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Abstract

Tokenization is widely regarded as a solved
problem due to the high accuracy that rule-
based tokenizers achieve. But rule-based
tokenizers are hard to maintain and their
rules language specific. We show that high-
accuracy word and sentence segmentation can
be achieved by using supervised sequence la-
beling on the character level combined with
unsupervised feature learning. We evalu-
ated our method on three languages and ob-
tained error rates of 0.27 ‰ (English), 0.35 ‰
(Dutch) and 0.76 ‰ (Italian) for our best mod-
els.

1 An Elephant in the Room

Tokenization, the task of segmenting a text into
words and sentences, is often regarded as a solved
problem in natural language processing (Dridan and
Oepen, 2012), probably because many corpora are
already in tokenized format. But like an elephant in
the living room, it is a problem that is impossible to
overlook whenever new raw datasets need to be pro-
cessed or when tokenization conventions are recon-
sidered. It is moreover an important problem, be-
cause any errors occurring early in the NLP pipeline
affect further analysis negatively. And even though
current tokenizers reach high performance, there are
three issues that we feel haven’t been addressed sat-
isfactorily so far:

• Most tokenizers are rule-based and therefore
hard to maintain and hard to adapt to new do-
mains and new languages (Silla Jr. and Kaest-
ner, 2004);

• Word and sentence segmentation are often seen
as separate tasks, but they obviously inform
each other and it could be advantageous to view
them as a combined task;

• Most tokenization methods provide no align-
ment between raw and tokenized text, which
makes mapping the tokenized version back
onto the actual source hard or impossible.

In short, we believe that regarding tokenization,
there is still room for improvement, in particular on
the methodological side of the task. We are partic-
ularly interested in the following questions: Can we
use supervised learning to avoid hand-crafting rules?
Can we use unsupervised feature learning to reduce
feature engineering effort and boost performance?
Can we use the same method across languages? Can
we combine word and sentence boundary detection
into one task?

2 Related Work

Usually the text segmentation task is split into word
tokenization and sentence boundary detection. Rule-
based systems for finding word and sentence bound-
aries often are variations on matching hand-coded
regular expressions (Grefenstette, 1999; Silla Jr. and
Kaestner, 2004; Jurafsky and Martin, 2008; Dridan
and Oepen, 2012).

Several unsupervised systems have been proposed
for sentence boundary detection. Kiss and Strunk
(2006) present a language-independent, unsuper-
vised approach and note that abbreviations form a
major source of ambiguity in sentence boundary
detection and use collocation detection to build a
high-accuracy abbreviation detector. The resulting
system reaches high accuracy, rivalling handcrafted
rule-based and supervised systems. A similar sys-
tem was proposed earlier by Mikheev (2002).

Existing supervised learning approaches for sen-
tence boundary detection use as features tokens pre-
ceding and following potential sentence boundary,
part of speech, capitalization information and lists
of abbreviations. Learning methods employed in
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these approaches include maximum entropy models
(Reynar and Ratnaparkhi, 1997) decision trees (Ri-
ley, 1989), and neural networks (Palmer and Hearst,
1997).

Closest to our work are approaches that present
token and sentence splitters using conditional ran-
dom fields (Tomanek et al., 2007; Fares et al., 2013).
However, these previous approaches consider tokens
(i.e. character sequences) as basic units for labeling,
whereas we consider single characters. As a con-
sequence, labeling is more resource-intensive, but it
also gives us more expressive power. In fact, our ap-
proach kills two birds with one stone, as it allows us
to integrate token and sentence boundaries detection
into one task.

3 Method

3.1 IOB Tokenization

IOB tagging is widely used in tasks identifying
chunks of tokens. We use it to identify chunks of
characters. Characters outside of tokens are labeled
O, inside of tokens I. For characters at the beginning
of tokens, we use S at sentence boundaries, other-
wise T (for token). This scheme offers some nice
features, like allowing for discontinuous tokens (e.g.
hyphenated words at line breaks) and starting a new
token in the middle of a typographic word if the to-
kenization scheme requires it, as e.g. in did|n’t. An
example is given in Figure 1.

It didn’t matter if the faces were male,
SIOTIITIIOTIIIIIOTIOTIIOTIIIIOTIIIOTIIITO
female or those of children. Eighty-
TIIIIIOTIOTIIIIOTIOTIIIIIIITOSIIIIIIO
three percent of people in the 30-to-34
IIIIIOTIIIIIIOTIOTIIIIIOTIOTIIOTIIIIIIIO
year old age range gave correct responses.
TIIIOTIIOTIIOTIIIIOTIIIOTIIIIIIOTIIIIIIIIT

Figure 1: Example of IOB-labeled characters

3.2 Datasets

In our experiments we use three datasets to compare
our method for different languages and for different
domains: manually checked English newswire texts
taken from the Groningen Meaning Bank, GMB
(Basile et al., 2012), Dutch newswire texts, com-
prising two days from January 2000 extracted from
the Twente News Corpus, TwNC (Ordelman et al.,

2007), and a random sample of Italian texts from the
PAISÀ corpus (Borghetti et al., 2011).

Table 1: Datasets characteristics.
Name Language Domain Sentences Tokens
GMB English Newswire 2,886 64,443
TNC Dutch Newswire 49,537 860,637
PAI Italian Web/various 42,674 869,095

The data was converted into IOB format by infer-
ring an alignment between the raw text and the seg-
mented text.

3.3 Sequence labeling
We apply the Wapiti implementation (Lavergne et
al., 2010) of Conditional Random Fields (Lafferty
et al., 2001), using as features the output label of
each character, combined with 1) the character it-
self, 2) the output label on the previous character, 3)
characters and/or their Unicode categories from con-
text windows of varying sizes. For example, with a
context size of 3, in Figure 1, features for the E in
Eighty-three with the output label S would be E/S,
O/S, /S, i/S, Space/S, Lowercase/S. The intuition
is that the 31 existing Unicode categories can gen-
eralize across similar characters whereas character
features can identify specific contexts such as abbre-
viations or contractions (e.g. didn’t). The context
window sizes we use are 0, 1, 3, 5, 7, 9, 11 and 13,
centered around the focus character.

3.4 Deep learning of features
Automatically learned word embeddings have been
successfully used in NLP to reduce reliance on man-
ual feature engineering and boost performance. We
adapt this approach to the character level, and thus,
in addition to hand-crafted features we use text
representations induced in an unsupervised fashion
from character strings. A complete discussion of
our approach to learning text embeddings can be
found in (Chrupała, 2013). Here we provide a brief
overview.

Our representations correspond to the activation
of the hidden layer in a simple recurrent neural
(SRN) network (Elman, 1990; Elman, 1991), imple-
mented in a customized version of Mikolov (2010)’s
RNNLM toolkit. The network is sequentially pre-
sented with a large amount of raw text and learns to
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predict the next character in the sequence. It uses the
units in the hidden layer to store a generalized rep-
resentation of the recent history. After training the
network on large amounts on unlabeled text, we run
it on the training and test data, and record the activa-
tion of the hidden layer at each position in the string
as it tries to predict the next character. The vector of
activations of the hidden layer provides additional
features used to train and run the CRF. For each of
the K = 10 most active units out of total J = 400
hidden units, we create features (f(1) . . . f(K)) de-
fined as f(k) = 1 if sj(k) > 0.5 and f(k) = 0 oth-
erwise, where sj(k) returns the activation of the kth

most active unit. For training the SRN only raw text
is necessary. We trained on the entire GMB 2.0.0
(2.5M characters), the portion of TwNC correspond-
ing to January 2000 (43M characters) and a sample
of the PAISÀ corpus (39M characters).

4 Results and Evaluation

In order to evaluate the quality of the tokenization
produced by our models we conducted several ex-
periments with different combinations of features
and context sizes. For these tests, the models are
trained on an 80% portion of the data sets and tested
on a 10% development set. Final results are obtained
on a 10% test set. We report both absolute number
of errors and error rates per thousand (‰).

4.1 Feature sets

We experiment with two kinds of features at the
character level, namely Unicode categories (31 dif-
ferent ones), Unicode character codes, and a combi-
nation of them. Unicode categories are less sparse
than the character codes (there are 88, 134, and 502
unique characters for English, Dutch and Italian, re-
spectively), so the combination provide some gener-
alization over just character codes.

Table 2: Error rates obtained with different feature sets.
Cat stands for Unicode category, Code for Unicode char-
acter code, and Cat-Code for a union of these features.

Error rates per thousand (‰)
Feature set English Dutch Italian
Cat-9 45 (1.40) 1,403 (2.87) 1,548 (2.67)
Code-9 6 (0.19) 782 (1.60) 692 (1.20)
Cat-Code-9 8 (0.25) 774 (1.58) 657 (1.14)

From these results we see that categories alone
perform worse than only codes. For English there is
no gain from the combination over using only char-
acter codes. For Dutch and Italian there is an im-
provement, although it is only significant for Ital-
ian (p = 0.480 and p = 0.005 respectively, bino-
mial exact test). We use this feature combination in
the experiments that follow. Note that these models
are trained using a symmetrical context of 9 charac-
ters (four left and four right of the current character).
In the next section we show performance of models
with different window sizes.

4.2 Context window

We run an experiment to evaluate how the size of the
context in the training phase impacts the classifica-
tion. In Table 4.2 we show the results for symmetri-
cal windows ranging in size from 1 to 13.

Table 3: Using different context window sizes.
Error rates per thousand (‰)

Feature set English Dutch Italian
Cat-Code-1 273 (8.51) 4,924 (10.06) 9,108 (15.86)
Cat-Code-3 118 (3.68) 3,525 (7.20) 2,013 (3.51)
Cat-Code-5 20 (0.62) 930 (1.90) 788 (1.37)
Cat-Code-7 10 (0.31) 778 (1.60) 667 (1.16)
Cat-Code-9 8 (0.25) 774 (1.58) 657 (1.14)

Cat-Code-11 9 (0.28) 761 (1.56) 692 (1.21)
Cat-Code-13 8 (0.25) 751 (1.54) 670 (1.17)

4.3 SRN features

We also tested the automatically learned features de-
rived from the activation of the hidden layer of an
SRN language model, as explained in Section 3.
We combined these features with character code and
Unicode category features in windows of different
sizes. The results of this test are shown in Table 4.
The first row shows the performance of SRN fea-
tures on their own. The following rows show the
combination of SRN features with the basic feature
sets of varying window size. It can be seen that aug-
menting the feature sets with SRN features results
in large reductions of error rates. The Cat-Code-1-
SRN setting has error rates comparable to Cat-Code-
9.

The addition of SRN features to the two best
previous models, Cat-Code-9 and Cat-Code-13, re-
duces the error rate by 83% resp. 81% for Dutch,
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and by 24% resp. 26% for Italian. All these dif-
ferences are statistically significant according to the
binomial test (p < 0.001). For English, there are too
few errors to detect a statistically significant effect
for Cat-Code-9 (p = 0.07), but for Cat-Code-13 we
find p = 0.016.

Table 4: Results obtained using different context window
sizes and addition of SRN features.

Error rates per thousand (‰)
Feature set English Dutch Italian
SRN 24 (0.75) 276 (0.56) 738 (1.28)
Cat-Code-1-SRN 7 (0.21) 212 (0.43) 549 (0.96)
Cat-Code-3-SRN 4 (0.13) 165 (0.34) 507 (0.88)
Cat-Code-5-SRN 3 (0.10) 136 (0.28) 476 (0.83)
Cat-Code-7-SRN 1 (0.03) 111 (0.23) 497 (0.86)
Cat-Code-9-SRN 2 (0.06) 135 (0.28) 497 (0.86)
Cat-Code-11-SRN 2 (0.06) 132 (0.27) 468 (0.81)
Cat-Code-13-SRN 1 (0.03) 142 (0.29) 496 (0.86)

In a final step, we selected the best models based
on the development sets (Cat-Code-7-SRN for En-
glish and Dutch, Cat-Code-11-SRN for Italian), and
checked their performance on the final test set. This
resulted in 10 errors (0.27 ‰) for English (GMB
corpus), 199 errors (0.35 ‰) for Dutch (TwNC cor-
pus), and 454 errors (0.76 ‰) for Italian (PAISÀ
corpus).

5 Discussion

It is interesting to examine what kind of errors the
SRN features help avoid. In the English and Dutch
datasets many errors are caused by failure to rec-
ognize personal titles and initials or misparsing of
numbers. In the Italian data, a large fraction of er-
rors is due to verbs with clitics, which are written as
a single word, but treated as separate tokens. Table 5
shows examples of errors made by a simpler model
that are fixed by adding SRN features. Table 6 shows
the confusion matrices for the Cat-Code-7 and Cat-
Code-7-SRN sets on the Dutch data. The mistake
most improved by SRN features is T/I with 89% er-
ror reduction (see also Table 5). The is also the most
common remaining mistake.

A comparison with other approaches is hard be-
cause of the difference in datasets and task defini-
tion (combined word/sentence segmentation). Here
we just compare our results for sentence segmenta-
tion (sentence F1 score) with Punkt, a state-of-the-

Table 5: Positive impact of SRN features.
Ms. Hughes will joi

Cat-Code-7 SIIOSIIIIIOTIIIOTII
Cat-Code-7-SRN SIIOTIIIIIOTIIIOTII

$ 3.9 trillion by t
Cat-Code-7 TOTTIOTIIIIIIIOTIOT

Cat-Code-7-SRN TOTIIOTIIIIIIIOTIOT
bleek 0,4 procent

Cat-Code-11 OTIIIIOTTIOTIIIIIIO
Cat-Code-11-SRN OTIIIIOTIIOTIIIIIIO

toebedeeld: 6,2. In
Cat-Code-11 TIIIIIIIIITOTTITOSI

Cat-Code-11-SRN TIIIIIIIIITOTIITOSI
prof. Teulings het

Cat-Code-11 TIIITOSIIIIIIIOTIIO
Cat-Code-11-SRN TIIIIOTIIIIIIIOTIIO

per costringerlo al
Cat-Code-11 TIIOTIIIIIIIIIIIOTI

Cat-Code-11-SRN TIIOTIIIIIIIIITIOTI

Table 6: Confusion matrix for Dutch development set.
Predicted, Cat-Code-7 Predicted, Cat-Code-7-SRN

Gold I O S T I O S T
I 328128 0 2 469 328546 0 0 53
O 0 75234 0 0 0 75234 0 0
S 4 0 4323 18 1 0 4332 12
T 252 0 33 80828 35 0 10 81068

art sentence boundary detection system (Kiss and
Strunk, 2006). With its standard distributed mod-
els, Punkt achieves 98.51% on our English test set,
98.87% on Dutch and 98.34% on Italian, compared
with 100%, 99.54% and 99.51% for our system. Our
system benefits here from its ability to adapt to a new
domain with relatively little (but annotated) training
data.

6 What Elephant?

Word and sentence segmentation can be recast as a
combined tagging task. This way, tokenization is
cast as a supervised learning task, causing a shift of
labor from writing rules to manually correcting la-
bels. Learning this task with CRF achieves high ac-
curacy.1 Furthermore, our tagging method does not
lose the connection between original text and tokens.

In future work, we plan to broaden the scope of
this work to other steps in document preparation,

1All software needed to replicate our experiments is
available at http://gmb.let.rug.nl/elephant/
experiments.php
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such as normalization of punctuation, and their in-
teraction with segmentation. We further plan to test
our method on a wider range of datasets, allowing a
more direct comparison with other approaches. Fi-
nally, we plan to explore the possibility of a statis-
tical universal segmentation model for mutliple lan-
guages and domains.

In a famous scene with a live elephant on stage,
the comedian Jimmy Durante was asked about it by
a policeman and surprisedly answered: “What ele-
phant?” We feel we can say the same now as far as
tokenization is concerned.
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