), γ
′
c
Tc
pc

is the usual critical Riedel factor (of typical value∼ 5−6). More precisely,
Yc is here above defined from the limiting critical slope of the thermodynamic potential
4 p

T , which is expressed in units of kB
(αc)

d = pc
Tc
. Yc is then the single critical parameter

only dependent on the selected critical length unit of Eq. (61), which introduces the single
characteristic value of the entropy per particle5 at the critical point [46]. Therefore, the
above master asymptotic behavior of the {1 f }-subclass assumes that all the thermodynamics
properties of the interaction cell are master constants whatever the one-component fluid,
except two of them, i.e., Zc and Yc.

Three Scale Factor Characterization of the Simple Fluid PAD

The three scale factor set
S{MR}
SF, f = {

ϑ; g0;ψρ

}
(65)

characterizes each one-component fluid f as a system satisfying the MR Eqs. (40), (41), and
(42). This set is introduced through the following linearized asymptotic equations between
theoretical and physical quantities:

t = ϑ�τ∗ (66)

h = ψρ�μ̃ (67)

�PAD,th (t) = g0ξexpt
(
�τ ∗) (68)

Equivalently, the three scale factor set

S{1 f }
SF, f = {

Yc;αc; Zc
}

(69)

characterizes eachone-component fluid f as a systemsatisfying themaster description ofEqs.
(50), (51), and (52). This set is obtained through the following similar linearized asymptotic
equations between master and physical quantities:

T ∗ = Yc�τ ∗ (70)

H∗ = (Zc)
− 1

2 �μ̃ (71)

�∗ (T ∗) = (αc)
−1 ξexpt

(
�τ ∗) (72)

TheMR andmaster scale factors characteristics of each one-component fluid are then related
by:

ϑ (Yc)
−1 = �{1 f } (73)

g0αc = L
{1 f } (74)

ψρ (Zc)
1
2 = �{1 f } (75)

Equation (74) links g0 defined for {t = 0; h = 0} to αc defined for {�τ ∗ = 0;�μ̃ = 0}.
Consequently, the MR, master and then physical PAD descriptions are interrelated through

4 The thermodynamic potential p
T corresponds to the use of the Massieu form of the Grand Potential pV

when thermodynamics is normalized per unit volume.
5 The entropy per particle s p̄ is related to the temperature derivatives γ

′ =
(

∂p
∂T

)

v p̄
and δ

′ =
(

∂μ p̄
∂T

)

v p̄
,

which, at the critical point, lead to the following dimensionless equation s∗̄p,c = Zc (Yc + 1) − x ∗̄
p,c , where

s∗̄p,c = s p̄,c
kB

and x ∗̄
p,c = δ

′
c

kB
are two particle quantities made dimensionless without reference to the physical

scales αc and (βc)
−1.



the following asymptotic equations between their corresponding fields:

t = ϑ�τ∗ = �{1 f }Yc�τ ∗ (76)

h = ψρ�μ̃ = �{1 f } (Zc)
− 1

2 �μ̃ (77)

�PAD,th (t) = g0ξexpt
(
�τ ∗) = L

{1 f }ξ∗
expt

(
�τ ∗) (78)

We note that, χ̃T,expt =
(

∂�ρ̃
∂�μ̃

)

�τ∗ =
(

ρ
ρc

)2
pcκT,expt. As a result, along the crit-

ical isochore �ρ̃ = 0 , χ̃T,expt (�τ ∗) ≡ κ∗
T,expt (�τ ∗) is then Ising-like similar to

the theoretical susceptibility χth (t) =
(

∂mth
∂h

)

t
, where mth = (

L
{1 f })−d (

ψρ

)−1
�ρ̃ =

(
L

{1 f })−d (
�{1 f })−1 M∗ = (

L
{1 f })−d (

�{1 f })−1
(Zc)

1
2 �ρ̃. Accordingly, the asymptotic

matching between MR and physical quantities of interest is provided by the equations:

�PAD,th (t) = L
{1 f }ξ∗

expt

(
�τ ∗) (79)

χPAD,th (t) =
(
L

{1 f })−d (
ψρ

)−2
κ∗
T,expt

(
�τ ∗) (80)

mPAD,th (|t |) =
(
L

{1 f })−d (
ψρ

)−1
�ρ̃LV,expt

(∣∣�τ ∗∣∣) (81)

while the equations:

�∗ (T ∗) = ξ∗
expt

(
�τ ∗) (82)

X ∗ (T ∗) = Zcκ
∗
T,expt

(
�τ ∗) (83)

M
(∣∣T ∗∣∣) = (Zc)

1
2 �ρ̃LV,expt

(∣∣�τ ∗∣∣) (84)

provide similar asymptotic matching between master and physical quantities. Above match-
ing equations are guarantees for uniqueness [7] of the length and energy units in the
dimensionless singular behaviors of thermodynamic and correlations functions (whatever
the one-component fluid).

Finally, the expected estimation of SA, f of Eq. (59) is obtained from the term to term
matching in Eqs. (79), (80) and (83), (82), leading to:

SA, f =

⎧
⎪⎪⎨

⎪⎪⎩

a+
χ = ϑ�

Z
1,+
χ = (Yc)� Z1,+

χ

ξ+ = (
L

{1 f })−1
ϑ−ν

(
Z

+
ξ

)−1 = (Yc)−ν Z+
ξ

�+ = (
L

{1 f })d (ψρ

)2
ϑ−γ

(
Z

+
χ

)−1 = (Zc)
−1 (Yc)−γ Z+

χ

⎫
⎪⎪⎬

⎪⎪⎭
(85)

Wenote the top-downhierarchy ofEqs. (85) that link SA, f andS
{MR}
A . Top equation shows that

ϑ characterizes the lowest order of the fluid confluent corrections to scaling in an unequivocal
manner. Then medium equation defines the dimensionless number L{1 f }, which relates the
microscopic length (g0)−1 and the thermodynamic length scale αc. Finally, bottom equation
introduces the scale factor ψρ of the order parameter density. ψρ can be estimated using
any leading amplitude chosen among the ones of the extensive singular properties, as here
�+ in the isothermal compressibility case. When the dimensionless number L{1 f } takes its
master value of Eq. (49), the fluid scale factors ϑ and ψρ are then unequivocally related to
Yc and Zc, respectively, as shown by Eqs. (73) and (75). The correlation length is measured
in units of αc [39] and the thermodynamic energy densities are well measured in units of
[
βc (αc)

d]−1 = pc [16,29,30], as previously expected. The top Eq. (85) shows that any first
term of the confluent corrections to scaling is governed by a single characteristic parameter



(i.e., Yc) of the critical interaction cell. In other words, along the critical isochore, the first-
order contribution of the confluent corrections of any fluid is well due to the expected master
properties of its critical interaction volume, only characterized by the two dimensionless
numbers Yc and Zc (see also Ref. [46]).

In addition, Eqs. (44) to (46) lead to:

B = (
L

{1 f })d ψρϑβ
ZM = (Zc)

− 1
2 (Yc)β ZM

a+
ξ = ϑ�

Z
1,+
ξ = (Yc)� Z1,+

ξ

aM = ϑ�
Z
1
M = (Yc)� Z1

M

(86)

The estimates of the amplitudes involved in Eqs. (55) to (57) are thus closed for any fluid
case. The value of the dimensional amplitude ξ+

0 is,

ξ+
0 = αcξ

+ (87)

It is also convenient to add the following amplitude estimation for the specific heat case

A+ =
(
L

{1 f })d ϑ2−ααZ+
C = (Yc)

2−α Z+
C (88)

in order to control the Ising-like universal values of RC = A+�+
B2 , R+

ξ = (
A+) 1

d ξ+ and Eqs.
(44) to (46) only using the minimal set of four critical coordinates of Eq. (60).

In an alternative manner, we recall that the knowledge of S{MR}
SF, f of Eq. (65), or S{MR}

SF, f of
Eq. (69), equivalently, provides also access to the asymptotic fluid characterization exchang-
ing the unknown leading amplitude set SA, f by the leading prefactor set S{MR}

1CP,L, f =
{
ϑ;L∗

0,L;X∗
0,L

}
of Eq. (17), when the identity ϑ ≡ ϑL is assumed correct over an extended

temperature range. In such a case, the respective estimations of the prefactorsL∗
0,L,X

∗
0,L, and

M
∗
0,L by Eqs. (24), (36), and (37) are made to conformity to the two-scale-factor universality,

while the following equation for the prefactor C∗
0,L in the specific heat case [11]

C
∗
0,L = (

L
{1 f })d ϑ2−α

= (
L

{1 f })d (�{1 f })2−α
(Yc)2−α

(89)

guaranties the validity of the hyperscaling universal combination R+
ξ , through the identity

(
C

∗
0,L

) 1
d
L

∗
0,L ≡ 1, which complements the identity of Eq. (16) (or C∗

0,L
X

∗
0,L(

M
∗
0,L

)2 = 1,

equivalently).

Extension of the Ising-Like Preasymptotic Domain of a Simple Fluid f

The value of ϑ enables the estimation of L f
PAD, which fixes the physical extension of the

Ising-like preasymptotic domain [9] from the equation

L f
PAD � LIsing

PAD

ϑ ( f )
(90)

This important result can be recovered from the value of Yc and Eq. (54), using then the
equation

L f
PAD � L{1 f }

PAD

Yc ( f )
(91)



The crucial problem to define the temperature range of validity of Eqs. (55) to (57) is now
solved quantitatively. Indeed, using Eq. (54) and a typical value of Yc ( f ) ∼ 4− 5 for f , the
validity range of Eqs. (55) to (57) is �τ ∗ � L f

PAD ∼ 10−4, typically.
However, in such a small temperature range, the experimental control of the above three

parameters characterization of a simple fluid cannot be easily performed since accurate
measurements of the singular properties are generallymade in a temperature rangewhich does
not reach this small Ising-like preasymptotic domain. As a result, the Ising-like equivalence
between the amplitudes and the scale factors is not obtained with the required precision from
the fits of the experimental results.

Xenon Case

Xenon Critical Coordinates

The xenon critical temperature was fixed to the value Tc = 289.733 ± 0.002K recently
recommended by Gillis et al [47,48] from their critical temperature determination of the
stirred xenon filling its acoustic resonator cell submitted to a ramp of temperature downward
(in this experiment the absolute temperature precision is±15mKfrom reference to the ITS-90
temperature scale). This value agreeswith the two respective values Tc = 289.731±0.0053K
and Tc = 289.734 ± 0.003K measured (with an absolute precision of ±50mK) by Berg
and al [49] from observation of the vapor-liquid meniscus appearance and disappearance
in the “Critical Viscosity of Xenon (CVX)” experiment. These central values, and their
relative uncertainties essentially due to the thermostat temperature control, compare well
with Tc = 289.740± 0.003K obtained by Schneider et al from pV T measurements [50,51]
and densitymeasurements of coexisting liquid and vapor phases [52,53]. This latter valuewas
generally used as a xenon critical temperature in previous review analyzes [28,37,42] using
the ITS-68 temperature scale. Indeed, the agreement was noticeable with Tc = 289.747 ±
0.010K obtained by Cannell and Benedek [54] from measurements of Brillouin spectrum,
and Tc = 289.736 ± 0.002K obtained by Smith et al [55] from light scattering intensity
measurements. However, the Gillis et al’s central value disagrees with some other values of
similar relative precision (as for example: Tc = 289.765 ± 0.005K from Baidakov et al’s
[56,57]; Tc = 289.790±0.001K fromGüttinger and Cannell [20]; Tc = 289.752±0.001 K
and Tc = 289.789 ± 0.002K from Balzarini et al’s [34]).

Our calculated critical pressure pc = 5.84007 ± 0.00050MPa accounts for the ther-
modynamic continuity on pressure measurements crossing the critical temperature along
the critical isochore and assumes that the Habgood and Schneider’s isotherm p (ρ) at
(Tc)HS = (273.15 + 16.59) K corresponds to the critical isotherm of xenon.

Our selected value of ρc = 1113 kgm−3 has an uncertainty of ±5 kgm−3 (∼ ±0.5%),
which accounts for the ρc values of Schneider et al’s (ρc = 1105 ± n.a. kgm−3 and
ρc = 1099 ± n.a. kgm−3) [50–53], Cornfeld and Carr’s (ρc = 1111.2+1.9

−3.4 kgm
−3 for

three different estimations) [35], Baidakov et al’s (ρc = 1112.8 ± n.a. kgm−3) [56],
and Balzarini et al’s (ρc = 1099 ± n.a. kgm−3 [36], ρc = 1116.0 ± 1.7 kgm−3 and
ρc = 1114.7 ± 1.7 kgm−3 [34]). All the above determinations of the critical density were
obtained without any measurable curvature effect of the rectilinear density diameter.

The valueγ
′
c = 0.1197±0.0006MPaK−1 (∼ ±0.5%)was estimated from the joint analy-

sis of the pV T measurements of Habgood and Schneider [50,51] and Michels et al [58], to
account for the small differences on the critical density values. As a matter of fact, in spite of
numerous values reported in the seventies literature, the determination of this finite critical



derivative was never accurately analysed in xenon case [28]. We recall that, at the late sixties,

the knowledge of the derivative
(

∂p
∂T

)

ρ
in the vicinity of the critical point was mandatory

needed when the objectives were to define the scaled forms of the equation of state (see Refs.
[43,59–63]) and to test their related computations of the thermophysical property singularities

(since the dimensionless quantity T
pc

(
∂p
∂T

)

ρc
—the so-called Riedel factor—appears in many

thermodynamic relations). In xenon case, the dimensionless value Tc
pc

γ
′
c = 6.02 was initially

obtained by Vicentini-Missoni et al [60] from their fitting of the pV T measurements of Hab-
good and Schneider (with pc = 5.83MPa, Tc = 289.75 K , and ρc = 1110 kgm−3, as xenon
critical coordinates). The related uncertainty on the dimensional value γ

′
c = 0.1211MPaK−1

was not given, in spite of the fact that this value was higher (∼ +1.8%) than the one
γ

′
c = 0.1189MPaK−1 initially found by Habgood and Schneider from a self-consistent

analysis of the derivative
(

∂p
∂T

)

ρ
graphically deduced from their pV T measurements. Sub-

sequently, several published values (such as γ
′
c = 0.11916MPaK−1 from Cannell and

Benedek [54], γ
′
c = 0.12027MPaK−1 from Smith et al [55], γ

′
c = 0.1196MPaK−1

from Swinney and Henry [64], γ
′
c = 0.1192 ± 0.0012MPaK−1 from Garrabos [28]) were

obtained from these Habgood and Schneider’s data source and same xenon critical parame-
ters. On the other hand, Badaikov et al have determined two values, γ

′
c = 0.11865MPaK−1

[56], and γ
′
c = 0.11977MPaK−1[57], from their vapor pressure data below Tc. Berg et al

[49,65] have used the dimensionless value Tc
pc

γ
′
c = 5.65 (with an uncertainty of ±2.9%),

in their viscosity data analysis of the CVX experiment with ρc = 1110 kg m−3. Their
related value γ

′
c = 0.113686MPaK−1 is significantly lower (� −5.%) than our selected

value γ
′
c = 0.1197MPaK−1. More recently, Gillis et al, selecting the “highest” value

ρc = 1116 kg m−3 of the critical density, have used the dimensionless value Tc
pc

γ
′
c = 5.9253

calculated by Swinney and Henry for the presumable critical isochore ρ = 1110 kg m−3,
attributing then an uncertainty of 0.2% on the corresponding value γ

′
c = 0.1195MPaK−1.

Therefore, even today, the largest uncertainty in the xenon critical coordinates of Eq. (92)
comes from the determination of γ

′
c , which is then dependent of the selected value for the

critical density. In the future, a better estimation of γ
′
c needs that the two derivatives

(
∂p
∂T

)

ρ

and

[
∂
∂ρ

(
∂p
∂T

)

ρ

]

T
are determined simultaneously in the vicinity of the critical point in order

to correctly account for the contribution of the relative uncertainty in the ρc value.

Xenon Critical Parameters

The selected critical coordinates of xenon are:

Tc = 289.733K,

pc = 5.84007MPa,
ρc = 1113 kgm−3 or v p̄,c = 0.19596 nm3,

γ
′
c = 0.1197MPaK−1,

m p̄ = 2.1805 × 10−25 kg.

(92)

Two remarks can be formulated.

(i) The values of Eq. (92) are in remarkable agreement with the ones defined by Gillis et al
[47] in their analysis of the sound attenuation (in the frequency range 100 < f (Hz) <

7500) by thermoacoustic layers between solid surfaces and xenon at critical density.



Table 1 Characteristics parameters in the case of xenon

(βc)
−1 4.0003×10−21 J

S{1 f }
SF,Xe Master scale

factors
S{MR}
SF,Xe MR scale

factors
SA,Xe Physical

amplitudes
S{MR}
1C,L,Xe MR prefactors

Yc 4.93846 ϑ 0.0211752 a+
χ 1.23709 ϑL 0.0211752

αc 0.881498 nm g0 29.0245 nm−1 ξ+ 0.209338 L
∗
0,L 0.444008

Zc 0.28602 ψρ 3.28165 ×
10−4

�+ 0.0578238 X
∗
0,L 0.21454

Auxiliary

B 1.46762 M
∗
0,L 1.56555

a+
ξ 0.840217

aM 1.11338

A+ 2.13835 C
∗
0,L 11.424187

ξ+
0 0.184531 nm

(ii) The values of Eq. (92) are of basic interest using the scaled forms of the equation of
state of xenon [43,59–63,66]. Especially in the linear-model parametric equation of state
[61,63] and the Ho and Lister’s [61] restricted cubic model of the equation of state, the
singular behavior of each fluid is characterized by only two dimensionless numbers (k
and a in standard notations). Now we are able [11] to estimate the xenon parameters k
and a only from our above values of the critical point coordinates. However, we recall
that these parametric models are not quantitatively exact in regards to the Ising-like
universal combinations of the leading amplitudes [67].

Using all the above equations given in this Appendix 1, we can estimate the related values
of the xenon characteristic parameters given in Table 1, noting finally that the Ising-like
preasymptotic domain of xenon corresponds to the temperature range:

T − Tc � TcLXe
PAD = 26mK (93)

Appendix 2: Effective Power Law Analysis

To replace the arbitrary truncatedWegner-like expansion of Eq. (25), a useful simple function
to fit the isothermal compressibility datameasured at finite distance to the critical temperature
along the critical isochore of xenon is the pure power law:

κ∗
T,fit = �+

e,fit

(
�τ ∗)−γe,fit (94)

with adjustable non-Ising exponent γe,fit and effective amplitude �+
e,fit. The values of γe,fit

and�+
e,fit are then associated to the limited experimental temperature rangeLXe

PAD < �τ ∗
min ≤

�τ ∗ ≤ �τ ∗
max of the fit. For example, Güttinger and Cannell have claimed that the correction

to scaling terms are important by demonstrating in Fig. 2 of Ref. [20], that their suscep-
tibility measurements of high relative precision (∼ ±0.2%) deviate systematically from

Eq. (94) where γe,GC = 1.206 and �+
e,GC = 0.6390χT,ρ

(
�τ ∗

or

) pc,GC(Tc)−1.206

(ρc,GC)
2 = 0.07867,

with ρc,GC = 1110 kgm−3 and pc,GC = 5.84MPa . Looking carefully to their figure, we



note that γe,GC � 1.206 corresponds to the slope of the tangent line to the experimental
behavior at the relative temperature distance �τ ∗

γe,GC=1.206 � 4.35 × 10−3, i.e., the local
temperature T � Tc + 1.25K where the deviation curve shows an extrema (around −4 %).
Hereafter, we have reanalyzed this result considering the isothermal compressibility data cal-
culated from the equation κ∗

T,expt = χT,ρ,expt
pc

(ρc)
2 χT,ρ

(
�τ ∗

or

)
, with ρc = 1113 kgm−3 and

pc = 5.84007MPa. Using Eq. (94), we have then fitted the twelve data covering the restricted
temperature range 9.115×10−4 ≤ �τ ∗ ≤ 1.95×10−2 (0.26K ≤ T −Tc ≤ 5.65K) defined
by the segment labeled FIT and the pale grey area in Fig. 4. The mean (geometrical) value〈
�τ ∗

fit

〉 = √
�τ ∗

min�τ ∗
max = 4.215 × 10−3 of this selected temperature range is close to the

one of the residual extrema observed in Fig. 4. As expected, our fitting result

κ∗
T,fit = 0.07551466

(
�τ ∗)−1.205879 (95)

shows an excellent agreement with the Güttinger and Cannell’s result (the amplitude differ-
ence accounting for the � −4% deviation noted above). We note the significant difference
between the above value �+

e,fit = 0.07551466 of the effective amplitude and our previous
calculated value �+ = 0.0578238 [see Eq. (85)] of the true asymptotic amplitude. In Fig. 4,

we have reported the residuals %R
(
κ∗
T

) = 100
(

κ∗
T,

κ∗
T,fit

− 1
)
(expressed in %) for all the data,

enlightening the data dispersion at the ±1% level in the blue grey area, which corresponds
to our restricted fitted range (for easy link with our previous figures, the lower and upper
horizontal axes are labeled in a similar manner). Then, our Fig. 4 complements Fig. 2 of
Ref. [20] after a −4% zero shift in the vertical axis and a magnification of the high relative
precision (∼ 0.2%) of the measurements.

However, it is essential to recall that the true experimental uncertainty of the amplitude
value �e,fit = 0.07551466 mainly remains related to the error-bar (∼ ±1.5%) on the cal-
ibration of the susceptibility data. To illustrate some other secondary effects, we have also
estimated the residuals for the fits that use Eq. (25) with γ = 1.241, � = 0.496, and the
following three sets of parameters

(i) �+ = 0.0577, a+
1χ = 1.29, a+

2χ = −1.59, and a+
3χ = 1.9, i.e., the best fitting parameters

obtained by Güttinger and Cannell with ρc,GC = 1110 kgm−3, which corresponds to the
dotted black curve labeled GC4 in Fig. 4;

(ii) �+ = 0.0577
(

ρc
ρc,GC

)2
and same values of a+

1χ = 1.29, a+
2χ = −1.59, and a+

3χ = 1.9,

leading to the full red curve labeled 1, which shows the effect of our critical density value;
(iii) the latter parameter set and a shift of 0.5mK in Tc, illustrated by the dotted pink curve

labeled 2, which accounts for the realistic increase of the experimental uncertainty near
Tc.

The relative differences between curves 1 and 2 increase approaching the critical temperature.
However this difference disappears in our fitted temperature range. The shape and amplitude
differences between curves 1 and GC4 combine the effects due to the respective critical
density values and the shift of 0.5mK in Tc, butwithoutmodification of the temperaturewhere
occurs the extrema. Finally, in Fig. 4, the well-defined horizontal coordinate of the extrema
of the deviation curves is the most important consequence of the high relative precision of
the Güttinger and Cannell’s measurements. That demonstrates that the precise value (here
γe,fit = 1.205879) of the effective exponent can be measured at a well-defined temperature
distance to Tc (here � Tc + 1.26K).

Now, we can refine the above power law analysis, accounting thus for the theoretical
effective behavior Z

+
χ,e

(
γe,th

)
of Fig. 1. The condition γe,th = 1.205879 is obtained at





we obtain ϑe,fit = 0.028466, i.e., a value ∼ 35% higher than our asymptotic value ϑ =
0.0211752. Such an important discrepancy needs to complement our understanding of the
role of the experimental uncertainty on �+

e,fit in Eq. (96).
Indeed, a fitting procedure where the effective exponent and amplitude are free in min-

imizing the mean deviations over a finite temperature range remains incomplete. We must
then introduce the local tangent envelope of the κ∗

T (�τ ∗)-curve defined by the equation
κ∗
T,env = �+

e,env (�τ ∗)−γe,fit , where �+
e,env is such as �+

e,fit �= �+
e,env. For example, in Fig. 4,

we can observe that the true tangent (pink) line of slope γe,fit = 1.205879 has an amplitude
� 0.7% lower than the amplitude�+

e,fit, thanks to the 0.2% relative precision of theGüttinger
and Cannell measurements. We obtain �+

e,env = 0.074986 (see the point P in Fig. 1). More
generally, from Eq. (96) and a careful analysis of the fit deviations, we can always write
�+
e,env = �+

e,fit

(
1 + δ�e,fit

)
and then define the value ϑe,env related to the tangent envelope

by the equation

ϑe,env = ϑe,fit

(
�+
e,env

�+
e,fit

) 1
γ−γe,fit

� ϑe,fit

(
1 + δ�e,fit

γ − γe,fit

)
(97)

From the Güttinger and Cannell’s results of Fig. 4 where δ�e,fit � −0.007 and ϑe,fit �
0.028466, we obtain ϑe,env � 0.022556 which is now in better agreement (+6.5%) with
our asymptotic value ϑ � 0.211752. In Fig. 2a, the effective slope γe,fit = 1.205879 should
be observed at �τ ∗

γe,th=γe,fit
= 4.347 × 10−3 (see the vertical dotted pink line), while the

values of ϑL = ϑe,cor = 0.022556 [see Eq. (97)] and R%
(
ϑe,cor

)
ϑ

= +6.5% (see Eq.
(102)) are represented by the full blue points in parts (b) and (c) of Fig. 2, respectively. We
note that the condition γe,th (t) = γe,expt (�τ ∗) is satisfied for t ∼= 9.08 × 10−5, where
�th ∼= 174.7 ∼= 6.77L{1 f } (or equivalently, for T − Tc ∼= 1.26K, where ξexpt ∼= 6.77αc),
i.e., a correlation length value within our Ising-like extended asymptotic domain defined by
the condition �th (t) � 3L{1 f } � 75 (or

ξexpt
αc

� 2.5 − 3, as analyzed in Refs. [32,39]). This
accurate tangent description of the singular behavior of the isothermal compressibility of
xenon is one major point of interest of the Güttinger and Cannell’s results to validate the
one-parameter crossover modeling predicted by the massive renormalization scheme beyond
the Ising-like preasymptotic domain.

Since the Güttinger and Cannell’s results of highly relative precision (∼0.2%) have illus-
trated the significant role of the exponent difference γ − γe, we can also estimate the related
temperature effect of the uncertainty on the asymptotic value of ϑ (as calculated in § 1). We
thus consider an effective fitting procedure which provides the values of γe, �+

e , and �τ ∗
e ,

where it is assumed that �+
e is affected by a relative error-value δ�e, such as

�+
e,exact = �+

e (1 + δ�e) (98)

In Eq. (98), �+
e,exact is de facto the calculated value (�

+
e,exact ≡ �+

γe,th=1.205879 = 0.0747481)
when ϑ is defined such that

ϑ =
⎡

⎢
⎣

(
Z

+
χ

)−1

Z
+
χ,e

× �+
e,exact

�+

⎤

⎥
⎦

1
γ−γe

(99)

In Eq. (99), the value of Z+
χ ,ϑ , �

+, γe,th ≡ γe, and Z
+
χ,e

(
γe,th

)
are known with zero uncer-

tainty (from the mean crossover function χth (t) given in [9]). Using then Eq. (94) and (99),
we obtain



ϑe = ϑ

(
1

1 + δ�e

) 1
γ−γe

(100)

For each value γe = γe,th estimated at �τ ∗
γe,th

= tγe,th
ϑ

with ϑ = 0.0211752, we can easily
calculate the isocline ϑe,δ�e (�τ ∗) at constant (small) value of δ�e, using the following
approximation

ϑe,δ�e

(
�τ ∗) � ϑ

[
1 − δ�e

γ − γe

]
(101)

The corresponding isocline of the residuals is thus

r%(ϑe,δ�e ) = 100

(
ϑe,δ�e

ϑ
− 1

)
= − δ�e

γ − γe
(102)

Two pairs of symmetrical isoclines of Eq. (102) are illustrated in Fig. 2c for δ�e = ±0.2%
(the relative precision of Güttinger and Cannell’s data) and δ�e = ±0.02%, respectively,

thus evidencing the experimental challenge to validate the equation ϑ = Yc

(
Z+,1

χ

Z
+,1
χ

) 1
�

at the

%-level when �τ ∗ � 10−3. The needs for a “critical” increase of the experimental precision
when �τ ∗ decreases is now well quantified by Eqs. (98) and (102). These equations are
essential when the objective is to test the asymptotic validity of the linearized Eq. (76) in
presence of small but finite confluent corrections to scaling.
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