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Abstract

Background: Gradient damage models can be acknowledged as a unified
framework of dynamic brittle fracture. As a phase-field approach to fracture, they are
gaining popularity over the last few years in the computational mechanics community.
This paper concentrates on a better understanding of these models. We will highlight
their properties during the initiation and propagation phases of defect evolution.
Methods: The variational ingredients of the dynamic gradient damage model are
recalled. Temporal discretization based on the Newmark-β scheme is performed.
Several energy release rates in gradient damage models are introduced to bridge the
link from damage to fracture.
Results and discussion: An antiplane tearing numerical experiment is considered. It
is found that the phase-field crack tip is governed by the asymptotic Griffith’s law. In the
absence of unstable crack propagation, the dynamic gradient damage model
converges to the quasi-static one. The defect evolution is in quantitative accordance
with the linear elastic fracture mechanics predictions.
Conclusion: These numerical experiments provide a justification of the dynamic
gradient damage model along with its current implementation, when it is used as a
phase-field model for complex real-world dynamic fracture problems.

Keywords: Dynamic brittle fracture, Gradient damage models, Griffith’s theory,
Quasi-static limits

Background
Contrary to a sharp interface description of cracks, in the gradient damage approach the
introduction of a continuous phase field regularizes displacement discontinuities which
are now replaced by strain localizations within a finite band. As can be seen from Fig. 1,
cracks are tracked with the help of a scalar damage field 0 ≤ α ≤ 1 which introduces a
smooth transition between the undamaged part of the structure where α = 0, and the
crack where α = 1.
The internal length � inducednaturally throughdimensional analysiswithin the gradient

damage model [1] admits several interpretations. From a geometric point of view, it
controls the width of the damage band such that a sharp description of cracks can be
retrieved in the limit � → 0.Meanwhile, it turns out that in such process the total energy in
the gradient damage model actually converges in a certain sense to the Griffith functional
defined in the variational approach to fracture [2]. The gradient damagemodel can thus be
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Fig. 1 Phase field description of a discrete crack � ⊂ � by a damage field 0 ≤ α ≤ 1. The internal length �

of the gradient damage model geometrically controls the width of the damage band

regarded as an elliptic regularization of the previous sharp-interface variational fracture
model and the internal length � serves as a purely numerical parameter which should be
as small as possible. This is the interpretation undertaken among others by [3–5] where
the gradient damage model is applied to drying, thin films debonding, and other fracture
mechanics problems.
On the other hand, the gradient damage model can also be acknowledged as a genuine

model per se of brittle fracture, where the internal length � is then interpreted as a mate-
rial parameter which contributes to the fracture or damage behavior of materials. This
interpretation presents several advantages from a physical point of view. First of all, this
additional length parameter could be related to the maximal stress that the material can
sustain and hence introduces additional experimentally validated size effects which are
not present in the Griffith model of fracture mechanics, see the work of [6–9] among oth-
ers. Secondly, the tension-compression asymmetry phenomenon as observed for brittle
materials can be easily formulated directly in the gradient damage model. The resulting
sharp interface fracture model as � → 0 remains unclear and inversely the elliptic reg-
ularization of the variational approach to fracture that actually accounts for unilateral
contact between crack lips is still considered as a difficult task both from the physical and
mathematical point of view, see [10]. Nevertheless, these tension-compression asymme-
try formulations as summarized for instance in [11] constitute an improvement of the
original gradient damagemodel [6] and can be regarded as an approximation of the actual
non-interpenetration condition.
In this paper we will adhere to the second viewpoint and interpret the gradient damage

model as a phase-field approach to dynamic brittle fracture. The formulation of dynamic
gradient damage models that extends the original quasi-static ones [1] is sketched in [12].
The governing equations derived from the variational principles resemble those of other
phase-field models originated from the computational mechanics community [8,13–15],
with a particular choice of damage constitutive law. These models settle down a unified
and coherent numerical framework covering the onset and the space-time propagation of
cracks with possible complex topologies and have been successfully applied to study vari-
ous real-world dynamic fracture problems. Meanwhile, in the quasi-static setting, further
physical insights into the gradient damage model seen as a phase-field model of fracture
are given among others in [16,17] where a comparison with the cohesive zone model
and the Griffith’s linear elastic theory is conducted. In dynamics, more well-designed
numerical experiments should be performed to carry out such verification, see [18] for
instance for an investigation of the phase-field crack speeds for plane problems. Themain
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objective of this contribution is thus to provide a better understanding of the dynamic
gradient damage model. We will highlight the properties of gradient damage models as
a phase-field approach to fracture and mainly focus on the initiation and propagation
phases of defect evolution. For that, an antiplane tearing numerical experiment is consid-
ered and an existing crack may initiate and then propagate along a predefined path in a
mode-III condition. A comparison with the classical Griffith’s theory will be conducted in
the cases when the loading speed is of the same order, or small, with respect to the wave
speed.
Specifically this paper is organized as follows.The variational formulationof thedynamic

gradient damage model is firstly recalled. An open-source numerical implementation is
proposed to solve the elastic-damage dynamic problem. Some theoretic concepts are
introduced to bridge the link between gradient damage and fracture. We then present
and discuss the simulation results corresponding to crack propagation in an antiplane
tearing situation. In the last section we will summarize the findings and indicate possible
further research directions.
General notation conventions adopted in this paper are summarized here. Scalar-valued

quantitieswill be denotedby italicRomanorGreek letters like thedamagefieldαt . Vectors,
second-order tensors and their matrix representations will be represented by boldface
letters such as the displacement field ut and the stress tensor σt . Higher order tensors
considered as linear operators will be indicated by sans-serif letters: the elasticity tensor
A for instance. Intrinsic notation is adopted and contraction on lower-order tensors will
be written without dots Aεt = Aijklεkl (the summation convention is assumed). Inner
products between two vectors or tensors of the same order will be denoted with a dot,
such as Aεt · εt = Aijklεklεij (the summation convention is assumed). Time dependence
will be indicated at the subscripts of the involved quantities, like u : (t,x) �→ ut (x).

Methods
Variational framework

The variational ingredients of the dynamic gradient damage model as well as the induced
governing equations are firstly recalled in this section. Let us consider a two-dimensional
isotropic body �. We place ourselves under the small displacement condition. This is
a plausible hypothesis for brittle materials when large rotations are also not expected.
Damage and subsequent fracture occur more easily in tension than in compression, thus
tension-compression asymmetry formulations in the sense of [10,11] for instance are in
general needed. Nevertheless the numerical experiments considered here do not require
the use of such formulations. Hence we adhere to the original approach of [1,19] where
damage acts on the sound elastic energy density ψ0 symmetrically under tension and
compression. Assuming these hypotheses, the elastic energy of the domain � is given by

E(ut ,αt ) =
∫

�

ψ
(
ε(ut ),αt

)
dx =

∫
�

a(αt )ψ0
(
ε(ut )

)
dx

=
∫

�

1
2
a(αt )Aε(ut ) · ε(ut ) dx (1)

where A is the standard isotropic Hooke’s elasticity tensor and ε(ut ) = 1
2 (∇ut + ∇Tut )

the linearized strain. By definition, the stress tensor conjugate to the strain measure
reads σt = a(αt )Aε(ut ), with α �→ a(α) a non-dimensional damage constitutive function
describing stiffness degradation in the bulk. Concerning the kinetic energy, we admit total
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mass conservation and no damage dependence of the material density, which leads to its
classical definition

K(u̇t ) =
∫

�

κ(u̇t ) dx =
∫

�

1
2
ρu̇t · u̇t dx. (2)

We now turn to the definition of the dissipated energy which quantifies the amount of
energy consumed in the damage process. In the phase-field terminology, it is also called
the regularized crack functional. It is due to the fact that this energy is closely related
to the Griffith-like surface energy of the phase-field representation of cracks according
to the �-convergence theory [2]. Dynamics should not influence the definition of such
functional. We will hence use the same definition used in [7] for quasi-static calculations

S(αt ) =
∫

�

ς (αt ,∇αt ) dx =
∫

�

Gc
cw

(
w(αt )

�
+ �∇αt · ∇αt

)
dx. (3)

Contrary to local strain-softening constitutivemodels, here the damage dissipationmech-
anism becomes non-local and localization is systematically accompanied by finite energy
consumption, due to the presence of the gradient term. In (3), the function α �→ w(α) is
another non-dimensional damage constitutive law characterizing local damage dissipa-
tion. This function along with the former stiffness degradation function a(α) contribute
to the damage constitutive behavior of the material and should also satisfy certain phys-
ical properties [6] which we do not reproduce here. In this paper we adopt the following
constitutive functions

a(α) = (1 − α)2 and w(α) = α. (4)

Concerning local damage dissipation, a quadratic functionw(α) = α2 originally proposed
in [19] is widely used among the phase-field community [8,13–15]. It can be regarded
as the Ambrosio and Tortorelli elliptic regularization of the Griffith functional based on
their work on image segmentation. In our brittle fracture modeling context however, the
use of w(α) = α should be preferred since it guarantees the existence of a purely elastic
domain and provides a non-null threshold for damage evolution, see [6]. The link between
the gradient damage description of cracks and the Griffith’s one lies in the definition of
the normalization factor cw . The fracture toughness Gc, i.e. the energy required to create
a unit Griffith-like crack surface, can be identified in the gradient damage terminology as
the energy dissipated during the optimal damage band creation. Using this identification
along with a direct calculation in a 1-d setting, we obtain

cw = 4
∫ 1

0

√
w(β) dβ (5)

which gives cw = 8
3 for w(α) = α. We refer the readers again to [6,20] for a more detailed

discussion on the relationship between these gradient damage and fracture parameters.
In this work, external loads are applied to the body � only through a prescribed dis-

placement t �→ Ut on a subset ∂�U of the boundary. It will be defined in the admissible
displacement space Ct which reads

Ct = {ut : � → R
dim|ut = Ut on ∂�U }.

Damage is modeled as an irreversible defect evolution. Its admissible space will be built
from the current damage state 0 ≤ αt ≤ 1 and it is defined by

D(αt ) = {βt : � → [0, 1]|0 ≤ αt ≤ βt ≤ 1}. (6)
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It can be seen that a damage field βt is admissible, if and only if it is accessible from the
current damage state αt verifying the irreversibility condition, i.e. the damage only grows.
In order to formulate the temporal displacement-damage evolution as a boundary value
problem (Hamilton’s principle), we consider an arbitrary interval of time I = [0, T ] and
fix the values of (u,α) at both time ends denoted by u∂I = (u0,uT ) and α∂I = (α0,αT ).
This leads to the following admissible evolution spaces

C(u) =
{
v : I × � → R

dim
∣∣∣ vt ∈ Ct for all t ∈ I and v∂I = u∂I

}

and

D(α) =
{

β : I × � → [0, 1]
∣∣∣ βt ∈ D(αt ) for all t ∈ I and β∂I = α∂I

}
.

With all the variational ingredients set, we are now in a position to form the space-time
action integral given by

A(u,α) =
∫
I
L(ut , u̇t ,αt ) dt =

∫
I

(E(ut ,αt ) + S(αt ) − K(u̇t )
)
dt (7)

and announce the following three physical principles governing the coupled two-field
(u,α) time-continuous dynamic gradient damage problem:

1 Irreversibility the damage t �→ αt is a non-decreasing function of time.
2 First-order stability the first-order action variation is non-negative with respect to

arbitrary admissible displacement and damage evolutions

A′(u,α)(v − u,β − α) ≥ 0 for all v ∈ C(u) and all β ∈ D(α). (8)

3 Energy balance the only energy dissipation is due to damage

Ht = H0 +
∫ t

0

(∫
�

(
σs · ε(U̇s) + ρüs · U̇s

)
dx

)
ds (9)

where the total energy is defined by

Ht = E(ut ,αt ) + S(αt ) + K(u̇t ).

Remark In the first-order stability condition (8), we evaluate the directional (Gâteaux)
derivative of the action integral (7) at (u,α), a possible solution to the dynamic evolution
problem, in the direction (v − u,β − α) which corresponds to a perturbation. Formally,
using the Lagrangian L, we have

A′(u,α)(w,β − α) =
∫
I

(
∂L
∂ut

(st )(wt ) + ∂L
∂u̇t

(st )(ẇt ) + ∂L
∂αt

(st )(βt − αt )
)

dt ,

where w = v − u denotes a displacement evolution variation and st = (ut , u̇t ,αt )
corresponds to a state of the dynamical system.

Remark Remark that (8) is written as a variational inequality to take into account the
unilateral effects introduced by the irreversibility condition in the definition of the damage
admissible space (6). It can be regarded as an extension of Hamilton’s principle applied
to systems with irreversible dissipation. The energy balance condition (9) complements
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the first-order stability condition (8) which ensures that energy could only be dissipated
through damage (or phase-field like fracture).

By developing the directional derivative of the action integral (7), further physical
insights into the first-order stability condition (8) can be obtained if sufficient spatial
and temporal regularities of the involved fields are assumed. Testing (8) with β = α, we
obtain after an integration by parts in the time domain

A′(u,α)(w, 0) =
∫
I

(∫
�

(
σt · ε(wt ) + ρüt · wt

)
dx

)
dt = 0 for allwt ∈ C0 ,

where C0 is the associated linear space of Ct , i.e. defined by

C0 = {ut : � → R
dim|ut = 0 on ∂�U }.

This leads thus to the weak elastic-damage dynamic wave equation∫
�

(
σt · ε(wt ) + ρüt · wt

)
dx = 0 for allwt ∈ C0. (10)

Compared to the classical elastodynamic equation, we note that here the stress tensor is
modulated by the stiffness degradation function σt = a(αt )Aε(ut ).
We now turn to the governing equation for damage evolution induced from the first-

order stability condition (8). We observe that the admissible damage space D(αt ) defined
in (6) is convex. Due to the arbitrariness of the temporal variation of β , testing (8) now
with v = u gives the Euler’s inequality condition stating the partial minimality of the total
energywith respect to the damage variable under the irreversible constraint for every t ∈ I

E(ut ,αt ) + S(αt ) ≤ E(ut ,βt ) + S(βt ) for allβt ∈ D(αt ). (11)

Although the same energy minimization principle (11) holds also for quasi-static gradi-
ent damage models [6], here the displacement field ut is governed by the elastic-damage
dynamic wave equation (10). As will be shown through subsequent numerical experi-
ments, this has a direct impact on the apparent crack evolution when damage is propa-
gating along a specific curve. In this work the energy minimization principle (11) will be
numerically solved directly at the structural scale by a specific bound-constrained convex
optimization algorithm to guarantee the irreversibility condition. The equivalent point-
wise conditions of (11) and the energy balance condition (9) can be readily derived by
evaluating the inequality A′(u,α)(0,β − α) ≥ 0 and performing a temporal derivative of
the total energy in (9). This yields a strong formulation in the form of the Kuhn–Tucker
conditions which govern local damage evolution at a particular material point. Due to the
presence of the damage gradient, the criterion is described by an elliptic type equation
in space involving the Laplacian of the damage. Damage growth is not possible until a
certain non-local threshold is reached and all energy dissipated in the body during such
process until time t is recorded by the crack functional S(αt ). For a detailed derivation of
the pointwise conditions, interested readers are referred to [6].

Numerical implementation

This section describes a numerical implementation of the above continuous two-field evo-
lution problem. In practice it consists of solving numerically the elastic-damage dynamic
wave equation (10) coupled with the total energy minimization (11). The irreversibil-
ity condition will be automatically enforced during the bound-constrained minimization
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process. The time-discrete model which we describe below should converge to the con-
tinuous one when the time increment becomes small, see [21]. In particular, the energy
balance condition (9) will be hence automatically satisfied.
A spatial discretization is performed based on a mesh �h of the original domain �. The

ideal properties of this mesh are indicated in [6] in order to achieve a better modeling of
fracture via phase-field approaches. The displacement ut and the damage field αt will be
discretized by linear isoparametric finite elements. For two-dimensional plane problems,
an arbitrary element possesses at every node 3 nodal degrees of freedom corresponding to
2 components of the displacement and 1 scalar value of the damage. The symbols u and
α are used to denote the current global displacement and damage nodal vectors. Inside
a given element �e ∈ �h, their local nodal vectors ue and αe are used to perform an
interpolation of the displacement and damage fields as well as their derivatives

ut (x) = N(x)ue and ε(ut )(x) = B(x)ue ,

αt (x) = Nα(x)αe and ∇αt (x) = Bα(x)αe

whereN’s andB’s are respectively the interpolation and differentiation matrices.
After spatial discretization the elastic-damage dynamic wave equation (10) becomes

Mü = −Fint(u,α) (12)

where M refers to the classical consistent mass matrix which will be lumped using the
traditional row-sum technique described for example in [22]. The internal force vector
Fint is assembled from the elementary vectors given by

Fe
int =

∫
�e

BTσ
(
Bue,Nααe) dx =

∫
�e

BT(a(Nααe)ABue) dx (13)

whereA is the Voigt representation of the elasticity tensor A.
We now turn to the spatially-discretized damage problem. It can be observed that the

use of the damage constitutive law (4) leads to a total damageable energy E + S which
is a second-order quadratic polynomial with respect to the damage vector α. The energy
minimization principle (11) involves thus the following functional

qu(α) = 1
2
αTH(u)α − b(u)Tα. (14)

where the Hessian matrixH and the second member vector b can be assembled from the
elementary matrix and vector given by

He =
∫

�e

(
2ψ0(Bue)NT

αNα + 2w1�
2BT

αBα

)
dx ,

be =
∫

�e

(
2ψ0

(
Bue) − w1

)
Nα dx

with w1 = Gc/(cw�). They remain constant during the solving process of the damage
problem, since they depend solely on the current displacement state u.
We now consider an arbitrary discretization (tn) of the time interval of interest I where

the superscript n denotes a quantity evaluated at the n-th time step. We will mainly focus
on the time stepping procedures bringing the current known states (un, u̇n, ün,αn) to the
next time step (un+1, u̇n+1, ün+1,αn+1). In the time-continuousmodel the elastic-damage
dynamic wave equation (10) and the damage minimality condition (11) are coupled in the
first-order stability principle (8). After temporal discretizationu andα evaluated at the last
time step t = tn and the current time step t = tn+1 are in general involved in an implicit
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fashion. However, we observe that the energy minimization principle (11) for damage is
not a genuine time evolution problem since time dependence is only introduced via the
irreversibility condition. In the space-time discrete model at time t = tn+1, it reads

qun+1 (αn+1) ≤ qun+1 (β) for allβ that 0 ≤ αn ≤ β ≤ 1 (15)

where the Hessian matrix and the second member vector in (14) are evaluated at un+1.
The Eq. (15) can be interpreted as a numerical minimization problem of the quadratic
functional q under the irreversible constraint that the current sought damage state αn+1

is pointwise within the bound [αn, 1]

αn+1 = argmin qun+1 (·) subjected to the constraints 0 ≤ αn ≤ αn+1 ≤ 1. (16)

The next damage state αn+1 can thus be accurately calculated as long as the next deforma-
tion state un+1 is known. The gradient projection conjugate gradient algorithm initially
proposed in [23] is used to solve (16) in an iterative fashion. It is designed for quadratic
bound-constrained minimization problems. Due to the bound constraint, approximate
solutions β to (16) can be defined using the projected gradient [g] of which the i-th
component is given by

0
?≈ [g]i =

⎧⎪⎪⎨
⎪⎪⎩

∂iq if βi ∈ (αn
i , 1) ,

min(∂iq, 0) if βi = αn
i ,

max(∂iq, 0) if βi = 1.

At each solving iteration, the method consists of several gradient projections to appoxi-
mately identify the active nodes, i.e. those either αn+1

i = αn
i or αn+1

i = 1. Then it applies
the preconditioned conjugate gradient method to minimize an unconstrained reduced
problem of the free variables, i.e. those satisfying αn

i < αn+1
i < 1. The method proceeds

to the next iteration until convergence. Interested readers are referred to [23] for a more
detailed explanation of the algorithm. The GPCG method is implemented in the paral-
lel linear algebra library PETSc [24]. We also use this library for manipulation of sparse
matrices and vectors, similarly to the previous work of [5,6].
It remains then to specify the temporal discretization method used for the u-problem.

In this work we adopt the classical Newmark-β integrator, which assumes the following
time-stepping procedure

u̇n+1 = u̇n + �t
2

(
ün + ün+1) , (17)

un+1 = un + �tu̇n + 1 − 2β
2

�t2ün + β�t2ün+1. (18)

Theexplicitmethodβ = 0 shouldbepreferredmainly in termsof computational efficiency
for applications where the loading speed or the crack propagation speed is comparable
to the material speed of sound. The implicit method 0 < β ≤ 1

2 may be suitable for
intermediate situations between a quasi-static and an explicit dynamic calculation. From
(12), the determination of the the new acceleration ün+1 requires the knowledge of the
new deformation state un+1 which itself determines the new damage field at time t =
tn+1 via (16). For the implicit Newmark method β �= 0, (18) can thus be regarded as a
nonlinear equation in un+1, where nonlinearity results from the irreversibility condition
when minimizing the total energy (16). To decouple the (un+1,αn+1) problem, we use
a staggered time-stepping procedure as used in [13,14,25] among others. The idea is to
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update the acceleration ün+1 while fixing the damage state at its previous known value
αn. When a relatively small time-step is used, it is expected that the damage increment
αn+1 − αn is bounded and the staggered time-discrete problem will converge to the
continuous one, cf. [21]. Introducing the displacement prediction at time t = tn+1

ũn+1 = un + �tu̇n + 1 − 2β
2

�t2ün,

from (18) we obtain the linear system for un+1

M
un+1 − ũn+1

�t2
= −βFint(un+1,αn) = −βK(αn)un+1 (19)

where K is the standard stiffness matrix corresponding to the previous damage state
αn. The time-stepping procedure for the dynamic gradient damage model based on the
implicit Newmark-β method in a prediction-correction form is summarized in Algo-
rithm 1

Remark After temporal discretization, the elastic-damage dynamic wave equation (10)
and the damage minimality condition (11) can also be solved in a monolithic fashion as
described for example in [8,14]. Due to the irreversible condition contained in (16), the
GPCG method for instance should be included in the monolithic solver to ensure that
the damage variable is subject to a bound constraint during solving. Future work could be
devoted to a detailed analysis of these schemes in terms of computational efficiency.

In the explicit case when β = 0, it turns out that the time evolution system in (u,α) is
automatically decoupled and the two subproblems separately in un+1 and in αn+1 can be
independently solved one from the other at every time step. Introducing the middle-step
velocity

u̇n+1/2 = u̇n + �t
2
ün ,

the explicit time-stepping procedure for the discretized dynamic gradient damage model
is summarized in Algorithm 2.
The initialization phase for the above implicit and explicit time-stepping procedure is

described in Algorithm 3.We observe that the initial damage is recomputed α−1 �→ α0 in
the step 2. The role ofα−1 is to bring some a priori knowledge of the damage field resulting
from a previous calculation or more frequently to represent an initial crack α−1 = 1 on

Algorithm 1 Staggered time-stepping procedure for the dynamic gradient damagemodel
based on the implicit Newmark-β method.
1: for every successive time step n ≥ 0 do
2: Prediction ũn+1 = un + �tu̇n + 1−2β

2 �t2ün.

3: Prediction ṽn+1 = u̇n + �t
2 ün.

4: Solve un+1 via (19).

5: Update ün+1 = (un+1 − ũn+1)/(β�t2).

6: Update u̇n+1 = ṽn+1 + �t
2 ün+1.

7: Solve αn+1 via (16).

8: end for
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Algorithm 2 Explicit time-stepping procedure for the dynamic gradient damage model.
1: for every successive time step n ≥ 0 do
2: Update u̇n+1/2 = u̇n + �t

2 ün.

3: Update un+1 = un + �tu̇n+1/2.

4: Solve αn+1 via (16).

5: UpdateMün+1 = −Fint(un+1,αn+1).

6: Update u̇n+1 = u̇n+1/2 + �t
2 ün+1.

7: end for

Algorithm3 Initialization for the implicit and explicit time-stepping procedure described
in Algorithm 1 and 2.
1: Given initial conditions u0, u̇0 and α−1.

2: Reinitialize the damage α0 = argmin qu0 (·) subjected to constraints 0 ≤ α−1 ≤ α0

≤ 1.

3: Initialize the accelerationMü0 = F0
ext − Fint(u0,α0).

�0. The initial step 2 thus renders it compatible with the initial displacement condition
and the energy minimization structure.
Both the implicit and explicit time-stepping Algorithms 1 and 2 are implemented as a

Python package named “FEniCS Dynamic Gradient Damage”. It is based on the FEniCS
Project [26] for automated solution of partial differential equations.

Energy release rate in dynamic gradient damagemodels

The definition of an energy release rate in gradient damage models which competes with
the fracture toughness Gc can be found in [27] under quasi-static conditions. It is found
that the damage evolution, when seen as a propagating crack band concentrated along
a certain path, is governed by Griffith’s law in an asymptotic sense when the internal
length � is small compared to any other structural length. A theoretic derivation of these
similar concepts in dynamics is presented in [28].Herewewill summarize our findings and
introduce some useful quantities that establish the link from gradient damage to fracture.
We assume that damage is contained in a thin band described by a parametrized curve

�t = {x ∈ �|αt (x) = 1} representing the crack with its current tip Pt . Our definition of
energy release rates in dynamics is based on shape derivative techniques, see for example
[29] for an application of these methods in fracture mechanics. A virtual extension θt of
the crack tip in the current propagation direction is introduced. This function θt should
verify certain properties discussed in [29]. In particular, we have θt (Pt ) = τt where τt
refers to the current crack propagation direction. Moreover, It does not alter the crack lip
shape, that is θt · n = 0 on the crack lip �t with n the unit normal vector. A widely used
definition of the virtual perturbation is recalled as follows. Suppose that the crack �t lies
on the x-axis and its current crack tipPt is propagating along the e1 direction. The virtual
perturbation θt which introduces a fictive crack advance admits the form θt = θte1. The
construction of the continuous scalar field 0 ≤ θt ≤ 1 parametrized by two radii r < R is
given in Fig. 2.
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Fig. 2 A particular virtual perturbation θt = θte1 parametrized by two radii r < R. We have θt = 1 inside the
ball Br (Pt ), θt = 0 outside the ball BR (Pt ), and a linear interpolation in between

We then perform a reparametrization of the damage field αt by the arc length lt of the
crack �t . When � is small by comparison with the dimension of the body, the first-order
stability condition (8), the energy balance (9) as well as an essential singularity analysis
lead to a Griffith-like evolution law governing the phase-field crack length evolution

l̇t ≥ 0 , Gα
t − γt ≤ 0 and (Gα

t − γt )l̇t = 0. (20)

In (20), the conventional dynamic energy release rate Gα
t , which plays the role of “G” in

Griffith’s law, is defined by

Gα
t =

∫
�

((
κ(u̇t ) − ψ

(
ε(ut ),αt

))
div θt + σt · (∇ut∇θt ) + ρüt · ∇utθt

+ρu̇t · ∇u̇tθt
)
dx. (21)

It is formally very similar to the classical dynamic energy release rate in linear elastic
fracture mechanics (LEFM) written as a volume integral with the help of the virtual
perturbation θt , see for example [30]. Note however that in the gradient damagemodel the
elastic energy densityψ and the stress tensor σt aremodulated by the stiffness degradation
function a(α) and consequently stress singularity automatically disappears at the crack
tip. Written in the form of (21), the conventional dynamic energy release rate involves
an integral in the elements and hence is more convenient and accurate compared to a
line integral (e.g. the J -integral) in a finite element calculation. The use of the traditional
J -integral in the sense of [31] to calculate an effective energy release rate in a gradient
damage modeling of fracture can be found in [17,20] for instance.
The quantity γt in (20) which plays the role of “Gc” in the classical Griffith’s law is the

damage dissipation rate

γt =
∫

�

(
ς (αt ,∇αt ) div θt − 2w1�

2∇αt · ∇θt∇αt
)
dx , (22)

where w1 = Gc/(cw�). Formally it is defined as the derivative of the dissipated energy (3)
with respect to the crack length lt , thus quantifying the energy dissipated due to damage
per crack advance.

Remark The conventional dynamic energy release rate (21) and the damage dissipation
rate (22) admit also a J -like path integral representation involving a generalized Eshelby
tensor used frequently in configurational force approaches such as [32,33] and references
therein. During crack propagation, we have
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Ĵt = lim
ε→0

∫
Cε

Ĵtn · τt ds = Gα
t − γt ,

where n denotes the normal pointing out of the ball of radius ε centered at the crack tip
Bε(Pt ) with Cε = ∂Bε(Pt ) its boundary. The generalized dynamic Ĵt tensor is defined by

Ĵt =
(
ψ

(
ε(ut ),αt

) + κ(u̇t ) + ς (αt ,∇αt )
)
I − ∇uT

t σt − 2w1�
2∇αt ⊗ ∇αt ,

where w1 = Gc/(cw�). Interested readers are referred to [28] for a detailed discussion on
this point.

With the help of a two-scale approach, the inner damage problem near the crack tip
and the outer LEFM problem far from the crack band can be separated [27]. It can be
shown that if the inner radius r of the virtual perturbation defined in Fig. 2 is sufficiently
big with respect to the internal length �,Gα

t defines an equivalent dynamic energy release
rate Gt corresponding to the outer mechanical fields. Similarly, the damage dissipation
rate γt will converge to the fracture toughness Gc defined in the crack functional (3). The
following asymptotic Griffith’s law is obtained when the outer fields are considered as r
increases

l̇t ≥ 0 , Gt − Gc ≤ 0 and (Gt − Gc)l̇t = 0. (23)

Results and discussion
In this section we will present and discuss a particular numerical experiment tailored
to highlight the properties of the dynamic gradient damage model while focusing on
the initiation and propagation phases of defect evolution. Specifically, we will investigate
the fracture mechanics criterion for an existing phase-field crack to initiate, and then to
propagate along a certain path.
We consider a mode-III antiplane tearing of a two dimensional plate � = (0, L) ×

(−H,H ) subject to a hard deviceUt = sgn(y)kt e3 on its left border x = 0, see Fig. 3.
An initial damage field corresponding to an preexisting crack �0 = {x ∈ R

2|α0(x) =
1} = [0, l0] × {0} is present in the domain. For that we prescribe naturally α−1 = 1
on �0 in Algorithm 3. The loading velocity k will be varied and its effect on the crack
propagation speed will be studied. With a modification of the damage dependence of the
elastic energy E(ut ,αt ) proposed in [25], the crack tip t �→ Pt is enforced to propagate

Fig. 3 Mode III antiplane tearing of a two dimensional plate � = (0, L) × (−H, H) with a loading speed
parametrized by k. An initial crack [0, l0] × {0} is present in the domain. The crack is enforced to propagate
along the constant direction e1
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along the constant direction e1, which prohibits consequently crack kinking or branching.
Denoting u as the out-of-plane displacement, the elastic energy density in this particular
situation reads

ψ(∇ut ,αt ) = 1
2
μ

(
a(αt )

(
∂ut
∂x2

)2
+

(
∂ut
∂x1

)2
)
. (24)

where damage acts only on the ∂ut
∂x2 component of the displacement gradient. We assume

that this modification (24) can be regarded as a particular case of the original model (1)
when the crack actually propagates along a specific path without kinking or branching. It
allows us to focus on the crack propagation stage.

Remark If the original model is used, i.e. when the degradation function also acts on
∂ut
∂x1 , numerically it is observed that for low propagation speeds crack curving (including
kinking and branching) does not take place and the modification (24) produces the same
response as the original model. However for higher propagation speeds (for example
due to a larger loading velocity k), crack curving is observed (see for example [25]) and
these two models no longer predict the same crack evolution. Crack path prediction
is exactly the raison d’être of phase-field models of fracture. A thorough investigation
of crack kinking/branching phenomena (as a function of crack speed for instance) is
a very important task to which future work will be devoted. Nevertheless, the current
contribution focuses on the behavior of gradient damage models when these dynamic
instabilities (kinking, branching) are somehow suppressed (see for example [34] for an
experimental investigation on this point), which permits a direct comparison with the
classical Griffith’s theory of dynamic fracture.

This problem is initially raised in [25]. In their model the crack surface energy is approx-
imated by the Ambrosio and Tortorelli elliptic regularization w(α) = α2, whereas here
the damage constitutive law (4) is used. The objective is to compare the crack evolu-
tion obtained in the dynamic gradient damage model with that predicted by Griffith’s
law which determines initiation and propagation of cracks. Two experiments will be
considered:

1 In the first case, the fracture toughnessGc is assumed to be homogeneous throughout
the domain. The loading speed is of the same order of the material speed of sound
c = √

μ/ρ and we will use the explicit Newmark time-stepping method.
2 In the second case,Gc may admit a spatial discontinuity in the propagation direction.

We also prescribe a relatively small loading speed in order to investigate the quasi-
static limit of the dynamic model. Depending on whether the crack propagation
speed itself is smaller with respect to the speed of sound or not (the term unstable
propagation often refers to this case), the implicit or the explicit Newmark method
will be used.

A rescaling of the displacement and a normalization of the space/time scales are per-
formed to obtain a non-dimensional problem. Specifically, a reference elastic constant μ,
material density ρ and fracture toughness Gc have been chosen and the displacement is
scaled by a factor of

u =
√
GcH/μ.
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The height of the plate H and the corresponding time H/c for the reference elastic wave
(with speed c = √

μ/ρ) to travel such distance is used to normalize the spatial and
temporal scales. We have thus

u(x, t) = u û
(
x
H
,
ct
H

)
e3 ,

α(x, t) = α̂

(
x
H
,
ct
H

)
.

Rewriting Lagrangian defined in (7) using û and α̂ amounts to adopt the following non-
dimensional quantities

ρ̂ = ρ

ρ
, μ̂ = μ

μ
, Ĝc = Gc

Gc
and �̂ = �

H
.

For notational simplicity, we drop the bar and use directly non-dimensional quantities in
the sequel.
A structured crossed triangular mesh with a uniform discretization spacing�x = �y =

h is generated. For the explicit time-stepping method, the Courant–Friedrichs–Lewy
(CFL) time-step is used

�tCFL = h
c

= h√
μ/ρ

. (25)

The parameters adopted for all subsequent calculations are summarized in Table 1. A
typical damage field obtained in this simulation is illustrated in Fig. 4, where the dam-
age varies from 0 (blue zones) to 1 (red zones). Thanks to the �-convergence theory in
the variational approach to fracture, the current crack length lt could be approximately
derived from the damage dissipation energy

S(
αt

) ≈ (Gc)eff lt (26)

with (Gc)eff = (
1+ 3h/(8�)

)
Gc the numerical amplified fracture toughness due to spatial

discretization, see [2,20]. This is the value that a phase-field crack actually dissipates per
unit extension in the gradient damage model. However (26) does not immediately apply
to the case where Gc admits a spatial discontinuity. For consistency, the current crack tip
Pt = (lt , 0) is located on the contour α = 0.5. The crack speed can thus be obtained by a
linear regression analysis during the steady propagation phase.

Table 1 Geometric, material and numerical parameters for the antiplane tearing
experiment

L H l0 μ ρ Gc 	 h 
t
5 1 1 0.2 1 0.01 0.05 0.01 �tCFL

Fig. 4 Typical damage field obtained in the antiplane tearing example. The damage varies from 0 (blue
zones) to 1 (red zones)
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Homogeneous fracture toughness case

In the first case a homogeneous plate will be considered. This antiplane tearing example is
physically similar to the 1-d film peeling problem which can be studied using the classical
Griffith’s theory of dynamic fracture. According to [35] and [2], the crack speed, with
respect to the loading displacement U = kt or to the physical time t, as a function of the
loading velocity k is given by

dl
dU

(k) =
√

μH
Gc + ρHk2

or
dl
dt

(k) =
√

μHk2
Gc + ρHk2

(27)

from which we retrieve the quasi-static limit dl/dU (0) = √
μH/Gc predicted in [2] and

the dynamic limit as the shear wave speed dl/dt(∞) = √
μ/ρ, which is a classical result in

the Griffith’s theory of dynamic fracture [36]. We also observe that for low loading speeds
k ≈ 0, the dynamic crack speed dl/dt ≈ k

√
μH/Gc scales linearly in k , which agrees with

the remarks given in [25]. Comparisons between the numerical results using the dynamic
gradient model and this theoretic result (27) with Gc replaced by (Gc)eff are illustrated in
Fig. 5.
Despite the transverse wave reflection present in the two-dimensional numericalmodel,

a very good quantitative agreement is found between them. In particular, as it is also
observed in [25], the numerically obtained crack speed indeed approaches the limiting
shear wave speed when the loading speed increases. The explicit time-stepping Algorithm
2 as well as its implementation work fine even at supersonic loading speeds.
The conventional dynamic energy release rate (21) is numerically computed and the

validity of the asymptotic Griffith’s law is analyzed by varying the inner radius r of virtual
perturbations defined in Fig. 2. During the propagation phase l̇t > 0, three arbitrary time
instants are taken when the crack length attains respectively lt ≈ 1.6, lt ≈ 2 and lt ≈ 2.4.
An evident r-dependence of Gα

t is illustrated in Fig. 6, where the ratio R/r = 5
2 is fixed.

In LEFM, it is known that the J -integral is directly related to the dynamic stress intensity
factors at the crack tip, see [36]. In gradient damage models however, there is no more
stress singularities. When r is small, we go directly into the process zone dominated by
damage-induced strain softening and Gα

t → 0 is expected as r → 0. However, as r

(a) (b)

Fig. 5 Crack speeds as a function of the loading velocity. The crack speed dl
dt with respect to t is indicated in

a, while in b the crack speed dl
dU with respect to U is shown. Comparison with the 1-d analytical solution (27)

based on the Griffith’s criterion
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Fig. 6 Conventional dynamic energy release rate Gα as a function of the inner radius r of the virtual
perturbation θt . Three arbitrary instants when the crack propagates l̇t > 0 are chosen.

increases, Gα
t captures well the outer mechanical fields. An equivalent energy release rate

can thus be defined, and according to the asymptotic behaviors of γt , we have the desired
result Gα

t = γt → (Gc)eff .
We will then turn to the evolution of the conventional dynamic energy release rate

when the existing crack initiates and further propagates. From the above r-dependence
analysis, a fixed inner radius r = 2� is used which should already correctly capture the
far mechanical fields. The crack length lt given by (26) as well as the calculated Gα

t are
given as a function of the loading displacement in Fig. 7, where three separate calculations
corresponding to three loading speeds k are reported.
Recall that an initial crackof length1 is present in thebody andweobserveGα

t = 0before
the waves arrive at the initial crack tip.When the energy release rateGα

t at the initial crack
tip attains the fracture toughness (Gc)eff , the existing crack initiates and then propagates
with the equality Gα

t = (Gc)eff if the spatial and temporal numerical discretization errors
are ignored. Indeed this equality is not enforced algorithmically during the solving of
the (u,α) evolution which is instead determined by Algorithm 2. We may conclude that

Fig. 7 Conventional dynamic energy release rate Gα as a function of the loading displacement. Three
loading speeds k are used: k = 0.1 ≈ 0.2c, k = 0.2 ≈ 0.4c and k = 0.3 ≈ 0.7c
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the crack-tip evolution (initiation and propagation) is well governed by the asymptotic
Griffith’s law (23) in thedynamic gradient damagemodel,whenouterfields are considered.
The internal length � plays a rather subtle role during the propagation phase. The crack

tip is governed by the asymptotic Griffith’s law (23) if and only if a separation of scales
between the inner damage problem and the outer LEFM is possible, i.e. only when the
internal length is sufficiently small compared to any other structural length [27]. Although
� is indeed hidden in (23), the validity of the latter depends directly on it. Belowwe present
the simulation results with a fixed loading speed k = 0.2 and three small enough internal
lengths. As can be seen from Fig. 8, the crack evolution is globally conforming with
Griffith’s law, as long as the involved quantities are calculated with a virtual perturbation
θt capturing correctly the far fields. Here according to Fig. 6, we use an inner radius
adapted with the internal length r = 2�, which should produce an error less than 3%.
The stress distribution along a vertical slice {(x, y) ∈ R

2|x = lt} passing by the current
crack tipPt should illustrate and highlight the separation of scales when � is small. For the
sake of simplicity, we consider a stationary crack [0, 2] × {0} and solve the static problem
with the gradient damage model and the LEFM model (linear elastic body with a sharp
crack embedded in the domain). We can verify from Fig. 9 that the LEFM develops a

Fig. 8 Crack evolution as a function of the loading displacement. Three small enough internal lengths are
used

(a) (b)

Fig. 9 Stress distribution along a vertical slice {(x, y) ∈ R
2|x = lt} passing by the current crack tipPt . The σ13

(a) and the σ23 (b) components are indicated. The gradient damage model and the LEFM model are
compared
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well-known inverse square root singularity for the two stress components σ13 and σ23 and
their near-tip fields are well approximated by the theoretic asymptotic solutions.
On the other hand, the gradient damage model provides a better modeling of the stress

field near the crack tip as their values are bounded. A good matching can be observed far
from the crack tip and the discrepancy with the outer LEFMmodel is concentrated within
a process zone proportionally dependent on the internal length. When � is very large, the
process zone could cover the whole structural domain and a separation of scales is no
longer possible. In this case the asymptotic Griffith’s law (23) is not applicable since we
are no longer dealing with a fracture mechanics problem.

Discontinuous fracture toughness cases

As another illustration of the Griffith-conforming crack evolution obtained with the
dynamic gradient damage model, we consider the quasi-static limits of the model in
the presence of a possible fracture toughness discontinuity in the previous plate

Gc =
⎧⎨
⎩
K1 x ≤ x0 ,

K2 x > x0.

Apreexisting crack is always present and is introduced via an initial damage field. Accord-
ing to [37], when the loading speed k is decreased the dynamic gradient damage model
converges to the following first-order quasi-static gradient damage evolution model:

1 Irreversibility the damage t �→ αt is a non-decreasing function of time.
2 First-order stability the first-order variation of the potential energy is non-negative

with respect to arbitrary admissible displacement and damage fields

P ′(ut ,αt )(vt − ut ,βt − αt ) ≥ 0 for all vt ∈ Ct and all βt ∈ D(αt ). (28)

where in the absence of external forces the potential energy is given by

P(ut ,αt ) = E(ut ,αt ) + S(αt )

3 Energy balance the only energy dissipation is due to damage

Pt = P0 +
∫ t

0

(∫
�

σs · ε(U̇s) dx
)

ds. (29)

In addition, theproof of convergence ismadeunder thehypothesis that the crack evolution
t �→ lt is at least continuous in time (as in the classical Griffith theory). Numerically, it
is the first-order stability condition (28) that is effectively implemented by the alternate
minimization procedure [6] while the energy balance condition (29) can only be at best
checked a posteriori.
The homogeneous antiplane tearing problem is firstly solved by the dynamic gradi-

ent damage model and the above first-order quasi-static gradient damage model. In the
dynamic calculation a small loading speed k = 0.001 ≈ 0.2%c is assumed and we use
the unconditionally stable implicit Newmark scheme as described in Algorithm 1, with
β = 1

4 . The time step is set to �t = 10�tCFL, where tCFL is defined in (25). In Fig. 10 we
plot the crack length evolution as well as the conventional energy release rate Gα

t both
for the dynamic model and the first-order quasi-static model. It is recalled that the static
Gα
t can be simply obtained by setting u̇t and üt to zero in (21). We observe that these

two solutions coincide, and both present a time-continuous crack evolution (initiation
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Fig. 10 Crack length and conventional energy release rate Gα for the homogeneous fracture toughness
plate at a very slow loading speed. Comparison between the dynamic model and the first-order quasi-static
model

and propagation) conforming to the asymptotic Griffith’s law (23). The numerically com-
puted quasi-static crack speed (with respect to U = kt) is compared in Table 2 to the
analytical value

√
μH/Gc announced in [2]. A very good agreement can be found if the

numerically amplified fracture toughness (Gc)eff is used in the formula.
We then turn to the case where the fracture toughness jumps suddenly from a lower

value K1 = 0.01 to a higher one K2 = 2K1 = 0.02 at x = 2. The unconditionally stable
implicit Newmark schemewith β = 1

4 is used again with a time increment�t = 10�tCFL.
As can be observed from Fig. 11 the convergence of the dynamic model toward the quasi-
static one is verified and the crack initiates and propagates following Griffith’s law. A
temporary arrest phase is present shortly after the crack reaches the interface at x = 2.
Due to continuous loading the energy release rate increases and the crack then restarts

Table 2 Comparison of the numerically computed quasi-static crack speed in the
homogeneous case with the theoretic one

√
μH/Gc given in [2]

Numerical Theoretic Error

Quasi-static crack speed 4.326 4.391 1.5%

Fig. 11 Crack length and conventional energy release rate Gα for the increasing fracture toughness plate at
a very slow loading speed. Comparison between the dynamic model and the first-order quasi-static model.
The numerically amplified fracture toughness (Gc)eff is calculated based on K1 = 0.01
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and begins to propagate in the second material when the energy release rate Gα
t attains

the higher fracture toughness K2.
However, for the case where the fracture toughness K1 = 2K2 = 0.02 suddenly drops

to a smaller value K2 = 0.01 at x = 1 (exceptionally here the initial crack length is 1
4 ), a

relatively good matching can only be found before and after the jump phase produced at
the discontinuity, both in terms of the crack length evolution and the energy release rate.
It is exactly at the jump phase that these two models strongly disagree, cf. Fig. 12.
Here due to the unstable crack propagation during the jump, the explicit Newmark

scheme is used for the dynamic calculation with �t = �tCFL. When the crack arrives at
the discontinuity, the first-order quasi-static numerical model underestimates the crack
jump and predicts no further crack arrest, by relating directly the static energy release
rateGα

t to the fracture toughnessK2 just after the jump. For the dynamic model, the jump
length is bigger and a subsequent temporary crack arrest is observed, as the dynamic
energy release rate oscillates with a high frequency but remains smaller than the fracture
toughness K2 after the jump. We observe that in both cases the jump takes place at
x ≈ 0.9 somewhat prior to the fracture toughness discontinuity x = 1. We suspect that
this is due to the damage regularization of cracks with a half-bandD = 2� = 0.1 using the
constitutive laws of (4). If this effect is ignored, the crack length after the jump is recorded
in Table 3 for each case. From the static energy release rate evolution, we see that the
crack length lm after the jump predicted in the first-order quasi-static numerical model
is governed by G(lm) = Gc(lm) from which authors of [35] find lm = √

K1/K2 = √
2.

However their dynamic analysis shows that the crack length after the jump lc should
instead be given by the total (quasi-static) energy conservation principle P(1) = P(lc),
which results in lc = K1/K2 = 2. We see from Table 3 that our dynamic gradient damage
model indeed reproduces this correct value.

Fig. 12 crack length and the conventional energy release rate Gα for the decreasing fracture toughness
plate at a very slow loading speed. Comparison between the dynamic model and the first-order quasi-static
model. The numerically amplified fracture toughness (Gc)eff is calculated based on K2 = 0.01

Table 3 Comparison of the numerical crack lengths after the jumpwith the theoretic
predictions

Quasi-static Dynamic

Numerical 1.465 1.995

Theoretic
√
2 2

Error 3.6% 0.25%
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To better analyze the jump phase, energy evolutions are investigated against the crack
length in Fig. 13.
In the quasi-static case we pick the total energy P = E + S while in the dynamic case

we plot separately the static energy P = E + S and the kinetic one K. Before and suf-
ficiently after the jump a good agreement between these two potential energies can be
found. We observe that the (incorrect) quasi-static jump i.e., an unstable or brutal crack
propagation) is accompanied by a slight loss of the total energy �Pstat., contradicting the
balance condition (29). This phenomenon has already been observed by several authors
such as [2,6,10,25]. On the one hand, it can be regarded as a numerical issue as the effec-
tive implementation of the quasi-static model is solely based on the first-order stability
condition (28). For this particular problem based on quasi-static energy conservation we
could predict a correct quasi-static crack evolution toward which the dynamic solution
converges when the loading speed becomes small, see [35]. On the other hand, from a
theoretic point of view, it is already known in [38] that there may not exist an energy-
conserving evolution which also respects the stability criterion at every time. Moreover
even equipped with the energy balance condition, the quasi-static model may still differ
from the dynamic analysis [39]. A natural and physical remedy for all general unstable
crack propagation cases is to introduce inertial effects. In Fig. 13 the dynamic jumpprocess
is continuous (the crack propagates at a finite speed bounded by the shear wave speed)
compared to the quasi-static one where the jump occurs necessarily in a discontinuous
fashion between two iterations. We verify the conclusions drawn in [35] that the kinetic
energy K plays only a transient role in this problem, as it attains a finite value during the
jump and becomes again negligible after. The dynamic potential energy P = E + S after
the jump is slightly bigger that its value before the jump, due to the fact that the loading
speed k = 0.001 is small but not zero.
During the jump, the crack propagates at a speed comparable to the material speed of

sound which, according to [35], is given by

vjump =
(√

K̂1 + ε2 + ε
)2 − K̂2(√

K̂1 + ε2 + ε
)2 + K̂2

· c (30)

Fig. 13 Energy variation as a function of the crack length for the decreasing fracture toughness plate at a
very slow loading speed. Comparison between the dynamic model and the first-order quasi-static model
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with the non-dimensional fracture toughness K̂i = Ki/(2μH ) and the normalized loading
speed ε = k/c. The crack length evolution during the jump is illustrated in Fig. 14.
Due to transverse wave reflection in this 2-d problem, the crack propagates during this

interval with a small fluctuation of period T approximately corresponding to the first
standing wave between the boundary and the crack T ≈ 2H/c ≈ 4.5. That is why we
calculate from Fig. 14 only the initial crack speed at jump for comparison in Table 4. A
good agreement can be found between the numerical and the theoretic ones.

Conclusion
In this paper further physical insights into the dynamic gradient damage model are pro-
vided via a simple antiplane tearing experiment. As a phase-field approach to brittle
fracture, it can indeed be regarded as a generalization or a superset of the LEFM theory,
since the crack evolution is shown to be Griffith-conforming in several situations:

• In the dynamic tearing example of a homogeneous plate, it is verified that the crack
evolution is governed by the asymptotic Griffith’s law (23), as long as the material
internal length is sufficiently small to establish a separation of scales between the inner
damage problem and the outer LEFM problem. The conventional dynamic energy
release rate is numerically computedandverifiedas a tool to translate gradient damage
mechanics results in fracturemechanics terminology.We conduct a comparisonwith
the 1-d peeling problem [35] analytically studied with the classical Griffith’s theory
of dynamic fracture. A good agreement between them can be found in terms of the
crack speeds prediction as a function of the loading speed.

• We then investigate the quasi-static limits of the dynamic gradient damage model.
In the absence of brutal or unstable crack propagation where the classical static
Griffith’s theory fails, the dynamic model converges to the first-order quasi-static
gradient damage model, when the loading speed decreases. However, when the crack

Fig. 14 Zoom in time at the crack length jump due to sudden toughness decrease for the dynamic model

Table 4 Comparison of the numerically computed crack jump speed with the theoretic
one (30) given in [35]

Numerical Theoretic Error

Relative jump speed vjump/c 0.3325 0.3396 2%
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may propagate at a speed comparable to the material speed of sound, the dynamic
model should bepreferred to correctly account for inertial effects. The crack evolution
in the dynamic gradient damage model is in quantitative accordance with the LEFM
predictions on the 1-d peeling problem.

These numerical experiments provide hence a justification of the dynamic gradient
damage model along with its current implementation, when it is used as a phase-field
model for complex real-world dynamic fracture problems. Furthermore, the gradient
damage model could also be used as a tool to explore and explain numerous dynamic
fracture phenomena. Our future work will be devoted to this point.
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