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When a nonlinear system having several masses vibrales in normal wmodes, the lime
histories of the motion of these masses are, in general, different in wave shape (althowgh
wn cerlain special nonlinear systems they differ at most in amplitude, but not in shape).
When the wave shapes differ, the normal mode vibration is called nonsimilar. In this
paper, nonsimilar normal mode vibrations are analyzed with respect to wave shape and

stability.
mode vibrations.
perimental study is reported.

IN several earlier papers [1, 2, 3, 4],! the normal
mode vibrations of certain nonlinear systems, having many de-
grees of freedom, have been studied. These systems consist of a
chain of masses, each mass having a single degree of freedom of
translation in the direction of the chain. Each is connected to
others by nonlinear springs, and every spring force is an odd fune-
tion of the length change of that spring.

The term ‘“‘normal mode vibration” describes a vibration in
untson of all elements of the system, and ‘*vibration in unison”
means that all masses execute equiperiodic motions, all pass
through equilibrium at the same instant, all attain maximum dis-
placement at the same instant, and the position of any one mass
at an ) given instant of time defines uniquely that of every other
mass at the same instant.

When the system is linear, the motion of every mass during a
normal mode vibration is a simple harmonic function of time
having the same frequency and the same zeros as every other, or

a(t)/x;(8) = A; cos wt/A; cos wl = ¢

where ¢;; is a constant.

When the system is nonlinear, the normal mode vibrations are
no longer simple harmonic. Nevertheless, it is quite possible that,
even then, the ratios of the displacements in normal mode vibra-
tions are identically equal to constants. In fact, it was shown
that symmetric two-degree-of-freedom systems [1] and homo-
geneous n-degree-of-freedom systems [3, 4] are such that their
normal mode vibrations satisfy

@(£)/2;(£) = const (1)

no matter how strongly nonlinear the systems or how large the
displacements. The physical interpretation of (1) is that the
motions, i.e., the wave shapes in the time-displacement plane, are
similar when the system vibrates in normal modes.

While it has also been shown [2] that normal mode vibrations
of arbitrary spring-mass systems do not, in general, satisfy (1),
all detailed studies have so far been restricted to eases of similar
normal mode vibrations.

The systems considered are those lying close to systems having similar normal
An example is worked out in detail, and a comparison with an ex-

When the displacements of any two masses m; and m; during
normal mode vibrations are such that

z;(¢)/x;(1) #Z const (2)

we shall say that the normal mode vibration is nonsimilar. In
this paper, normal mode vibrations of two-degree-of-freedom
systems are examined. However, the results can be extended in
an obvious way to systems having many degrees of freedom. For
this reason, we shall describe a system of many degrees of freedom
and specialize it later to the case of two degrees of freedom.

The System

As a physical model of admissible systems, consider a chain of 7
mass points P, (¢ = 1,. ., n), the mass of P, being m,. Since an
infinitely large mass can only be accelerated by an infinitely large
force, the motion of a mass m, = « is u, =0, or P, corresponds
to a fixed point. Therefore we may, without increasing the
number of degrees of freedom of the system, include a mass
mg = = in it; such an addition to the system prevents the degree
of freedom of “rigid-hody translation.”” Each mass m,, (i = 1,

.., n) has a single degree of freedom of translation u; in the
direction of the chain. Each is connected to one, several, or all
others by springs that may be equal or unequal, linear, nonlinear,
or nonlinearizable.? Thus, a system comprising n masses may
have as many as 4 [n(n — 1)] springs. This system is illustrated
in Fig. 1. The corresponding system having two degrees of free-
dom is shown in Fig. 2.

We assume that there exists at least one configuration in which
the system can remain at rest indefinitely. This is the equilib-
rium eonfiguration and, in the equilibrium configuration, every
w =0

The spring forces are the only forces acting on the system.
These are derivable from a potential function U where

U=~V (3)

and T is the potential energy. The potential energy stored in
any spring is a function of the absolute value of the length change
of that spring. In physical terms, this implies that a spring re-
sists (or aids) in the same degree being deflected by a given
amount, whether that deflection is a compression or extension.

If we put w; = w, us = v, the equations of motion of the two-
degree-of-freedom system are

o] 0
mpt = — Ulu, v), mat = — Ulu, v) (4)
ou a0}

2 A spring is said to be ‘‘nonlinearizable” if the Taylor expansion
of the spring force lacks a linear term.
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Substituting

Y= e (5)

1
T = Ny /'u,

into (4) one has

. ) T Y ; o T Y
T v (m!]/" ?flzl/*) Y= v (m;l/“’ ??lzl/') ()

and these may be regarded as the equations of motion of a unit
mass that moves in the ry-plane under forces dU/0x, aU /dy.
That system of forces and unit mass will be called the pseudo-
system. To each motion u, v of the physical system there belongs
uniquely a motion of the pseudo-system in the zy-plane, and the
trajectory of the unit mass satisfies the Buler equations of

T2
6f (U + W1+ ') de = 0 (7
1

That equation is [2, 5]
20U + hy" + (L4 ™) y'U, = U,) =0 (8)

where primes denote differentiation with respect to .
Inasmuch as the system is conservative, the energy integral

T—U=h )

exists where & is & nonnegalive constant equal to the total energy
and, for the physical and pseudo-systems, respectively,

T = FHom® + map?) U = Ulu, v)

’ 5 T Y
T = & + 32 Uu=U (m—/ m;h)

(10)

We admit only systems in which U is negative, definite.

Trajectories of Normal Modes

One sees from (7) that trajectories exist only where U 4 /4 is
nonnegative, and this is satisfied only in the closed domain D
which contains the origin and which is bounded by the closed
curve I, defined by

U+h=0 (11)

That I’ is a closed curve surrounding the origin follows directly
from the fact that U is negative definite, and % is nonnegative.
The I'-curve will be referred to as the bounding curve. It is also

the maximum equipotential line because (11) coincides with (9)
when 7' = 0; i.e., when the velocities vanish, and at such an in-
stant the total energy is potential. TFinally, I' is symmetric with
respect to the origin [2], and every trajectory which actually in-
tercepts I' does so orthogonally [2, 4, 5]. Solutions of (8) which
correspond to vibrations in normal modes are called modal lines.

We shall use perturbation theory to determine the modal lines
of systems which lie in the neighborhood of a “parent system'
having known modal lines. In this respect, this paper has the
same objective as Duffing’s memoire [6] had with respect to
slightly nonlinear single-degree-of-freedom systems. However,
our study is neither restricted to single-degree-of-freedom systems
nor to nearly linear ones because the exact modal lines of many
highly nonlinear multi-degree-of-freedom systems are known [1,
3, 4], and the theory to be presented here will hold for the modal
lines of any systems in the neighborhood of these nonlinear parent
systems,

The Perturbed System

Let U = U(x, y) be the given putential function of a parent
system for which a modal line

y = y*(z) (12)
is known. Further, let
Uz, y) = Ulz, y) + ewl(z, y)

be the potential function of a perturbed system. In (13), eis a
given constant and w(z, y) is called the periurbation potential; it
is supposedly known. If |¢ is small, and if

(13)

ew(z, y) = O(e)

everywhere in the closed domain D bounded by the curve T,
where the I-curve is defined by

O+ h = Uz, y) + ez, y) + h =0 (14)

then the perturbed system lies in the neighborhood of the “parent
system’ whose modal line is (12). We may, then, use first-order
perturbation theory to find the modal line

y(z) = y*(x) + enlz) + ...
everywhere where the equation which (15) must satisfy is regular
in D. Inview of (8)and (13), that equation is
- (1 + y”)[’yi(Ux + sz) = (Uy + Ewy)]

2U + ew + h)

(15)

y' o=

(16)

1t is evident that (16) is singular on the I-curve and, hence,
does not possess a uniformly convergent power series in € ahout
any point on I'. Nevertheless, it is always possible to use the
perturbation series (15) for constructing solutions that are valid
everywhere in the open domain D, and to continue these solutions
analytically until they reach the T'-curve. The complications
arising from the fact that (16) is singular on T’ will be discussed
more fully later on, but first we should like to show that y” is
hounded ou T even though the denominator of (16) vanishes on it.

Let us suppose that a solution (15) exists which intercepts the
T-curve at a point (X, ¥) where ¥ = y(X). Then, on I',

X, Y)=9(X,¥Y)=0

because the I-curve is defined by (13), and that equation is the
energy integral when the kinetic energy vanishes. Then, by
I"Hospital’s rule,

WX, ¥) X, ¥) _ OLX,¥)

#X,Y) #X,Y) UAX,Y)

y'(X) =

where use has been made of (6). But (16) is indeterminate when
the foregoing value of ¥’ is substituted in it; hence, it may also be
evaluated by 'Hospital’s rule. Making use of



d -
EITU ﬁy(xs y) = Uzy + y'Uyy

d _ =
— U.(z, ‘,Tj) = U, + yrﬁz”
dz

d . _ _
rE Uz, y) = U, + y'U,

one finds, after some computations,

¥ _ 1 Uz,,+y'(l7w -
y(X, ¥Y) = 3 I: 7.

Uz: — y’ ﬁ:y ):I

z =X

By definition of U,(x, ¥), that quantity cannot vanish at (X, ¥)
[because (X, ¥)lies on T', and T' does not pass through the origin].
Therefore, the denominator of the foregoing equation is not zero.
Similarly, the above expression for ’(X) shows that that deriva-
tive is bounded when U, (X, ¥) = 0. It follows that y*(X, ¥) is
bounded, and its value is given in the foregoing equation.

We shall now use first-order perturbation theory to construct a
solution of the form (15) which satisfies the equation (16) every-
where inside but not on I'. Using the notation

Qz, y*(z)) = Q*(z)

for U and w and for their partial derivatives, standard perturba-
tion technique yields the equation which 7(z) must satisfy. It
turns out to be

2(U* 4 h)nv + [stf(y*fUzt _ UV*) + {1 0 ywz)[rx*}nr +
[Qy*"Uy* + (1 + ywa)(y*’Uzy* o Uw*)]n e
2™ + (1 4+ y* N yPw* —w*) =0 (17)

But, we seek modal lines lying in the neighborhood of straight

ones., Therefore,
y¥zx) = cx (18)

For straight modal lines, y*” = 0, and one sees from (7) that,
then, everywhere in D,

j*r= Uy, =0 (19)

Substituting (18) and (19) in (17), that equation simplifies con-
siderably and becomes

2AU* + W) + (1 4 U + (1 + eXeUsy* — Uy
= (L + e)w,* — cw,*) (20)

The integration of this equation is facilitated by the recognition
that nearly all coefficients are derivatives of U*(z) = Uz, y*(z)).
For instance,

d o 0
— U* = U* = — Uz, y*) + — Ulz, y* "’
5 U - Ulzx, y*) o Ulx, y*)y

= : *IT] k
_UJ"-{-y"[.'v

and in view of (19),

()
L Ur = (1 + e U

dx (21)
One finds, similarly, that
a 1+ ¢
drt U¥ = (1 )Y, 2+ . ¢ [Tatk (22)
Tt follows that, if one defines,
U*(z) + h = G(x) (23)

the perturbation equation (20) becomes

2)2
26n" + @' — @ + 2Ly ey

[

= (1 + ¢*)(w,* — cw,*) (24)

It is this equation on which all further development is based.
In certain cases, it may be advantageous to introduce a trans-
formation of the independent variable given by

z du
g -[; )~ V(=)
This reduces (24) to the form

d*n
ag:

(25)

2

- [G" LGy U] n =+ e, - o)

(26)

The transformation (25) has an interesting significance. Suppose
we wish to determine the time ¢, required for the unit mass of the
unperturbed pseudo-system to traverse a given arc of any trajec-
tory in the zy-plane. If we denote the velocity of the unit mass
by w, we find from the energy integral 2w? = U + h that the
transfer time along any trajectory is

,_ f ds _ f__ds_
) ow ) 20Uz, y) + 11}
1 (dz? + dy?)'/

T V2 ) U y) + R

If that trajectory is a straight modal line, so that (18) holds, the
transfer time becomes

. (1 + cz) /s dz B (1 ES cg)lh dx
S\ 2 f(U* + 7\ 2 fG(z)‘/'

But this is, except for a constant, the transformation (25). Let
us denote by 7 = [2/(1 + ¢2)]"/% the pseudo-time which the unit
mass of the unperturbed pseudo-system requires to move from
the origin along a straight modal line to a point whose abscissa is
z. Then the relation between £ and z is the same as that between
Tand z. The times 7 and ¢ coincide when ¢ = =1; i.e., for modal
lines which are inclined by 45 deg to the z-axis.

Equation (26) is simpler in appearance than (24). However,
the coefficients in (26) are still functions of z, not £ It is neces-
sary to replace z by £ in them, before the equation can be inte-
grated; this step is accomplished through the inversion of (25);
i.e., byz = ¢~Y§).

Kquations (24) or (26) are second-order differential equations
having solutions of the form

n = n(z, @, )

The constants of integration & and 8 must be determined such
that

y(z) = y*(x) + enlz, o, ()

is a modal line. Since U(z, y) and w(zx, y) are given functions,
and h, ¢, and ¢ are known constants, the integration of (24) could
always be done on & computer.

Integrable Cases

There exist two cases of considerable physical interest where the
perturbation equation can be integrated in terms of quadratures.
One of these is the case of “weak coupling” while the second does
not require that coupling be weak. We shall discuss these in
order.

When the force in the coupling spring is of O(¢) for any finite
deflections of that spring, we shall say that the coupling is weak.
Such weak coupling has been the subject of many investigations
in the theory of nonlinear differential equations [6].



The potential energy of the system arises from the potentials
U, Us, U, stored, respectively, in the anchor springs Sy, S,
and the coupling spring Si» (Fig. 2). Clearly, Uy is a function of
z only, and Ug is a function of ¥ only. Hence, their mixed
derivatives U,, vanish; in other words, the mixed derivative of
the entire system is represented by the mixed derivative 0%/0xdy-
(U12) of the coupling spring.

When coupling is weak, U,, can only appear in a second-order
theory and, hence, will not be present in (24). That equation,
then, reduces to

26" + @'’ — @' = (1 + M) w,* — cw,*) (27)
A first integral of (27) is
'] l 4
7 =2—G[Gn+a—9($)l (28)
where we have used the notation
x
Qz) = (1 + cz)f (ew* — w,*)dz (29)
0
and the general solution of (27) is
. ? o — Qu)
nm=%mm”1‘7¥7?@+ﬁmww (30)
0 )

where o and 3 are arbitrary constants of integration.

A second integrable case is that of the in-phase mode of almost
symmetric systems, provided the coupling spring is nonlinearize-
able or almost nonlinearizable.! However, it is not required that
coupling be weak. A system of potential function

Ulz,y) = Unlz,y) + Unlay) + Unlzy)

is said to be symmetric if Uy * = Uy*. This requires, in physieal
terms, that the masses are equal, or m; = m. and that the anchor
springs are equal, or Sy = Sg. The system is said to be almost
symmetric if IUm* — Uu-g*‘ =0(e). It willnow beshown why the
in-phase mode of an almost symmetric system is an integrable
case when the coupling spring is almost, or altogether, non-
linearizable.

As stated, the mixed derivative d20/dxdy is equal to 220/
dz0y. Now, by definition of admissible systems, the potential T,
is a function of the absolute value |z — y| of the length change.
Hence, its Taylor expansion must be of the form

A
e = — L1 z — m +1
12 m:;;__, % o 1 (z ¥)
and
ol
= ‘NI-A,”(.E - y)m_l
?):I'Dy m=13,404
But for the in-phase mode of symmetric systems, y*(z) = 2;
hence,
U,,* = 4,

Thus, if A; = 0 or of O(e), the term U,,* will be absent from
(26). Then, the equation in n is (27) with ¢ = 1, and its general
integral is (30), again with ¢ = 1.

Determination of Constants

The arbitrary constants e and § in (30) define the values of #
and 9’ at the origin, In fact, since G(0) = k in virtue of (23), one
has from (30}

7(0) = B2

3 A spring is almost nonlinearizable if the linear component of the
spring force is of O(e).

and, since G’(0) = £(0) = 0, the initial slope is, from (28),
7'(0) = a/(2h)

These constants must be so determined that y = y*(x) + en(z,
«,f3) is a modal line; i.e., y(z) must pass through the origin, and
it must intercept the T-curve. TFrom the first condition one has
B=0.

As stated earlier, the perturbation theory used here does not
furnish a solution which is valid on I'; however, the solutions may
be continued analytically to T'.

Let the points whose locus is the I-curve he denoted by (X, Y).
Then, the equation of the I'-curve is

UX,Y)+ e(X, )+ L =0

(31)

(32)

The condition that this curve be intercepted by the analytical
continuation of y(x) is satisfied by substituting into (32) the re-
lation

Y = y*X) + en(X,@)
where

¥ a = Q)
Glu)'!?

n&,a) = 'é'[G(X)]'/’J; du (33)

This results in an equation of the form
U(X,y*(X) + en(X,a)) + ew(X,y*(X)
+ en(X,)) + A =0 (34)
Tt is readily seen that this equation will yield a relation of the form
o = a(X) (35)

i.e., an equation connecting the initial slope of » with the value X
at which the T-curve is intercepted, and X is the z-amplitude of
the motion. In other words, the analytical continuation of every
integral curve that lies sufficiently close to the straight modal line
of the unperturbed system does intersect the I'-curve at some
point whose abscissa is X. Clearly, it is not possible to determine
the constant & uniquely from that result. Nevertheless, for future
developments, it is necessary to determine the explicit relation be-
tween X and .
Let the value of X be given by

X = A’a + e (36)

where X is the (known) amplitude of the unperturbed system in
the mode whose modal line is y* = cx. Let it be assumed further
that both the unperturbed and perturbed systems move at the
same energy level k. Then, the point at which the straight modal
line of the unperturbed system intercepts the T-curve is found
from

U(Xoy*(Xo)) + h = 0

To find X, one must substitute (36) in (34) and expand the re-
sulting equation in powers of €, retaining only terms up to the
first power. In doing this, it is necessary to evaluate

i Xoo gy X Q(u)
7(Xo) = $G(Xo)]"/2 {aj; Gayh " j; —_— du}

Qu)?

Now, G(z) is an even polynomial of at least second degree in &
(when the unperturbed problem is linear, otherwise it is of higher
degree), and it vanishes at X;. The function £(x) is also at least
of second degree in x; it takes on its maximum value at Xy and it
vanishes at the origin. Therefore, both integrals in the foregoing
equation always diverge; however, their products with [G(X,)]'/
are bounded, and one can readily find, either from a limit analysis
or from1'Hospital’s rule,

(37)

il (24 Q(Xn)
nXo) = e G'(Xy)

38
G'(Xo) e



When (38) is substituted in the expansion of (34) and (37) is in-
troduced in that relation, one finds after some computations
14 ¢?
o = —— [AF(Xy) + o*(Xo)] 4+ QXo) (39)
Since o is a measure of the ehange in initial slope between unper-
turbed and perturbed problems, and A iz a measure of the change
in r-amplitude between 1he unperturbed problem and the analyti-
cal continuation of the integral curves of the perturbed problem,
equations (39) and (36) jointly constitute the explicit form of (35).
We shall now show that there exists at most a single integral
eurve of the perturbed problem which actually intercepls the
T-curve; in other words, there exists at most one value of initial
slope (i.e., one value of &) for which an integral curve of the per-
turbed problem is & modal line.

Let us write, in accordance with (30),
27 = ad(z) — I(z)

where

J(z) = [G(=)] /'j; Glu)/

z 0
I(z) = [G(:E)]I/IJ; G((lfuzhdu

and where we have already put 8 = 0. Then, the end slope
Y'(X) = ¢+ en'(Xo + €d) = ¢ + en'(Xo)
within O(e), and
29'(Xe) = Eloif-lo [af(Xo — &) — T'(Xy — &)]
Hence, the rate of change of the end slope n/( Xy) with respect to a
is given by

g M) _ ),

= 1)

and a limit analysis (whose details are not reproduced here) yields
1 Xo—s d
JN(Xp) = lim {—= =@ (X ]1/2f _du
En—»ﬂ ‘\/GD < z D) U G(u)s/g

+1 \/ét—G'(Xa))>}

where |6| > 0 is a small parameter and G'(X,) < 0. In conse-
quence, we find

’a'f?"(Xu)
oc

Assume now that an integral exists which 7s a modal line; i.e.,
which intercepts the I-curve. Then, the last equation states
that no other integral curve passing through the origin and having
an initial slope neighboring on that of the modal line can also
reach the bounding curve hecause the end slope 7'(Xo, &) is not a
continuous function of e,

This result is not in contradiction with (39) because that equa-
tion holds only for the analytical continuations of the integral
curves. Nevertheless, (39) must be satisfied by the actual modal
line because that line is the only integral curve whieh coincides
with its analytical continuation.

The condition that n’(X,) be bounded, together with the
observation that J'(X;) is unbounded might lead one to conjec-
ture that & = 0; however, that conjecture contains the implicit
assumption that 7'(X,) is bounded, and such an assumption can-
not be verified because w, and hence £, are largely arbitrary.

To determine the initial slope of the modal line of the perturbed
system we observe that the left-hand side of (27) becomes self-

adjoined when that equation i multiplied by G(x)~"/%; it then
becomes

G ") — GG = (1 4 )G Hw,F — cw, )= () (40)

and the corresponding self-adjoined homogeneous equation is

26"y — GG = 0 (41)

One sees from (30), that tlie general solution of (41) is
: ya@a | + B0 2
N = m(z, o, B) = § G(x)"* 0 G 1 )

Tnasmuch as 7 must pass through the origin, the only case of in-
terest here is that of 8 = 0, as shown carlier.

Now, it is well known that for existence and uniqueness of solu-
tions of certain inhomogeneous equations, these must satisfy a
well-known orthogonality relation [7]; however, because of the
unusual “boundary condition” that y(z) intercept a certain curve
{rather than that it pass through a given point on a given curve),
one must investigate the question of applicability of that ortho-
gonality condition.

This is done by multiplying the inhomogeneous equation (40)
by no(x, &) and integrating it over 0 € @ € X, or

Xo Xo Xo
2f no( G/ ') dw — f 706G~ G de = f Noedzs  (43)
0 0 0

If one integrates the first integral twice by parts, (43) becomes

Xo
2(G"(nen’ — o'm)1e° +f {nl2(ne'G'2y
0

Xo
— GG ) b = f Mupdz (44)
o

The first term in equation (44) vanishes in the lower limit because
7(0) = n(0) = 0, and in the upper limit because Gl/’(Xo) =0
and we require that the derivatives of 7 and 7 be bounded at the
upper limit.

The integral on the left-hand side of (44) also vanishes because
the quantity in the square brackets of the integral is (41), and that
quantity is identically zero since 7o satisfies (41). Hence, the
orthogonality condition [7] is applicable; it is

Xo
f medy = 0
0
or, explicitly

Xo ;
2 [ 2 [(1 + ¢2)(w,* — cw,*)]dz = 0
0 o @) /1 Lt ®

Since G(u) 2 0in 0 € u £ Xy, the integral

F  du
o G/t

does not change sign in this interval, and (46) may be written®
in the form

1 = % = oo -—dﬁa- de = 0
F1 + e2)(@,* + ca,*)x . L G(-u)’/’ r =

where

(45)

(46)

@, — et = w, X&) — cw X F)

(47)

and £ is some value of x in [0, Xo]. We cannot impose the con-

straint

{ By the mean-value theory of the integral calculus.



on w, because w is largely an arbitrary function. For instance
when the perturbation consists in perturbing one of the anchor
springs only, either w,* = 0, w,* # 0, or vice versa; and the
nonvanishing quantity never changes sign in [0, Xo]. Hence, the
orthogonality condition becomes, finally,

Xo frz du
o:j; ‘[; G(u)l/! dx =0

But, as siated earlier, G(z) is nonnegative; hence, (48) can only
he satisfied by @ = 0,

We, then, have the result that, to the first order in ¢, the modal
line of an infegrable, perturbed system is tongent at the origin to
that of the unperturbed system on which it neighbors.

In view of this result we have from (30) or (33)

z 0
x) = — "}E[G(J"J)]l/' J; G(:;‘)/: du (49)

(48)

and, from (39), the change in z-amplitude between unperturbed
and perturbed systems is defined through

[+

14

I

[w*(Xo) + Q(Xn)] (50)

_1
G'(Xo)
The solutions of unperturbed and perturbed systems are il-
lustrated in Fig. 3. From this diagram, one sees that the per-
turbation has first-order effects on the z and y-amplitudes of the

normal mode vibrations.
A measure of the change in y-amplitude is found from

YX) =¥ = y*(X) + en(X)
= y*(Xo + ed) + en(Xo + ed)

Expanding the last equation in powers of € up to the first, and
making use of ¥*'(x) = ¢, one has

Y = Yo+ eled 4+ 9(X0)]

where Yy = ' (X,) is the y-amplitude of the unperturbed system.
If we write, similar to (36),
Y=Y,+ eB (51)
we have
B = cd + n(Xo)

where A is given in (50), and 9{X) in (38) (with = 0). Making
use of these, one finds

_"

L
o G'(Xo)

1
T+ e Q(Xo):l (52)

[cw*(Xo) —

The result that the perturbation has first-order effects on the
amplitudes is at odds with those of Huang [8] who examined the
nearly linear dynamic vibration absorber with a slightly nonlinear
coupling spring. In our terminology, Huang's problem lies in
the neighborhood of a homogeneous system of degree 1. Huang

Fig. 3

used standard perturbation techniques on the equations of mo-
tion, not on the geometrical equation (8) used here, and con-
cluded that the vibration amplitudes of the perturbed system are
in the same ratio to each other as those of the unperturbed prob-
lem. That Huang’s results are incorrect was shown recently by
Szemplinska-Stupnicka [9] who showed that, in fact, certain
first-order effects are neglected in Huang's analysis, and that
these can only be recovered by a second-order analysis (that one
in turn losing certain second-order effects which must be recovered
through a third-order analysis, and so forth). However, when
using the geometrical methods applied here, all first-order effects
are accounted for by a first-order analysis.

The Motion and Its Stahility

Once the modal line y(z) of the perturbed system has been
found by the methods described here, the motion of the per-
turbed system in the normal modes can be found by a simple
quadrature. The substitution of the modal line

z Qu)
= ¥ 1 1/g T
Y Y ('5) g € [G(x)] L G’(u)'/’ du (53)
into the first of (6) gives
& = Uz, y(x)) = Uz, y(2)) + ewslz, y(x))  (54)

Expansion within O(€) of (54) results in
£ = UXx) + enz)U* + w.Hz)]

But, in the integrable cases, U, ,* is either of O(€) or zero, so that
the foregoing equation becomes

3 = U*x) + ew,*(x) (55)
This equation must be solved for the initial conditions
2(0) = Xy + ed, #(0) =0

where A is given in (50). The solution may be found by one
quadrature and is of the form

z = ¢t 4) (56)

It is expressly noted that (55), and hence (56), is free of 7. The
y-motion is
y*(e(t, 4)) + enle(t, 4))
ep(t, A) + en(e(t, 4))
and (57) does contain 9. Since (57) depends on 7 and (56) does
not, the normal mode vibration is, in general, nonsimilar.

Next we show that the stability of the normal mede vibration of

the perturbed system is the same as that of the unperturbed system.
The solutions whose stability is to be examined are

<
I

(57)

z = ¢(t)
y = cp(t) + enle(t)) = ¥(t) (58)
and the equations, identically satisfied by (58), are
£ = Uz, y) + ewlz, y) (59)

¥ = Uu(ms y} + Ewn(xr y)

Let the solutions of the perturbed system (59), but with slightly
different initial values than (58), be

@(t) + ep(t)
w(t) + eqll)

T

(60)

Y

Then the solutions (58) are said to be stable if p(f) and ¢(¢) are
bounded for all ¢.

The equations of the first variation of (59) with respect to (58)
are readily computed; they are



7= pU::(W; ‘l/) + qUzy(‘PJ ‘tb)
= pUzy(an 1!/) + qu,-(‘P: ‘lb)

But these are precisely the variational equations of the unper-
turbed system. Hence, the stability of the normal mode solu-
tions of the two systems is the same. The stability problem is
now solved because the stability of the unperturbed problem is
deducible by known methods [1, 3, 10, 11].

(61)

Example

An an example of the foregoing theory, we shall consider an al-
most symmetric system consisting of two masses and three
springs, as shown in Fig. 2. The symmetry is disturbed by a
slight change in the spring Sp: which connects the mass m; to the

fixed point. This change is to be such that the force of the per-

turbed spring remains an odd function of the spring deflection.
Consequently,

w(z, y) = f(y)
=) = —fy)
J0 =0

The change in the bounding curve resulting from this perturba-
tion is readily discussed. Because of the third of (62), the per-
turbed bounding curve is tangent to that of the unperturbed
problem where y = 0, i.e., where both cross the z-axis. If the
perturbation strengthens the spring Se, the T-curve lies inside the
T-curve for every y # 0; if the perturbation weakens Sg, I lies
outside I" for every y = 0.

We shall examine the in-phase mode of the perturbed system.
Then, since the parent system is symmetric, y* = 2 orc = 1 [1],
and

w*(z) = flz),
w*(Xo) = f(Xo),

(62)

w, = fl(y}

w,* = f'(z)

Wy = Or Q(XU) =

Xo
—2f flz)dz = —2f(X,)
0

Substituting these quantities in (50), one has (because of ¢ = 1)
4 = 0. Therefore, under the proposed perturbation, the X-am-
plitude remains unchanged.

The change in y-amplitude is found by substituting the fore-
going quantities in (52). The result is

_ 2f(X)
T G(X)

Now, G'(X,) <0forall0 <z £ X,. Hence, B has the same sign
as f(Xy). If the perturbation is such as to strengthen the spring
Ses, f(z) < 0forall0 < £ Xy; therefore, the y-amplitude will be
diminished. If the perturbation weakens Se, f(z) > 0, and the
y-amplitude will be increased. Both cases are illustrated in
Fig. 4.

If it is the spring Ss which is perturbed rather than S, one has
w, = w,* = f(z) and w, = 0. Then, in view of (29), 2 X,) =
2f(X4), and one finds as expected

60
@(Xo)

Tn that case, the I’ and I'-curves are tangent to each other on the
y-axis, and I lies inside T for f(z) < 0, and outside for f(z) = 0.

The first of these results has also been checked experimentally
on the analog computer. The unperturbed system chosen in the
experiment was a symmetric, homogeneous system of degree 3
and with potential function

Ulz, y) = —3@* 4+ ') — 3z — )

y X
Y
UNPERTURBED
Yl Yg ;,// £
/, ) A '¢| PERTURBED
/ %
(- /
Xo e *
A
{ 7 /P;ZRTURBED 7 e 4
&4 g
UNPERTURBED =

SPRING Sq; STRENGTHENED SPRING Sgp WEAKENED

Fig. 4

/Unperfurbed System

— Drawn by computer for actual nonlinear system
Numerical results of first order perturbotion theory
Fig. 5

The perturbation of the spring Se. consisted of the addition of a
small linear term which perturbed the homogeneity as well as the
symmetry. In the case of a strengthened spring, the perturbation
potential was

ew(z, y) = — 3y’

and, in the case of a weakened Sy, the negative of the foregoing
function was used. The resulting curves in the zy-plane are shown
in Fig. 5 for both the unperturbed and the perturbed systems.
Thus, these curves are the experimental counterparts of Fig. 4.
All lines in Fig. 5, including the axis system, were recorded by an
zy-plotter and only the lettering was added by hand. A com-
parison between Figs. 4 and 5 shows that the agreement is ex-
cellent even though the perturbation was much larger than con-
templated in a first-order theory. Quantitatively, the difference
between the predicted and observed amplitude changes is hardly
measurable.
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