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Mean first-passage times of non-Markovian 
random walkers in confinement
T. Guérin1, N. Levernier2, O. Bénichou2 & R. Voituriez2,3

The first-passage time, defined as the time a random walker takes 
to reach a target point in a confining domain, is a key quantity in 
the theory of stochastic processes1. Its importance comes from its 
crucial role in quantifying the efficiency of processes as varied as 
diffusion-limited reactions2,3, target search processes4 or the spread 
of diseases5. Most methods of determining the properties of first-
passage time in confined domains have been limited to Markovian 
(memoryless) processes3,6,7. However, as soon as the random walker 
interacts with its environment, memory effects cannot be neglected: 
that is, the future motion of the random walker does not depend 
only on its current position, but also on its past trajectory. Examples 
of non-Markovian dynamics include single-file diffusion in narrow 
channels8, or the motion of a tracer particle either attached to a 
polymeric chain9 or diffusing in simple10 or complex fluids such as 
nematics11, dense soft colloids12 or viscoelastic solutions13,14. Here 
we introduce an analytical approach to calculate, in the limit of a 
large confining volume, the mean first-passage time of a Gaussian 
non-Markovian random walker to a target. The non-Markovian 
features of the dynamics are encompassed by determining the 
statistical properties of the fictitious trajectory that the random 
walker would follow after the first-passage event takes place, which 
are shown to govern the first-passage time kinetics. This analysis 
is applicable to a broad range of stochastic processes, which 
may be correlated at long times. Our theoretical predictions are 
confirmed by numerical simulations for several examples of non-
Markovian processes, including the case of fractional Brownian 
motion in one and higher dimensions. These results reveal, on the 
basis of Gaussian processes, the importance of memory effects 
in first-passage statistics of non-Markovian random walkers in 
confinement.

It has long been recognized that the kinetics of reactions is influ-
enced by the properties of the transport process that brings reactants 
into contact1,2. Transport can even be the rate-limiting step, and in this 
diffusion-controlled regime, the reaction kinetics is quantified by the 
properties of the first encounter between molecules2. First-passage 
time (FPT) properties have been studied intensively in the past few 
decades1,3,15 and are now well understood when the stochastic motion 
of the reactants satisfies the Markov property, that is, is memoryless 
(uninfluenced by previous states, only by the current state). Under 
this assumption, exact asymptotic formulas characterizing the FPT 
of a tracer to a target located inside6,7,16 or at the boundary15 of a 
large confining volume have been obtained. These studies reveal that 
the geometrical parameters, as well as the complex properties of the 
stochastic transport process (such as subdiffusion), can have a strong 
impact on the reaction kinetics3,6,7.

However, as a general rule, the dynamics of a given reactant results 
from its interactions with its environment and cannot be described 
as a Markov process. Indeed, although the evolution of the set of 
all microscopic degrees of freedom of the system is Markovian, the 
dynamics restricted to the reactant only is not. This is typically the case 

for a tagged monomer, whose non-Markovian motion results from the 
structural dynamics of the whole chain to which it is attached9,17,18, as 
observed for example, in proteins19. Other experimentally observed 
examples of non-Markovian dynamics include the diffusion of tracers 
in crowded narrow channels8 or in complex fluids such as nematics11  
or viscoelastic solutions13,14. Even in simple fluids, hydrodynamic 
memory effects and thus non-Markovian dynamics have been 
recently observed10. So far, most theoretical results on the first- 
passage properties of non-Markovian processes have been limited to 
specific examples17,18,20–22 or to unconfined systems, where non-trivial 
persistence exponents characterizing its long time decay have been  
calculated23–25. However, in many situations, geometric confinement 
has a key role in first-passage kinetics3,6,7. Here, we develop a theo-
retical framework with which to determine the mean FPT of non- 
Markovian random walkers in confinement.

More precisely, we consider a non-Markovian Gaussian stochastic 
process x(t), defined in unconfined space, which represents the posi-
tion of a random walker at time t, starting from x0 at t = 0. As the 
process is non-Markovian, the FPT statistics in fact depend also on 
x(t) for t < 0. For the sake of simplicity, we assume that at t = 0 the 
process of constant average x0 is in the stationary state (see 
Supplementary Information for more general initial conditions), with 
increments x(t + τ) − x(t) independent of t. The process x(t) is then 
entirely characterized by its mean square displacement (MSD): 
ψ(τ) = 〈[x(t + τ) − x(t)]2〉. Such a quantity is routinely measured in 
single particle tracking experiments and in fact includes all the mem-
ory effects in the case of Gaussian processes. At long times, the MSD 
is assumed to diverge and thus, typically, the particle does not remain 
close to its initial position. Last, the process is continuous and non-
smooth25 (〈 ( ) 〉=+∞)�x t 2   , meaning that the trajectory is irregular and 
of fractal type, similar to standard Brownian motion. Note that the 
class of random walks that we consider here covers a broad spectrum  
of non-Markovian processes used in physics, and in particular the 
examples mentioned above.

The random walker is now confined in a domain of volume V with 
reflecting walls, and we focus on its mean FPT to reach a target of 
position x = 0 (see Fig. 1). Note that this setting also gives access to 
the reaction kinetics of a reactant in the presence of a concentration 
c = 1/V of targets in infinite space. Although the theory can be devel-
oped in any space dimension (see Supplementary Information for 
an explicit treatment of the two-dimensional and three-dimensional 
cases), it is presented here for clarity in one dimension (see Fig. 1b).  
Our starting point is the following generalization of the renewal 
equation1

∫ τ τ τ( )= ( ) ( | = ) ( )p t F p t0, d 0, FPT 1
t

0

which results from a partition over the first-passage event. In this equa-
tion, p(0, t) stands for the probability density of being at position x = 0 
at time t, F is the FPT density and p(0, t|FPT = τ) is the probability that 
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x = 0 at time t given that the first-passage event occurred at time τ. Owing 
to the confinement, for large times p(0, t) reaches the stationary value 1/V.  
Next, subtracting 1/V on both sides of  equation (1) and integrating 
over t from 0 to infinity yields an exact expression for the mean FPT:

∫
〈 〉
= ( )− ( ) ( )π

∞

V
t q t p t

T
d [ 0, ] 2

0

where qπ(t)dx is the probability of observing the random walker in the 
interval [0, dx] at time t after the first passage to the target. The exact 
formula (2) is a generalization of the expression obtained for Markovian 
processes6,26 and holds for any non-smooth non-Markovian process 

with stationary increments (even non-Gaussian). Even if qπ(t) is a priori 
a non-trivial quantity because it is conditioned by first-passage events, 
this equation is of great practical use in determining the mean FPT, as 
shown below.

To proceed further, we first consider the large volume limit V → ∞ 
(where it is assumed that all boundary points are sent to infinity) and, 
second, we assume that the stochastic process in the future of the FPT, 
defined by y(t) ≡ x(t + FTP), is Gaussian with mean μ(t) and the same 
covariance as the initial process x(t) (see Fig. 1b). Simulations and the 
perturbation theory below show the broad validity of this approach. 
Equation (2) then leads to:

∫ πψ
〈 〉= −

( )
( )

µ ψ ψ∞ − ( ) / ( ) − / ( )

/
T V t e e

t
d

[2 ]
3

t t x t

0

2 2

1 2

2
0
2

Relying on a generalization of equation (1) to link the n times proba-
bility distribution functions of x(t1), x(t2), … and the FPT density, we 
obtain an equation for the probability of the future trajectories y(t) 
leading to (see Supplementary Information for details):

∫ µ τ µ τ τ( + )− ( ) ( ) − − ( ) =
ψ

µ ψ ψ∞

( )
− ( ) / ( ) − / ( )t t K t x K t{[ , ]e [1 , ]e } 0t

t
t t x t

0
d 2

0
22

0
2

(4)

where μ(0) = 0 and K(t, τ) = [ψ(t + τ) + ψ(t) − ψ(τ)]/[2ψ(t)]. Equation 
(4), which allows for a self-consistent determination of the mean future 
trajectory μ(t), together with equation (3), provide the mean FPT and 
constitute our main result.

At this stage, several remarks can be made. (1) The mean FPT 
depends linearly on the confining volume V, which extends the result 
obtained for Markovian processes6. (2) Our approach reveals the key 
role of the mean trajectory μ(t) followed by the walker in the future 
of the first-passage event. In other words, even if the real motion is 

Time, t 

x(t)

V/2

〈T 〉

FPT

(t – FPT)

x0

Target
x = 0

a b

Figure 1 | Mean FPT of a random walker in confinement. a, What is 
the mean time 〈Τ〉 needed for a random walker starting at x0 (blue dot) 
to reach a target (red dot) in a confining volume V? Here we answer this 
question for random walkers with memory. b, In one dimension, the 
problem is to quantify the FPT of a random trajectory (in blue) in the 
presence of a reflecting boundary. We show here that 〈Τ〉 is controlled by 
the average trajectory μ(τ) (in red) followed by the walker in the future of 
its first passage to the target.
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Figure 2 | Mean FPT of one-dimensional non-Markovian random walks. 
Mean FPT as a function of the initial position x0 (a–d) and average reactive 
trajectory μ(t) in the future of the FPT as a function of time t (e–h) for 
various one-dimensional Gaussian stochastic processes. Solid lines are 
predictions of the non-Markovian theory from equations (3) and (4); 
dashed lines are the Markovian approximation (in which μ(t) = 0); and 
symbols represent numerical simulations using the circulant matrix 
algorithm (see Supplementary Information). In a and e, the correlator Ψ(t) 
is indicated with D = 1, D0 = 30, λ = 1 (arbitrary units). Time is in units of 
1/λ and lengths are in units of (D/λ)1/2. In e symbols represent different 

volumes (hexagons, V = 40; squares, V = 60; and diamonds, V = 120); the 
superposition confirms that μ(t) does not depend on V. In b–d and  
f–h, fractional Brownian motion (FBM) is shown for K = 1 (arbitrary 
units). Time is in units of V1/H/K1/2H. Note that the theory is derived for the 
limit of large volume, or equivalently �x V0 . When significant, error bars 
give the s.e.m. of the numerical simulations. Number n of simulated 
trajectories: in a and e n = 173,285 (for V = 40), n = 180,641 (for V = 60), 
and n = 96,623 (for V = 120); in b and f n = 19,224; in c and g n = 22,422; 
and in d and h n = 40,685.



une

stopped at the first encounter with the target, the mean FPT is con-
trolled by the statistical properties of the fictitious path that the walker 
would follow if allowed to continue after the first encounter event. (3) 
Assuming that ψ(t) ∝ t2H at large times, with 0 < H < 1, it can be shown 
from the asymptotic analysis of equation (4) that:

µ( ) − ( →∞) ( )−�t x A t t 5H
0

2 1

where A is a coefficient depending on the entire MSD function ψ(t) (at 
all timescales) and on x0 (it generally has the same sign as x0). Thus, for 
processes that are subdiffusive at long times (so that the MSD grows 
slower than linearly with time, H < 1/2), μ(t) comes back to the initial 
position x0 of the walker, which is consequently not forgotten. On the 
contrary, asymptotically superdiffusive walkers (H > 1/2) keep going 
away from the target in the future of the FPT with a non-trivial expo-
nent. These behaviours reflect the anticorrelation and correlation of 
successive steps of subdiffusive and superdiffusive walks, respectively. 
Note that even for asymptotically diffusive processes (H = 1/2), μ(t) 
tends to a non-vanishing constant, in contrast to a pure (Markovian) 
Brownian motion. (4) The importance of non-Markovian effects can 
be appreciated by comparing the mean FPT to the result obtained by 
setting μ(t) = 0, which amounts to neglecting the memory of the trajec-
tory before the first passage. As shown by equation (5), μ(t) is actually 
not small, so that memory effects are important. They are especially 
marked for H < 1/3, where setting μ(t) = 0 in equation (3) leads to an 
infinite mean FPT, as opposed to our finite non-Markovian prediction.

We now confirm the validity of these analytical results by com-
paring them to numerical simulations of representative examples of 
non-Markovian processes defined by the MSD ψ(t). First, the choice  

ψ(t) = D0(1 − e−λt) + Dt = ψD(t)  corresponds to the generic case where 
the position x(t) is coupled to other degrees of freedom at the single 
timescale 1/λ (Fig. 2a, e). It is typically relevant to tracers moving in 
nematics11 or solutions of non-adsorbing polymers27.

Second, the choice ψ(t) = Kt2H where 0 < H < 1 and K is a positive 
transport coefficient (Fig. 2b–d, f–h), corresponds to the fractional 
Brownian motion used in fields as varied as hydrology28, finance29 and 
biophysics13,30; it is a particularly good description of anomalous diffu-
sion in various physical situations such as telomere motion30 or tracer 
diffusion in viscoelastic fluids13. This process is strongly non-Marko-
vian, as shown by its long-range correlation functions. For fractional 
Brownian motion, the solution of equation (4) is of the form: 

µ µ( )= ( / )/ /�t x t K xH
H H

0
1 2

0
1

so that the mean FPT reads:

β〈 〉= ( )/ − − /T V x K 6H
H H

0
1 1 1 2

with βH a numerical coefficient given in Supplementary Information. 
This equation gives the explicit dependence of the mean FPT on x0 and 
generalizes the results obtained for Markovian processes6.

Third, the theory can be extended to higher dimensions with the 
supplementary assumption that the random walk is isotropic. Two-
dimensional and three-dimensional versions of both of the choices of 
ψ(t) considered above have been analysed explicitly (Fig. 3).

In fact, as shown in the Supplementary Information, the theory 
is exact at order ε2 when one considers a MSD function of the type 
ψ(t) = Dt + εψ1 + ε2ψ2 + … where the small parameter ε measures the 
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Figure 3 | Mean FPT of two- and three-dimensional non-Markovian 
random walks. Mean FPT to a target of radius a = 1 (arbitrary units) as a 
function of the initial position r0 (a, c, e) and average reactive trajectory 
μ(t) in the future of the FPT as a function of time t (b, d, f) for different 
two-dimensional (2D) (a–d) and three-dimensional (3D) (e, f) Gaussian 
stochastic processes. Solid lines are predictions of the non-Markovian 
theory from equations (3) and (4); dashed lines are the Markovian 
approximation, in which μ(t) remains equal to the radius a = 1 of the 
target; and symbols represent numerical simulations using the circulant 
matrix algorithm. In a and b, the correlator Ψ(t) of each coordinate in two 

dimensions is indicated for D = 1, D0 = 30, V = 100, λ = 1 (arbitrary units). 
Time is in units of 1/λ and lengths are in units of a. In c and d, fractional 
Brownian motion in two dimensions is shown, with K = 1, V = 602 
(arbitrary units). Time is in units of a1/H/K1/2H and lengths in units of a. 
In e and f, the correlator Ψ(t) of each coordinate in three dimensions is 
indicated for D = 1, D0 = 10, λ = 1 (arbitrary units). Time is in units of 1/λ 
and lengths in units of a. The confining volume is a sphere of radius R = 70 
or a cube of volume V = 1163. When significant, error bars give the s.e.m. 
of the numerical simulations. Number n of simulated trajectories: in a and b 
n = 35,334, in c and d n = 37,314; and in e and f n = 16,900.
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deviation from a Markovian process (see Supplementary Information). 
Figures 2 and 3 reveal very good quantitative agreement between the 
analytical predictions and the numerical simulations far beyond this 
perturbative regime. Both the volume and the source–target distance 
dependence of the mean FPT are unambiguously captured by the 
theoretical analysis, at all the length scales involved in the problem. 
Note that, even if the theoretical prediction relies on large-volume 
asymptotics, numerical simulations show that it is accurate even for 
small confining systems (with various shapes of confining volumes, 
such as spherical or cubic). The very different nature of these examples  
(one, two or three dimensions, diffusive, superdiffusive or subdiffusive  
at long times...) demonstrates the wide range of applicability of our 
approach. Remarkably, the amplitude of memory effects is important 
in the examples shown in Figs 2 and 3, where the multiplicative factor 
between Markovian and non-Markovian estimates of the mean FPT can 
be up to 15 (Fig. 2c). As discussed above, this factor is even infinite for 
the fractional Brownian motion as soon as H < 1/3. Interestingly, even 
for the process defined by ψ(t) = ψD(t) above, which is diffusive both at 
short and long times, for which one could thus expect memory effects 
to be negligible, this factor is not small (typically 5; see Fig. 2a). The 
accuracy of our analytical predictions for the mean FPT traces back to 
the quantitative prediction for the trajectories in the future of the FPT 
μ(t), as shown in Figs 2 and 3. The strong dependence of μ(t) on the 
starting point x0, predicted by our approach and confirmed numerically, 
is a direct manifestation of the non-Markovian feature of the random 
walks. Together, our results demonstrate and quantify the importance 
of memory effects in the first-passage properties of non-Markovian 
random walks in confined geometry.
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