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Abstract—Among the most evident anthropogenic modifica-
tions of the lanscape, terraces related to agricultural activities
are ubiquitous structures that constitute important investments
worldwide, and they recently acquired a new relevance to mod-
ern concerns about land use management and erosion control.
Conservation agriculture and terraces management are an ap-
plication with great potentialities for Satellite Earth observation
and the derived high resolution topography. Due to its high
agility, the Pleiades satellite constellation provides new, high-
resolution Digital Elevation Models (DEMs) with a sub-metric
resolution that could be potentially useful for this task, and
their application in a farmland context is nowadays an open
research line. This work provides a first analysis, performing an
automatic terrace mapping from DEMs obtained from Pleiades
images, as compared to LiDAR DEMs. Two existing methods are
considered, the Fast Line Segment Detector (LSD) algorithm, and
a geomorphometric method based on surface curvature. Despite
the lower performances of Pleiades DEMs respect to the LiDAR
models, the results indicate that the Pleiades models can be used
to automatically detect terrace slopes greater than 2 m with a
detection rate of more than 80% of the total length of the terraces.
In addition, the results showed that when using noisy digital
elevation models, the geomorphometric method is more robust,
and it slightly outperforms the LSD algorithm. These results
provide a first analysis on how effective Pleiades DEMs can be
as an alternative to LiDAR DEMs, also highlighting the future
challenges for monitoring large extents in a farmland context.

Index Terms—Stereo-photogrammetry, cultivated landscapes,
LiDAR , line detection, accuracy

I. INTRODUCTION

In the past few decades environmental research has become

aware of the extent of the human impact on ecologic and

geomorphic systems [1]–[5].

Among the most evident human-induced landscape modifi-

cations, terraces related to agricultural activities are ubiquitous

features, and they constitute important capital investments

in a range of landscapes worldwide [4], typically enduring

over many human generations [6]. The importance of terraced

landscapes has been underlined from different point of views,

ranging from cultural and environmental (e.g. the World

Cultural Heritage Sites by UNESCO and [7]), to sustainable

land use [6], [8], [9], ecosystem importance [10], [11], erosion

control, runoff and water management [4], [12], [13], [19],

[21]. In recent times, terraced areas acquired a new relevance

to modern concerns about land use management and erosion

control [15]–[18], being the agricultural land mostly threatened

by abandonment [4], or, on the other hand, intensification and

specialization of agriculture resulting in heavy land levelling

and/or construction of more landslide-prone bench terraces

[14]. Giving the terraces obvious relevance public authorities,

land managers, and researchers have called for the develop-

ment of cost-effective and flexible methods for the identifica-

tion and monitoring of these features [20], as a basis for a

correct monitoring, and to diagnose erosion and hydrological

risks at the catchment or hillslope scale [4]. Despite their

importance, only few terraces have been delineated and are

available in national geographical databases [4], [22]. Thus,

most of the recent literature dealing with terraces approached

to their identification through field survey, interviews with

the local population, or interpretation of aerial photographs

and successive digitalization (e.g. [6], [23], [24]). Currently,

only few automatic methods have been presented to map

agricultural terraces [4], [20], [25], [26].

Pleiades is the most recent satellite mission providing

optical images at any point of the Earth surface [27]. Due

to the agility of the sensor, the Pleiades constellation allows

the acquisition of stereo pairs and triplets for highly coherent

conditions [28], [29]. The agility of the satellite, and the

availability of this dataset have risen questions about what

is feasible, and what is efficient, regarding 3D mapping from

multi-angle images sequences [27]. While the effectiveness

of high resolution datasets in anthropogenic environments has

already been proven (see [30] for a full review), the feasibility

of Pleiades datasets in the form of Digital Surface Models

(DSMs) has been proven for building extractions e.g. [27],

but no work in literature has proven so far the effectiveness of

Pleiades DEM for agricultural landscapes. Precision farming

and agricultural control are application with great potentialities

for Earth observation if efficient methodologies could be used

to extract useful and accurate end users information [31], and

the use of Pleiades DEMs as an alternative to LiDAR DEMs

for monitoring large extents and surface changes has yet to be

proven and operationally implemented.

Three questions are still unanswered: i) Are Pleiades derived
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DEMs accurate and detailed enough for mapping farmland

terraces? ii) Given the same resolution, are the mapping

performances comparable with LiDAR DEMs? iii) Is there a

significant difference in terrace mapping performances when

using a Digital Terrain Model (DTM) or a Digital Surface

Model (DSM)?

The objective of this paper is to assess the performances

of automatic terrace mapping from DEMs obtained from a

stereo pair of Pleiades images compare to LiDAR DEMs. The

dataset used for the performance assessment covers a 4 km2

region of gentle, hilly Mediterranean vegetated farmland in

southern France. First, the paper presents the datasets and

some preliminary analysis results from the DEM comparison.

The DEM processing methods, including DEM smoothing,

feature extraction and vector post-processing, are discussed

next. Then, the performances of both methods and the reliabil-

ity of the Pleiades DEM for delineating terraces are discussed.

II. DATASETS

Reference terrace data, Pleiades images and a LIDAR 1 m

DSM and DTM were acquired for a portion of the Peyne

catchment (southern France) (Fig. 1). The area is mainly

covered by vineyards, with small areas of cereal fields and

shrubs. The elevation for the study site ranges between 50

m a.s.l. to about 125 m a.s.l.. The climate in this region is

sub-humid Mediterranean, with 600 mm y−1 of precipitation.

Two short rainy seasons, one in the autumn and one in the

spring, occur with intense rainfall. The climate and intensive

vine cultivation make this area sensitive to flash flooding and

erosion. Consequently, settlements from Roman times built

several structures to limit floods and soil erosion, including

ditches, embankments and terraces (e.g. [32]). The study site

has been intensively surveyed for a long time, having been

a part of an environmental observatory since 1992 (ORE

OMERE: http://www.obs-omere.org/). In the study area, ter-

races have heights ranging from approximately 0.3 m to 10 m.

Their location and shape have not changed during the period

of the different data acquisition dates: there were no significant

modification in between 2002 (time of the LiDAR collection),

and 2013 (Pleiades survey) (Fig. 1).

A. Ground truth data

A systematic field survey was conducted in 2010, with a

survey rate of 1.5-3 km2 d−1 per person, depending on the

accessibility of the terrain. The terraces were delineated with

an elevation accuracy of 0.1 m for heights lower than 3 m

and 0.5 m for elevations higher than 3 m. Regarding the

terraces height, the considered reference field survey was in

some instances limited by the accessibility of the area, thus a

higher accuracy cannot be expected. Because of this, in this

study ground height data are used to group the field-surveyed

terraces in different height classes, to project the detection

results regarding the terrace height. The overall survey quality

is comparable to the official information generally available

about terraces locations. The surveyed features, including their

location and height, were further verified and digitalized using

a 0.5 m resolution aerial photo (BD-Ortho c©IGN) (Fig. 2).

Fig. 1. Location of the study site and view of the area in 2002 (a), and 2013
(b). Images as seen on Google Earth

Fig. 2. Ground truth dataset overlapped to the Pleiades DSM

B. Pleiades DEMs

A Digital Surface Model (DSM) was built from a stereo

pair of Pleiades images acquired during the leaves-off period

of vegetation (January 2013) at a high global incidence angle

(30 degrees) leading to a Base to Height (B/H) ratio of ∼ 1/1.6
which is a usual ratio for stereo pair of satellite images. The

DSM was produced by using the open source Mic-Mac (Multi

Image Matches for Auto Correlation Methods) tool developed

at the French Mapping Agency (IGN) [33], [34].

MicMac is based on the minimization of a global energy

that combines a data term which is the image matching score

and a regularization term.

Eα(Z) = 1− corr(x, y, Z(x, y)) + αF (
−→
G(Z)) (1)

where corr is the normalized cross correlation score at the

image projections of point (x, y, Z), F (
−→
G(Z)) (Eq. 2) is a
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positive function that depends on the variations of Z, and it

is a regularization term that expresses the a priori knowledge

of the surface regularity. α is a weighting parameter for the

regularization term.

F (
−→
G(Z)) = |(Z(x+1, y)−Z(x, y))|+|(Z(x, y+1)−Z(x, y))|

(2)

The regularization term is well suited for high spatial

resolution images since it varies with the terrain discontinuities

[35]. In this study, the α parameter was set to be very low

to maintain the terrace slopes. To deal with large areas, the

MicMac method has a multi-resolution pyramidal approach,

that consists in starting the computation at a coarse resolution

to reduce the height search space and improving recursively

the matching process at each resolution, similar to [36]. The

final DSM was resampled at a resolution of 1 m, to be

comparable with the resolution of the LiDAR DEMs.

From this DSM, a DTM was generated. Terrace walls

present a high local slope, and many DTM filters aim to

smooth DSMs (i.e., remove slopes). Consequently, instead of

using the usual slope-based filtering algorithm [37], we applied

a normal closing filter with circular structural elements of

10 m followed by a Gaussian smoothing filter with a width

of 5 m. In mathematical morphology, the closing tends to

enlarge the boundaries of foreground (bright) regions in an

image (and shrink background color holes in such regions).

The effect of the operator is to preserve background regions

that have a similar shape to its structuring element, or that can

completely contain the structuring element, while eliminating

all other regions of background pixels. The choice of the

structural element size was governed by the size of the

removed object (i.e., vine lines, isolated trees and hedgerows).

A Gaussian smoothing filter was then applied to reduce noise

on the resulting map while preserving edges on the image.

Consequently (Fig. 3), the obtained DTM looks less noisy

than the initial DSM, and the terraces are preserved in the

landscape.

The final datasets (Pleaides DSM and DTM) show no

systematic error over permanent terrain structures (1.8 e-06

m), while presenting an overall standard deviation of errors of

0.51 m with respect to centimetric DGPS points.

C. Multi-echo LiDAR DEMs

LiDAR data were acquired over the study area in June

2002 with a Falcon II Toposys LiDAR system mounted on a

helicopter (flight elevation: 900 m; laser pulse emission rate:

83 MHz; 3D points spatial sampling rate: 10 pts m−2 [38]).

The 3D point cloud allowed the creation of a 1 m DTM and

DSM.

The DSM was computed using bi-linear interpolation of the

first pulse points at the regular grid DTM node locations. The

DTM was computed using the same process from the last pulse

scatter of points. From the latter pulse, an additive erosion

filter with an adaptive structural element size was applied to

remove some residual surface objects (houses, dense forests

and hedgerows). The post survey accuracy on the LiDAR

last-pulses topographic points on flat and non vegetated areas

Fig. 3. Pleiades DSM to DTM process: initial DSM (a); DTM after opening
and Gaussian filters (b) on a hillslope of the study area

exhibited a Gaussian noise, with a standard deviation of

approximately 0.06 m [38] with respect to centimetric DGPS

points.

D. LiDAR and Pleiades DEMs comparison

Because the Pleiades DSM was acquired 12 years later than

the LiDAR DSM and the aim of the work is to extract the

man-made structures in the landscape, the elevation of the two

datasets was compared only for permanent structures (roads,

ways, terraces). Due to the non-Gaussian deviation distribution

with short tails, robust statistics were computed by comparing

the elevations at the remaining 87000 grid nodes. The absolute

median deviation between the Pleiades and LiDAR elevations

was estimated to be 0.35 m. Overall, 90% of the deviations

belong to [-1.4m, +1.1m], and 50% of the deviations belong

to [-0.17m, +0.42m]. As pointed out by [39] the feasibility

of Pleiades datasets and the quality of the derived DEMs in

relation to the incidence angle depends on the context: in open

landscapes without severe occlusions, the use of a single stereo

pair can provide optimal results also with a fairly wide stereo

angle. Giving the initial incidence angle of the considered

dataset (30 degrees), despite being more noisy, the overall

quality of the Pleiades derived elevation surfaces is close to

that derived from the airborne DEMs. As well, despite the

local scale roughness, the Pleiades DSM shows an elevation

disruption for every terrace location, as shown in figure 4.



SUBMITTED TO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 4

Fig. 4. Pleiades and LiDAR DSM comparison. The 2002 Lidar DSM (a) is
compared to the 2013 Pleiades DSM (b). The figure also shows an elevation
profile of a hill slope and the terrace locations (c)

III. METHODS

A. Terrace slope detection using the Fast Line Segment De-
tection (LSD) image processing algorithm

This detection method relies on two steps: a DTM or DSM

local contrast enhancement step providing a grey level image

from which a final feature extraction step (LSD) is performed

(Fig. 5).

Fig. 5. LSD method: (a) original DEM, (b) DEM local contrast enhancing
from a Gaussian filter, (c) Gradient magnitude image and (d) detected line
segment in red

The LSD aims at detecting locally straight contours on

images, with a contour being an area where the gray level

is changing fast enough from dark to light or the opposite

[41]. To obtain a monochromatic image and enhance terrraces

as contours, the elevation contrast of the DEM was increased

by subtracting a regularised DEM after Gaussian smoothing

with a radius of 10 pixels to the initial DEM (Fig. 5c).
Next, the image is processed using the Fast Line Seg-

ment Detection algorithm [40]. The following paragraphs will

expose its main characteristics and parameters, despite its

presentation as a parameterless method [41].
Given an image gradient (Fig. 5c), the method computes

a level-line field, where level-lines are created at each pixels

as vectors orthogonal to the gradient direction. The level-line

field is then segmented into connected regions of pixels that

have the same level-line orientation, up to a certain toleration

angle τ (Fig. 6). Each region is considered as a possible

line candidate. The acceptation-rejection of a region as a line

segment follows the Helmholtz principle, which states that no

line segment should be detected in an image of pure noise.
The acceptation-rejection relies on the following processes:

i) a rectangle entirely covering each region is delineated (Fig.

6); ii) the center of mass of the region is used to select the

center of the rectangle, and the first inertia axis is considered

to select the rectangle orientation; iii) for each rectangle, the

total number of pixels in the rectangle, n, and its number of

aligned points (level-lines having their orientation within the

τ tollerance), k, are counted; iv) for each rectangle, the score
k
n is calculated; v) this score is compared with a binomial

k distribution under an hypothesis H0 of pure random angle

fields (noise) with a distribution angle of [0, π]; vi) the region

is accepted as a line segment when the score is rare in the H0

distribution (low probability). This latter test is also referred

to as a a contrario approach [41].
In a final step, a vectorised line segment list is produced

from the rectangular properties of the image coordinates.

Fig. 6. Examples of a synthetic image (a) of gradient (blue) vectors, direction
and magnitude (b) and a region with aligned (green) pixels on an image edge
that was approximated by a rectangle (c). Images modified from [40]

Six parameters are required in the LSD algorithm:

τ, S, q, e, d, c. The tolerance angle τ is the first of parameter

and is expressed in degrees with a default value of 22.5 as

supported by tests on numerous images [40].
The scale factor S controls the image size reduction and

avoids some artifacts in the computation. S is expected to

range from 0.8 (no scaling) and up to ∞. The c parameter

controls the Gaussian kernel width (standard deviation) and is

equal to c
S with a default c value of 0.6.

The q parameter controls the gradient threshold ρ = q
sin(τ) .

Pixels with gradient magnitudes smaller than ρ are excluded

when a region grows. q is generally fixed to 2, and should

change when the image intensity range differs from the [0, 255]
interval.
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The e parameter denotes the acceptation probability thresh-

old of the k distribution under H0. However the LSD algorithm

is hardly sensitive to this parameter [41].

The last control parameter is the minimal density d of the

region of aligned pixels in the rectangle to be accepted. This

parameter is considered in addition to the a contrario test and

is expected to range from 0 to 1. The default d value was fixed

to 0.5.

The retained optimised parameter values for this study case

are exposed in Table I. Only the q and e parameters were

optimised; the other parameters were fixed with values of τ =
22.5, c = 0.6, d = 0.5, S = 3. In this study case, we generally

selected q=3 in order to minimize the effect of local noise

(local bumps). A higher value for q was used for the LiDAR

DSM. This dataset was acquired during the vines vegetative

period, thus the vine rows gave high linear local gradient on

the map: this high gradient was compensated by selecting the

higher q. This was not needed for the Pleiades DSM, aquired

at the non-vegetative period.

LSD
parameters q e
LiDAR dtm 3 20
LiDAR dsm 8 20
Pleiades dtm 3 80
Pleiades dsm 3 80

TABLE I
LSD PARAMETER VALUES

B. Terrace slope detection using a geomorphometric algo-
rithm

Physical processes and anthropic elements leave important

topographic signatures that can be studied using distribution

analysis. In addition, recent literature has underlined how

statistical analyses along with LiDAR derived topographic pa-

rameters facilitate the objective recognition of different types

of landscape features and processes (e.g. [42], [43]). For this

study, we applied the feature extraction technique proposed

by [44] and effectively tested by [4] for identifying terrace

walls. According to this approach, the surface morphology is

approximated by a quadratic function (Eq. 3).

z = ax2 + by2 + cxy + dx+ ey + f (3)

where x, y, z are local coordinates, and a through f are

quadratic coefficients.

Any terrace wall represents a ridge on the side of the

hill; therefore, the maximum curvature Cmax (Eq. 4) can

be considered as an optimal parameter. Cmax is derived by

solving and differentiating equation 3 within a local moving

window as follows [45]:

Cmax = kg(−a− b+
√

(a− b)2 + c2) (4)

where k denotes the size of the moving window and g
denotes the DEM resolution.

Anthropogenic elements such as terrace slopes present

clearly defined boundaries with much sharper shapes than

natural terrain features. Consequently, these elements can

be identified as outliers in the positive tail of the Cmax

distribution [44]. Considering a robust statistic approach [46],

these elements can be identified as outliers of a whisker plot,

as the points verifying equation 5.

Cmax > Q3 + 1.5IQ (5)

where Q3 and IQ respectively denote the 3rd quartile and

inter-quartile distance of the Cmax distribution.

The thresholding approach (Eq. 5) produces a raster map

of the potential terraces. To calculate the vector map of the

terraces that correspond to the raster centerline, we use a

method that is similar to the one proposed by [47]. This

approach is based on the Marr-Hildreth technique [48] and

is less computationally intensive than other methods [49]. The

algorithm divides the raster into subsets of 100 x 100 pixels

that are processed simultaneously and in parallel. For each

subset, the algorithm focuses on each extracted region of pixels

and processes it using the following steps. (i) Determining

the Euclidean distance from each feature pixel to the nearest

background pixel. (ii) The distance map is convolved with a

bidirectional Laplacian filter in a manner similar to that of the

Marr-Hildreth edge detection algorithm [48]. (iii) To obtain the

centerline, [47] suggests using a threshold between 0.7 and 0.9

to apply to the output of the Laplacian convolution. Anything

below this threshold is considered part of the centerline. The

authors noted that the threshold value has little impact on the

final line. However, the threshold is important for ensuring the

continuity of the centerline, with a higher value resulting in a

more robust centerline calculation. After the different trials in

this study, we considered 0.5 as the optimal threshold. (iv) The

final centerline can be more than one pixel wide; therefore, the

produced output is further thinned to reduce the centerline to

a width of one pixel and the final centerline is converted into

a vector line.

C. Detection performance analysis

Quantitative assessments of the terrace slope detection

methods were performed using the buffer method, initially

proposed by [50] to quantify road detection performances.

This method matches the overlapping of the detected and

reference vectorised network, with performance metrics based

on network lengths. In addition, this method can be applied to

either a connected or unconnected network, which is the case

for a terrace slope network. More specifically, this method

measures the length of the detected network included (TP1)

or not included in the reference domain and the length of

the reference network included (TP2) or not included in

the detected domain. The domains are defined as buffers

around the two networks. The width of the buffer is the only

required parameter, which was fixed to 10 m to account for

the planimetric accuracies of each dataset.

First, three usual performance metrics are computed from

the matching: the true positive metric (TP ), which is the aver-

age between TP1 and TP2; the true negative TN (omission),

which is the length of the reference not included in the detected

network domain, and the false positive FP (commission),
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which is the length of the extracted network not included in

the reference domain. These metrics are normalised to the total

length of the reference network to a range of [0,1].

An additive performance metric stemming from the previous

metrics provide a quantitative assessment of the terrace detec-

tion, which makes an objective comparison between several

detection methods possible [51]. This metric, also named

quality index, QI , ranges from 0 (lowest quality) to 1 (highest

quality) (Eq. 6).

QI =
TP

TP + TN + FP
=

TP

1 + FP
(6)

Finally, because terrace slopes are exclusively located at

the borders of agricultural fields and because plot databases

are frequently available, performance metrics were computed

from the raw terrace segment lists out of the detection methods

and from reduced lists, excluding the terrace segments that

were located far away (10 meters) from the plot border lattice.

This consideration only changes the FP statistic computation.

Furthermore, FP1 denotes the FP metric computed for

reduced lists and FP2 denotes the FP metric computed for

the raw complete list.

IV. RESULTS

A. Detection performance results: LiDAR DEMs

The performance metrics of the terraces delineation from

LiDAR DSM and DTM are exposed in table II. The results

showed that at least 95% to 98% of the terrace slopes were

detected on DTM, regardless of the method. The LSD method

is producing fewer commissions and providing the highest

quality index value. Figure 7 shows that TN occurs in the

LiDAR DTM when using the LSD method on flat areas where

the terraces slopes have low heights. Similarly, FP occurs on

the LiDAR DTM using the LSD method on i) the steepest

slopes, where bushes and hedgerows can perturb the accuracy

of the DTM, and ii) along main roads and down to the streams

in areas where river or ditch banks can be confused with

terrace slopes. Similar behaviour can be observed when using

the geomorphometric method. The results in table II show

similar and high raw commissions when using the LSD and

geomorphometric methods. However, commissions are highly

reduced thanks to the plot border filter post-processing.

When applying the methods to the LIDAR DSM, the

detection performances were reduced with true positive rates

of approximately 75 % for both methods. However, the geo-

morphometric method slightly outperforms the LSD method

when applied to LiDAR DSM. This result suggests that the

geomorphometric method may be more robust when applied

to noisy DEM.

Method DEM TP TN FP FP QI
Type 1 2 (1)

LSD dtm 0.95 0.05 0.20 0.33 0.79
LSD dsm 0.75 0.25 0.40 0.61 0.54
Curv dtm 0.98 0.02 0.36 0.68 0.72
Curv dsm 0.76 0.24 0.31 0.70 0.58

TABLE II
DETECTION PERFORMANCES OF THE LIDAR DATASETS

Fig. 7. Maps of the detected terraces using the LiDAR DTM and the
geomorphometric method (a) or the LDS method (b). Resulting TP elements
in black, TN elements in red, filtered FP elements in blue and non filtered
FP elements in light blue

B. Detection performance results: Pleiades DEMs

Table III shows the performance metrics of terrace slope

delineation from the Pleiades DSM and DTM.

Method DEM TP TN FP FP QI
Type 1 2 (1)

LSD dtm 0.62 0.38 0.23 0.68 0.50
LSD dsm 0.44 0.56 0.20 0.58 0.37
Curv dtm 0.65 0.35 0.26 0.79 0.52
Curv dsm 0.50 0.50 0.22 0.87 0.41

TABLE III
DETECTION PERFORMANCES OF THE PLEIADES DATASETS

The results show that only 65% of the terrace slopes are

detected on the Pleiades DTM when using the geomorpho-

metric method. The LSD method is producing slightly fewer

commissions if compared with the geomorphometric method,

but at the same time it provides less TP values. In general,

the detection performance is systematically lower (-15%)

using the Pleiades DSM. Commissions are numerous, but the

results are however improved using the plot border filter post-

processing. Results on the Pleiades DTM shows quite similar

performances using the LSD or the geomorphometric method.

The geomorphometric method, however, outperforms the LSD

method when applied on the Peiades DSM: for this dataset,



SUBMITTED TO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 7

the LSD seems very sensitive to DEM noise. Similarly to

the LiDAR results, Figure 8 shows that TP occurs in the

Pleiades DTM when using the geomorphometric method on

the steepest slopes where terrace slopes are tall. FPs occur

in the Pleiades DTM when using the geomorphometric method

on areas where bushes and hedgerows can perturb terrace slope

representation, expecially along plot borders.

Fig. 8. Maps of the detected terraces using the Pleiades DSM and the
geomorphometric method (a) or the LDS method (b).Resulting TP elements
in black, TN elements in red, filtered FP elements in blue and non filtered
FP elements in light blue

However, except when using the LSD method in the

Pleiades DSM, the detection rate is always higher than 70

% when the terrace height is greater than 3 m (Fig. 9). The

detection rate of the terrace heights is greater than 3 m and is

at least 80 % when using LiDAR or the Pleiades DTM. Figure

9 also clearly shows that the LSD method fails in terrace

slope detection when using the Pleiades DSM, regardless of

the slope height.

V. DISCUSSION

A. Pleiades vs LiDAR performances

The effectiveness of Pleiades for extracting anthropogenic

features has been proved in other studies, mainly for building

detection [27]. However, this study shows that the very high

spatial resolution of the datasets allows the detection of

smaller features on the earth’s surface, such as terraces with

heights comparable to the DEM resolution (1m). Pleiades

Fig. 9. Detection rate (TP ) as a function of the terrace height

DTMs provide results that are comparable with the analyses

performed with LiDAR DSMs. On the other hand, Pleiades

DSMs have a slightly lower performance that is, however,

comparable with other referenced LiDAR DTM analyses of

more complex features under vegetation cover in mountainous

areas [52]. This latter point can be explained by the roughness

of the models. In the Pleiades DSM, being derived from

satellite images, the morphology of specific features can be

masked by the presence of objects on the ground as well

as by their shadows. In addition, the incidence angle of the

satellite might have influenced the quality of the dataset:

even if the overall median difference between the LiDAR and

the Pleiades datasets is low (35 cm), locally, there might be

a local loss of resolution as well as some spatial artefacts

induced by the incidence angle, causing the lower accuracy

of the extraction mainly due to a lower completeness of

the extracted features (higher number of TNs and lower

number of TPs if compared to the average values of LiDAR

DSMs). The size of the analysed features (height) is only

slightly important when considering LiDAR DTMs and the

effectiveness of detections (TPs): both the geomorphometric

and the LSD algorithm quality converge when the features

tend to increase in size. By contrast, when using noisy datasets

(LiDAR DSM or Pleiades DEMs) the feature size is important

for determining the effectiveness of the extractions, especially

when using the geomorphometric approach. Specifically, when

features are greater than approximately 3 m, the rate of TPs

is similar for the LiDAR and Pleiades datasets. In our case,

for local slope discontinuities (terraces), their vertical position

in the Pleiades dataset may be underestimated due to a lower

correlation scores especially with a high B/H ratio, however,

the terraces are well localized in the image and this is sufficient

for the proposed application: overall, the performances of

the Pleiades DSMs are comparable with those of the LiDAR

DSMs. However, the Pleiades system allows wider coverage
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of approximately 100 x 100 km2, which can be acquired by

the satellite from the same orbit, and offers a new tool for

large scales applications when compared with LiDAR DEMs.

B. Automatic mapping of terraces

Previous research regarding the extraction of features using

curvature on LiDAR DTMs highlights how curvature can

produce results with high branching (higher number of FP),

which corresponds with greater extraction completeness [44].

Similar conclusions can be drawn when considering LiDAR

DTMs and the proposed geomorphometric method, which

produces a higher number of TPs and lower TN values when

compared with the LSD method. When using the same topo-

graphic information, the geomorphometric method performs

better when the terraces are less than 3 m tall and produces

a slightly lower number of omissions. This result corresponds

with the findings of [44], which underline how using curvature

could be better for identifying smaller features. The use of

algorithms based on the linearity of features (LSD) rather

than on their convexity (geomorphometric) appears to work

in the presence of more clean datasets (DTMs), independently

of the considered remote sensor (LiDAR vs Pleiades). Linear

detection provides a slightly higher reliability for neat datasets

from LiDAR (DTMs).

C. Future challenges: DSM or DTM, filtering problems, ad-
ditional required processing, dataset resolution

Considering the results in Table II and III and the perfor-

mances displayed in Figure 8, the use of DTMs seems more

appropriate when using LiDAR surveys and photogrammetry

from Pleiades. Generally, DSMs are too noisy for comparable

feature detection, but they produce good results if compared

to other works in literature based on different sources and

landscapes (e.g. DTMs from LiDAR [52], [53]). However,

if features are large enough (generally higher than 3 m),

the use of the geomorphometric approach gives good and

comparable results using DSMs and DTMs. For this work the

only post-processing procedure considered was a filter based

on the plot border. Further improvements could be obtained,

especially when using the geomorphometric approach. For

example, the skeletonisation process could be improved and

the looping and branching of the vector map could be reduced.

In addition, using a pre-processing filter on the DSMs (median

filter, or Gaussian filter, for example) could reduce the noise

improving the performance of the algorithms. Further, to test

the full Pleiades performances, it will be interesting to evaluate

terraces extraction using the full resolution DSMs (smaller

than 1 m, in some areas), to investigate the effect of noises

(due to errors or surface roughness) on higher resolution

DEMs (similarily to what has been done in [53]–[55]) when

comparing extracted features with the ground truth datasets.

These points are still open for future research.

VI. CONCLUSION

Three major results were obtained from this study. From

the algorithm point of view, the analysis underlined that the

geomorphometric algorithm is generally more robust than the

LSD algorithm when applied to noisy DEMs. This information

could be usefull in general also for other researches dealing

with feature extractions from DEMs from multiple sources.

Considering the topographic information, the automatic map-

ping of terraces from Pleiades DEMs is reliable for terraces

that are higher than 2 m, also thanks to a post-process filter

to avoid commissions far away from the plot boundaries.

LiDAR detection performances are systematically higher than

the Pleiades performances, especially when using a DTM.

However, the filtering of the Pleiades DSMs and the successive

creation of DTMs seems to give promising results, expecially

considering the wider coverage that can be obtained by this

dataset compared to the LiDAR coverage.
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“Pléiades: A multi mission and multi co-operative program,” Acta
Astronautica, vol. 51, pp. 317–327, 2002.

[32] A. Temple-Boyer, J.-F. Richard, and P. Arnould, “Segmenter les
paysages de l’eau : une methode pour l’interpratation hydrodynamique
des paysages (Dorsale tunisienne),” Science et changements planétaires
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