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When a non1inear system /l(wing several masses vibrates ·in normal modes, the t·ime 
histories of the mot-ion of these masses are, in general, d~fferent in wave shape (although 
in certain specialnonl-inear systems they differ at most in amplitude, but not in shape). 
When the 1uave shapes d·i:(fer, the normal mode vibration is called nonsimilar. In this 
pa.per, 11011similar itormalmode vibrations are analyzed with respect to wave shape and 
stabihty. The systems considered are those lying close to systems having similar normal 
mode vibrations. An example is worked out in detail, and a compar·ison with an ex
perimental stu.dy i s reportea. 

IN several earlier· papers [J, 2, 3, 4), 1 the normal 
mode vibrations of certain nonlinear systems, having many de
grees of freedom, have been studied. These systems consist of a 
chain of masses, each mass having a single degree of freedom of 
translaLion in the direction of the chain. Each is connected to 
others by nonlinear springs, and every spring force is an odd func
tion of the length change of that spring. 

The term "normnl mode vibration" describes a vibration in 
wu·son of nil elements of the system, and "vibrnLion in unison" 
means that all masses execute equipcriodic motions, all pass 
through equilibrium at the same instant, all attain maximum dis
placement at t he same instant, and the position of any one mass 
at an .Y given instant of time defines uniquely that of every other 
mass at the same instant. 

\V hen the system is linear, the motion of every mass duriug a 
uormal mode vibration is a simple harmonic function of time 
having t he same frequency aucl the same zeros as every other, or 

x,(t)/l' ;(l) = A, cos wi/A; cos wt == C;; 

where C;; is a constant. 
Yl'hen the system is nonlinear, the normal mode vibrations are 

no longer simple harmonic. Nevertheless, it is quite possible that, 
eveu then, the rntios of the displacement.s in normal mode vibra
tions are identically equal to constants. In fact, it wns shown 
t hat symmetric two-degree-of-freedom systems [1) and homo
geneous n-degree-of-freedom systems [3, 4] are such that t heir 
normal mode vibrations satisfy 

x,(t)/:t';(l) == const (1) 

no matter how strongly nonlinear the systems or how large the 
displacements. T he physical interpretation of (1) is that the 
motions, i.e., the wave shapes in the time-displacement plane, are 
similm· when the system vibrntes in normal modes. 

While it has also been shown [2) that normal mode vibrations 
of arbitrary spring-mass systems do not, in general, satisfy (1), 
all detailed studies have so far been restricted to cases of similar 
normal mode vibrations. 

When the displucements of any two masses m, aud m; during 
normal mode vibrations are such that 

x;(l )/x;(l) ~ const (2) 

we shall sny that the normal mode vibration is nonsimilar. In 
this paper, normal mode vibrations of two-degree-of-freedom 
systems nre examined. However, the results can be extended in 
nn obvious wny to systems having many degrees of freedom. For 
this reason, we shall describe a system of many degrees of freedom 
and specialize it Inter to the case of two degrees of freedom. 

The System 
As a physical model of admissible systems, consider a chain of n 

mass points P,, U = 1, . ., n), the mass of P, being m,. Since an 
infiuitely large mass eau only be accelerated by an infinitely large 
force, Lhe motion of a mass 1110 = oo is u. = 0, or P0 corresponds 
to a fixed point. T herefore we may, without increasing the 
number of degrees of freedom of the system, include a mass 
mo = oo in it; such an addition to the system prevents the degree 
of freedom of "rigid-body translation." Each mass m., (i = I, 
. .. , 11) has n single degree of freedom of translation 11; in the 
direction of Lhe chain. Each is connected to one, several, or all 
others by spri11gs that may be equal or uuequal, linear, nonlinenr, 
or nonlinearizable.! Thus, a system comprising n masses may 
have as many as tfn(n - 1 )) springs. T his system is illustrated 
in Fig. 1. The corresponding system having two degrees of free
dom is shown in Fig. 2. 

We assume that there exists at least one configuration in which 
t he system can remain at rest indefini tely. This is the equilib
rium configuration and, in the equilibrium configurat ion, every 
11; == 0. 

The spring forces are the only forces acting on the system. 
These are derivable from a potential functiou U where 

u = -lT (3) 

and l' is the potenLial energy. The potential energy stored in 
any spring is a function of the absol-ute vcc/11e of the length change 
of that spring. In physical terms, this implies that a. spring re
sists (or aids) in the same degree being deflected by a. given 
amount, whether that deflection is a compression or extension. 

If we put u, = u, 112 = v, the equations of motion of the two
degree-of-freedom system are 

0 
mzv = - U('u, u) ou 

(4) 

2 A spring is said to be "nonlineariznble" if the Taylor expansion 
of the spring force lacks n linear term. 



Fig. 1 

Fig. 2 

Substituting 

(5) 

into (4) one has 

() (X y) 
x = u:r; u m2'/t' m2'/t ' 

() ( X y) y=- U -- - -o y m1' /t' m/ /t (6) 

and these may be regarded as the equations of motion of a unit 
mass that moves in the :ry-plane under forces uU /ox, oU /uy. 
That system of forces and unit mass will be called t he pseudo
system. To each motion u, v of the physical system there belongs 
uniquely a motion of the pseudo-system in the xy-plane, and the 
trajectory of the unit mass satisfies the E uler equat ions of 

f"" o (U + h)'h (1 + y'2 )'1•dx = 0 
%1 

(7) 

T hat equat ion is [2, 5] 

2(U + h)y" + (1 + y'2)(y'U:- U~) = 0 (8) 

where primes denote difl'erentiation with respect to x. 
Inasmuch us the system is conservative, the energy integral 

T - U= h (9) 

exists where his a nonnegalive constant equal to t he tot al energy 
and, for the physical and pseudo-systems, respectively, 

U = U(u, v) } 

( 
X y ) u = u --.-1 ' ---;-; 

111! , 1n2 ' 

( 10) 

We admit only systems in which U is negative, definite. 

Trajectories of Normal Modes 
One sees from (7) t hat t rajectories exist only where U + his 

nonnegative, and this is satisfied only in t he closed domain D 
which contains the origin and which is bounded by t he closed 
curve r, defined by 

U + h = O ( Ll ) 

That r is a closed curve surrounding Lhe origin follows directly 
from the fact t hat U is negative definite, and h is nonnegative. 
The r -curve will be referred to as t he bounding curve. It is also 

the maximum equipotentialline because (11 ) coincides with (9) 
when T = 0; i.e., when the velocities vanish, and at such an in
stant the total energy is potential. Finally, r is symmetric with 
respect to the origin [2], and every traject ory which actually in
t ercepts r does so orthogonally [2, 4, 5]. Solutions of (8) which 
correspond to vibrations in normal modes are called modal lines. 

We shall use perturbation t heory to determine the modal lines 
of systems which lie in the neighborhood of a " parent system" 
having known modal lines. In t lus respect, this paper has the 
same objective as Duffing's memoire [6] had with respect to 
slightly nonlinear single-degree-of-freedom systems. However, 
our study is neither restricted to single-degree-of-freedom systems 
nor to nearly linear ones because the exact modal lines of many 
highly nonlinear multi-degree-of-freedom systems arc known [1, 
3, 4], aud t he theory to be presented here will hold for the modal 
lines of any systems in the neighborhood of these non linear parent 
systems. 

The Perturbed System 
Let U = U(x, y) be the given potential function of a parent 

system fo r which a modal line 

Y = y*(x) (12) 

is known. Further, let 

O(x, y) = U(x, y) + ew(x, y) (13) 

be the potential function of a perturbed system. In (13), E is a 
given constant and w(x, y) is called the perturbatio1t potential; it 
is supposedly known. If lel is small, and if 

ew(x, y) = O(e) 

everywhere in the closed domain Jj bounded by the curve r, 
where the f'-curve is defined by 

() + h = U(x, y) + EW(x, y) + h = 0 (14) 

then t he perturbed system lies in the neighborhood of the "parent 
system" whose modal line is (12). We may, then, use first-order 
perturbation theory to find the modal line 

y(x) = y*(x) + t1J(x) + . . . (15) 

everywhere where the equation which (15) must satisfy is regular 
in 15. In view of (8) and (13), that equation is 

• ( 1 + y'2)[y '(Uz + EW:)- (V~+ ew.) ] 
11 =-

2(U + EW +h) 
(16) 

I t is evident that (16) is singular on the f'-curve and, hence, 
does not possess a uniformly convergent power series in e about 
any point on f'. Nevertheless, it is always possible to use t he 
perturbation series (15) for constructing solutions t hat are valid 
everywhere in the open domain D, and to continue these solutions 
analytically unt il they reach the f'-curve. The complications 
arising from the fact that (16) is singular on r will be di~cussed 
more fully later on, but first we should like to show that y• is 
bounded OU r even t hough the denominator of ( 16 ) vanishes OD it. 

Let us suppose t hat a solution (15) exists which intercepts t he 
f'-curve at a point (X, Y) where Y = y(X ). Then, ou f', 

x(X, Y ) = y(X, Y) = 0 

because t he f'-curvc is defined by ( 13), and Lhnt equation is the 
energy in tegra.! when the kinetic energy vanishes. Then, by 
I 'Hospi tal's rule, 

y(X, Y) y(X, Y) V.(X, Y) 
y'( X) = - - - = - - - = - _L'--'----' 

x(X, Y) x( X, Y ) Ux(X, Y) 

where use has been made of (6). But (16) is indeterminate when 
the foregoing value of y' is substituted in it; hence, it may also be 
evaluated by !'Hospital's rule. l'vfaking use of 



d Tr 0 -
dx v(x, y) = • + y'Uv 

one finds, after some computations, 

y "(X, Y) = _!. [ O•v + y'(Ovv - 0 .. - y'O •• >J 
3 0, ,., - X 

By definition of V,(x, y), that quantity cannot vanish at (X, Y ) 
[because (X, Y) lies on r, and r does not pass through the origin). 
Therefore, t he denominator of t he foregoing equation is not zero. 
Similarly, the above expression for y'(X) shows that that deriva
tive is bounded when O,(X, Y) ;e 0. It follows that y"(X, Y) is 
bounded, and its value is given in the foregoing equation. 

We shall now use first.-order perturbation theory to construct a 
solution of the form ( 15) which satisfies the equation (16) every
where inside but. not on r. Using the notation 

Q(x, y*(x) ) = Q*(x ) 

for U and w and for their partial derivatives, standard perturba
tion technique yields the equation which 1J(x ) must satisfy. It 
t urns out to be 

2(U* + h)?J" + [2y*'(y*'U,*- U.*) +(I+ y*'•)U,*] ?J' + 

[2y*"Uv * + (1 + y*'2)(y*'U•v * - Uvv *)) 1/ + 
2y*"w* + (1 + y*'2)(y*'w, * - w. *) = 0 (17) 

But, we seek modal lines lying in t he neighborhood of ~traight 
ones. Therefore, 

y*(x ) = ex ( 18) 

For straight modal lines, y*" = 0, and one sees from (7) that, 
then, everywhere in D, 

v*' == u.;u. = c ( 19) 

Substituting ( IS) and (19) in ( 17), t hat equation simplifies con
siderably and becomes 

2(U* + h)TJ " + (1 + c2 )Ur*1J' + (1 + c2)(cU./- Uv/)1J 

= (1 + c2 )(wv * - cw, *) (20) 

The integration of t his equation is fncilitated by the recognition 
t hat nearly all coefficients are derivntives of U*(x) = U( x, y*(x)). 
For instance, 

.!!_ U* = U* = ~ U(x, y*) + ~ U(:~, y*)y*' 
dx ox oy* 

and in view of (19), 

d 
- U* = (1 + c~) U, * 
dx 

One finds, similarly, that 

c/2 1 + c' 
- U* = (I + c2 )U * + - - U * dx2 vv c •• 

It. follows t hat, i(one defines, 

U*(x) + h = G(x) 

the perturbation equation (20) becomes 

(21) 

(22) 

(23) 

= (1 + c2)(wv * - cw, *) (24) 

It is this equation on which all further development is based. 
In certain cases, it may be advantageous to introduce a trans

formation of the independent variable given by 

(25) 

This reduces (24) to the form 

2 :~- [ G" - (
1 ~ c•)• U.v*] 1J = (1 + c2)(wy* - cw,*) 

(26 ) 

The t ransformation (25) has an interesting significance. Suppose 
we wish to determine the time t, required for the unit mass of the 
unperturbed pseudo-system to traverse a given arc of any trajec
tory in the xy-plane. If we denote the velocity of the unit mass 
by w, we find from the energy integral !w2 = U + h that the 
transfer time along any trajectory is 

1 f (dx 2 + dy 2)'1• 
y2 [U(x, y) + h]'lt 

If t hat t rajectory is a straight modal line, so that (18) holds, the 
transfer time becomes 

(1 + c2
) '/•f dx (1 + c2) '/t f dx 

t = -2- ( U* + h)'lt = -2- G(x)'l • 

But this is, except for a constant, t he transformation (25). Let 
us denote by T = (2/(1 + c2) ] 'l•t the pseudo-time which t he unit 
m!U!S of the unperturbed pseudo-system requires to move from 
the origin along a straight modal line to a point whose absci~sa is 
x . Then the relation between ~ and x is the same as that between 
T and x. The times T and t coincide when c = ± 1; i.e., for modal 
lines which are inclined by 45 deg to the x-axis. 

Equation (26) is simpler in appearance than (24). However, 
the coefficients in (26) are still functions of x, not ~. It is neces
sary to replace x by ~ in them, before the equation can be inte
grated; this step is accomplished through the inversion of (25); 
i.e., by x = ,p-•w. 

Equations (24) or (26) are second-order differential equations 
having solutions of the form 

1J = 1J(x, a, {J) 

The constants of integration a and {J must be determined such 
that 

y(x) = y*(x) + E1J(x, a, {J) 

is a modal line. Since U(x, y) and w(x, y) are given functions, 
and h, c, and E are known constants, the integration of (24) could 
always be done on a computer. 

Integrable Cases 
There exist two cases of considerable physical interest where the 

perturbation equation can be integrated in terms of quadratures. 
One of these is the case of "weak coupling" while the second does 
not require t hat coupling be weak. We shall discuss these in 
order. 

When the force in the coupling spring is of O(E) for any finite 
deflections of that spring, we shall say that the coupling is weak. 
Such weak coupling has been the subject of many investigations 
in the theory of nonlinear differential equations [6]. 



The potential energy of the system arises from the potentials 
U01 , U02, U12 stored, respectively, in t he anchor springs S0 ,, So2, 

and the coupling spring s,. (Fig. 2). Clearly, Uoo is a function of 
x only, a nd Uo~ is a function of y only . Hence, t heir mixed 
derivatives U, v vanish; in other words, the mixed derivative of 
the entire system is represented by the mixed derivative o2/oxoy
( u,.) of the coupling spring. 

When coupling is weak, Uzv can only appear in a second-order 
theory and, hence, will not be present in (24 ). That equation, 
then, reduces to 

2GTJ" + G'TJ' - G"TJ 

A first integral of (27) is 

(1 + c2)(wu * - CWz *) 

1 
'1) 1 = - [G'TJ + a - Sl(x)] 

2G 

where we have used the notation 

(27) 

(28) 

and, since G'(O) = r2(0) = 0, the initial slope is, from (28), 

TJ'(O) = a/(2h) (31) 

These constants must be so determined that y y*(x) + ETJ(:t, 
a,/1) is a modal line; i.e., y(x) must pass through the origin, and 
it must intercept the f-cmve. From the fi rst condition one has 
11 = 0. 

As stated earlier, the perturbation theory used here does not 
furnish a solution which is valid on r ; however, the solutions may 
be continued analytically tor. 

Let the points whose locus is the r -curve be denoted by (X, Y). 
Then, the equation of the f -curve is 

U(X,Y) + ew(X,Y) + h = 0 (32) 

The condition that this curve be intercepted by the analytical 
cont inuation of y(x) is satisfied by substituting into (32) the re
lation 

Y = y*(X) + HJ(X,a) 

rl(x) = (1 + c2
) fo"' (cwz * - wu *)dx 

and the general solut ion of (27) is 

(29) where 

rx a- r2(11) 
TJ(X,a) = }[G(X)]'h Jo G(n)'h dn (33) 

( "' a - rl(u) ,1 TJ(x) = ![G(x)]'h Jo G(u)'h du + {1[G(x)] ' (30 ) This results in an equation of the form 

where a and 11 are arbit rary constants of integration. 
A second integrable case is that of the in-phase mode of almost 

symmetric systems, provided the coupling spring is nonlinearize
able or a lmost nonlinearizable. 3 H owever, it is not required t hat 
coupling be weak. A system of potent ial function 

U(1:,y) = Uo,(x ,y) + Uo.(x,y) + U,.(x,y ) 

is said to be symmetric if Ulo * == Uo•*· This requires, in physical 
terms, that the masses a re equal, or m, = m2 and t hat t he anchor 
springs are equal, or S01 = So•· The system is said to be almost 
symmetric if IUoo*- Uoz*l = O(E). Itwillnowbeshown why the 
in-phase mode of an a lmost symmetric system is an integrable 
case when the coupling spring is a lmost, or altogether, non
linearizable. 

As stated, t he mixed derivative o•O /oxoy is equal to o•V,./ 
oxoy. Now, by definit ion of admissible systems, t he potenLial 0,2 

is a function of t he absolute value lx - vi of the length change. 
Hence, its Taylor expansion must be of the form 

"\' A m u,. = - L..t --- (x - y)"'+' 
m = l,3, . .. m+ 1 

and 

I: mA,..(x - y)"'-1 

11!. = 1,3, .'. 

But for the in-phase mode of symmetric systems, y*(x) 
hence, 

X . . ' 

Thus, if A , = 0 or of O(e ), the term u •• * will be absem from 
(26). Then, the equation in 1J is (27) with c = 1, and its general 
integral is (30), again with c = 1. 

Determination of Constants 
The arbitrary constants a and 11 in (30) define the values of TJ 

and 1]1 a t t he origin. In fact, since G(O) = h in virtue of (23), one 
has from (30) 

7](0) = /1h'l• 
s A spring is almost nonlincarizable if the linear component of the 

spring force is of 0 (<) . 

U(X,y*(X) + ETJ(X,a)) + Ew(X,y*(X) 

+ ETJ(X,a)) + h = 0 (34) 

It is readily seen t hat this equation will yield a relation of the form 

a= a(X) (35) 

i.e., an equation connecting the init ial slope of '1 with the v!Liue X 
at which the f-curve is intercepted, and X is the x-amplitude of 
the motion. In other words, the analytical continuation of every 
integral curve that lies sufficiently close to the straight modal line 
of the unperturbed system does intersect the f-curve at some 
point whose abscissa is X. Clearly, it is not possible to determine 
t he constant a uniquely from that result . Nevertheless, for future 
developments, it is necessary to determine the explicit relation be
tween X and a. 

Let the value of X be given by 

X= X o +eA (36) 

where Xo is the (known ) amplitude of the unperturbed system in 
the mode whose modal line is y* = ex. Let it be assumed further 
that both the unperturbed and perturbed systems move at the 
same energy level h. T hen, the point a t which the straight modal 
line of the unperturbed system intercepts the l'-curve is found 
from 

U(Xo,y*(Xo)) + h = 0 (37) 

To find X , one must substitute (36) in (34) and expand the re
sulting equation in powers of €, retaining only terms up to the 
first power. In doing this, it is necessary to evaluate 

{ rx· du rx· Sl(u) } 
TJ(X o) = tlG(Xo)] 'h a Jo G(u)'h - J o G(u)'h du 

Now, G(x) is an even polynomial of at least second degree in x 
(when t he unperturbed problem is linear, otherwise it is of higher 
degree), and it vanishes at X o. The function r2(x) is also at least 
of second degree in x; it takes on its maximum value at Xo and it 
vanishes a t the origin. Therefore, both integrals in the foregoing 
equation always diverge; however, their products with [G(Xo)J'I• 
are bounded, and one can readily find, either from a limi t analysis 
or from l'Hospit.al's rule, 

_a_ rl(Xo) 
TJ(X o) = - G'(Xo) + G'(Xo) 

(38) 



When (38) is substituted in Lhe expansion of (3•1) and (37) is in
troduced in that relation, one finds after sonHl compu tat.ions 

1 + c~ 
a = -- [AG'(Xo) + w*(Xo)] + !l(Xo) 

c 
(30) 

Sin<:e a is a measure of the change in initial slope bet.wecn unper
turbed and perturbed problems, and 1i is a measure of the change 
in x-a mplit.ude beLween the unperturbed problem and the analyti
cal cont.inualion of t he integral curves of t.he perturbed problem, 
equations (30) and (36) jointly consLit.utc the explicit form of (35). 

\Ve shall now show that there exists at most a single integral 
curve of t he pert,urbed problem which actually intercepts the 
fi-curve ; in other words, there exist.s at most one value of init.ial 
slope (i.e., one value of a) for which an in tegral curve of the per
t.tu·bed problem is a. modal line. 

Let us write, in accordance with (30), 

21] = aJ(:c) - l (x) 

where 

. - if, f "' ~ J(~. ) - [G(x)) J
0 

G(11)'h 

I rz Sl(1l) 
l (x ) = [G(x)) /2 Jo G(u)'h du 

and where we have already put {3 = 0. Then, the end slope 

y'(X) = c + €1J'(Xo + EA) = c + €1J'(X0 ) 

within O(e), and 

21]'(Xo) = lim [aJ'(Xo - Eo) - l '(Xo - Eo)) 
.. -o 

Hence, the rate of change of the end slope 1J'(X0 ) 1Yith respect to a 
is given by 

o '(K) 2~ = J'(Xo) oa 

and a limit analysis (whose details are not reproduced here) yields 

J'(Xo) = lim _ r - ·H-G' (Xo)J'I• __ u_ { 
1 < i Xo-6 d 

.,-o v Eo - o G(tt)'h 

+ 1 V~ ( -G'(Xo))>} 

where lol > 0 is a small parameter and G'(Xo) < 0. In conse
quence, we find 

1 01'/~~Yo)l = 00 

Assume now that an integral exists which is a modal line; i.e., 
which intercepts the fi-curve. Then, the last equation states 
that no other integral curve passing through the origin and having 
an initial slope neighboring on that of the modal line can also 
reach the bounding curve because the end slope 1J'(X0 , a) is not a 
continuous funct.ion of a. 

This result is not in contradiction with (30) because that equa
tion holds only for the analytical continuations of t he integral 
curves. Nevertheless, (39) must be satisfied by the actual modal 
line because that line is t he only integral curve which coincides 
with its analyt.ical continuation. 

The condition that 1J'(Xo) be bounded, together with the 
observation that J'(X0 ) is unbounded might lead one to conjec
ture that a = 0; however, that conjecture contains the implicit 
a~sumption that l '(Xo ) is bounded, and such an assumption can
not be verified because w, and hence !1, are largely arbitrary. 

To determine t he initial slope of the modal line of the perturbed 
system we observe that the left-hand side of (27) becomes self-

adjoined when that equation is multiplied by G(x) - 'h; it then 
becomes 

and the corresponding self-adjoined homogeneous equation is 

( 41 ) 

One secs from (30), that tlie general solu tion of ( 41) is 

1 { "' dn {3 ,1 1J = 1'/o(:r, a, {3) = } G(x ) h a J 
0 

G(u.)'h + G(x) ' (42) 

Inasmuch as 1J must pass through t he origin, t he only case of in
terest here is t hat of {3 = 0, as shown earlier. 

Now, it is well known t hat for existence and uniqueness of solu
tions of cer tain inhomogeneous equations, these mus t satisfy a 
well-known orthogonality relation [7]; however, because of t he 
unusual "boundary condition" that y(x) intercept a cert.ain curve 
(rather than t hat it pass through a given point on a given curve), 
one must investigate the question of applicability of that ortho
gonality condition. 

This is clone by multiplying t he inhomogeneous equation (40) 
by l)o(x , a:) and integrat.ing it over 0 ~ x ~ Xo, or 

rx· fx, rx· 
2 Jo 1/o(G'/t71 ')'rlx -

0 
1JoG-'I•G"1)dx = Jo l)o<pdx (43) 

If one integrates t he first integral twice by parts, ( 43) becomes 

rx· 
- a-'hG"1Jo) )dx = Jo 1Jo<Pdx (4-!) 

The first term in equation ( 4<1) vanishes in the lower limit because 
1]0(0) = 1](0) = 0, and in the upper limit because G'h(Xo) = 0 
and we require that the derivatives of 1J and l)o be bounded at the 
upper limit. 

The integral on t he left-hand side of ( 44) also vanishes because 
the quantity in the square brackets of t.hc integral is (•ll ), and that 
quantity is identically zero since 1'/o satisfies ( <!1 ). Hence, the 
ort.hogonality condition [7) is applicable; it is 

or, explicitly 

f
x , 

·}a 
0 

rx· J 
0 

1]0rpdx = 0 

Since G(u) ?- 0 in 0 ~ 1t ~ Xo, the integral 

{ "' du 
J0 G(1t)'h 

(45) 

(4G) 

does not change sign in t his interval, and ( 4G) may be written1 

in the form 

rx'f "' dn ~( 1 + c2)(wv * + cw, *)a J o o G(u)'l• dx = 0 

where 

wv • - cw. * = wv *(x) - cw, *(x) (47) 

and :\: is some value of x in [0, Xo]. \Ve cannot impose the con· 
straint 

w. * - cw •• = 0 

'By the mean-value theol'y of the integral calcnlus. 



on w, because w is largely an arbitrary function. For instance 
when the perturbation consista in perturbing one of the anchor 
springs only, either Wv * = 0, w. * .= 0, or vice versa; and the 
nonvanishing quantity never changes sign in [0, Xo]. Hence, the 
orthogonality condition becomes, finally, 

rx· rz du 
a Jo Jo G(u)'l• dx = 0 (48) 

But, as s(ated earlier, G(x) is nonnegative; hence, (48) can only 
be satisfied by a = 0. 

We, then, have the result that, to the first order in E, the modal 
line of an integrable, perturbed syste:m is tangent at the origin to 
that of the unperturbed system on which it ne:ighbors. 

In view of this result we have from (30) or (33) 

I rz O(u) 
?)(x) = - t !G(x)] / • J o G(u)'!s du (49) 

and, from (39), the change in x-amplitude between unperturbed 
and perturbed systems is defined through 

A = - G'(~o) [ w*(Xo) + 1 ~ c2 fl(Xo)] (50 ) 

The solutions of unperturbed and perturbed systems are il
lustrated in Fig. 3. From this diagram, one sees that the per
turbation has first-order effects on the x and y-amplitudes of the 
normal mode vibrations. 

A meaaure of the change in y-amplit.ude is found from 

y(X) = y = y*(X) + e?)(X) 

= y*(Xo +eA)+ e?)(Xo +eA) 

used standard perturbation techniques on the equations of mo
tion, not on the geometrical equation (8) used here, and con
cluded that the vibration amplitudes of the perturbed system are 
in the same ratio to each other aa those of the unperturbed prob
lem. That Huang's results are incorrect was shown recently by 
Szemplinska-Stupnicka [9] who showed that, in fact, certain 
first-order efl"ects are neglected in Huang's analysis, and that 
these can only be recovered by a second-order analysis (that one 
in turn losing certain second-order effects which must be recovered 
through a third-order analysis, and so forth). However, when 
using the geometrical methods applied here, all first-order effects 
are accounted for by a first-order analysis. 

The Motion and Its Stability 
Once the modal line y(x ) of the perturbed system has been 

found by the methods described here, the motion of the per
turbed system in the normal modes can be found by a simple 
quadrature. The substitution of the modal line 

I rz O(u) 
y = y*(x)- t e [G(x)] /t Jo G(u)'h dn 

into the first of (6) gives 

x = Oz(x, y(x)) = U,(x, y(x)) + ew.(:t, y(x)) 

Expansion within O(e) of (54) results in 

x = U. *(x) + E[?](x)U •• * + Wz *(x)] 

(53) 

(54) 

But, in the integrable cases, u •• *is either of O(e) or zero, so that 
the foregoing equation becomes 

(55) 

Expanding the last equation in powers of € up to the first, and This equation must be solved for t he initial conditions 
making use ol y*'(x) = c, one has 

Y = Yo + e[cA + ?J(Xo)] 

where l'0 = y' (Xo) is they-amplitude of the unperturbed system. 
If we write, similar to (3G ), 

Y = Yo + eB (51) 

we have 

B = eA. + ?](Xo) 

where A is given in (50), nod ?](Xo) in (38) (with a = 0). l:Vfaking 
use of t hese, one finds 

B = :- G'~Xo) [ cw*(Xo) - 1 ~ c2 fl(Xo)] (52) 

The result that the perturbation has first-order efJects on the 
amplitudes is at odds with those of Huang [8] who examined the 
nearly linear dynamic vibration absorber with a slightly non linear 
coupling spring. In our terminology, Huang's problem lies in 
the neighborhood of a homogeneous system of degree 1. Huang 

y 

Fig. 3 

x(O) = Xo + eA, :t(O) = 0 

where A is given in (50). The solution may be found by one 
quadrature and is of the form 

x=cp(t,A) (56) 

It is expressly noted that (55), and hence (56), is free of '1· The 
y-motion is 

y y*(cp(t, A))+ t?J(cp( t, A)) 

ccp(t, A) + E?](rp(t, A)) (57) 

and (57) does contain?). Since (57) depends on ?J and (56) does 
not, the normal mode vibration is, in general, nonsimilar. 

Next we show that the ~/ability of the normal mode vibration of 
the 71erturbed system is the same as that of the unperturbed system. 

The solutions whose stability is to be examined are 

X = rp(t) 

y = ccp(t) + e?)(rp(t)) = 1/l(t) 

and the equations, identically satisfied by (58), are 

x = Uz(x, y) + ew.(x, y) 

ii = U.(x, y) + ew.(x, y) 

(58) 

(59) 

Let the solutions of the perturbed system (59), but with slightly 
ditTerent initial values than (58), be 

x = cp(t) + Eop(t) 

y = Y,(t) + Eoq(t) 
(60) 

Then the solutions (58) are said to be stable if p(t) and q(t) are 
bounded for all t. 

The equations of the first variation of (59) with respect to (58) 
are readily computed ; they are 



P = pUzz('{J, 'f) + qUzu(<P, 'f) 

ij = pUzu(cp, 'f) + qUuu(cp, 'f) 
(61) 

But these are precisely the variational equations of the unper
turbed system. Hence, the stability of t he normal mode solu
t ions of the two systems is the same. The stability problem is 
now solved because the stability of the unperturbed problem is 
deducible by known methods [1, 3, 10, 11]. 

Example 
An an example of the foregoing theory, we shall consider an al

most symmetric system consisting of two masses and three 
springs, as shown in Fig. 2. The symmetry is disturbed by a 
slight change in the spring So2 which connects the mass m2 to t he 
fixed point. This change is to be such that the force of the per- . 
turbed spring remains an odd function of the spring deflection. 
Consequently, 

w(x, y) = f(y) 

f( - y) = -f(y) 

/(0) = 0 

(62) 

The change in the bounding curve resulting from this perturba
tion is readily discussed. Because of t he third of (62), the per
turbed bounding curve is tangent to that of the unperturbed 
problem where y = 0, i.e. , where both cross the x-axis. If the 
perturbation strengthens the spring S02, the r-curve lies inside the 
r-curve for every y >= 0; if the perturbation weakens s 42, r lies 
outside r for every y >= 0. 

We shall examine the in-phase mode of the perturbed system. 
Then, since the parent system is symmetric, y* = x or c = 1 [1], 
and 

w*(x) = f(x), 

w*(Xo) = f(Xo) , w. * = f'( x ) 

('' 
Q(Xo) = -2 Jo f'(x)dx = -2/(Xo) 

Substituting these quantities in (50 ), one has (because of c = 1) 
A = 0. Therefore, under the proposed perturbation, the X-am
plitude remains unchanged. 

The change in y-amplitude is found by substituting the fore
going quantities in (52). The result is 

B = _ 2f(Xo) 

G'(Xo) 

~ow, G'(X0 ) < 0 for all 0 < x ~ Xo. Hence, B has t he same sign 
as j (Xo ). If the perturbation is such as to strengthen the spring 
So2,J(x) < 0 for a ll 0 < x ~ Xo; therefore, they-amplitude will be 
diminished. If the perturbation weakens S o2, f(x) > 0, and the 
y-ampli tude will be increased. Both cases are illustrated in 
Fig. 4. 

If it is the spring So1 which is pertmbed rather than So2, one has 
w, = w. * = f'(x) and w. = 0. Then, in view of (29), Q(Xo) = 
2j(Xo), and one finds as expected 

2j(Xo) 
A = - G'(Xo)' B = O 

In that case, t he rand r-curves are tangent to each other OD the 
y-axis, and r lies inside I' for f(x) ~ 0, and outside for f(x) ;::: 0. 

T he first of t hese results has also been checked experimentally 
on the analog computer. The unperturbed system chosen in the 
experiment was a symmetric, homogeneous system of degree 3 
and with potential function 

U(x, y) = -t(x' + Y4) - i<x - y)' 

y' 

SPRING S02 STRENGTHENED SPRING s02 WEAKENED 

Flg.4 

(I I 

/ Unperturbed System 

E= + ..l.. 
5 E=-+ 

-Drown by computer for oc tu ol nonlineor system 

Numerical resu lts of first ord er perturbation theory 

Fig. 5 

The perturbation of the spring S02 consisted of the addition of a 
small linear term which perturbed the homogeneity all well as the 
symmetry. In the case of a strengthened spring, the perturbation 
potential was 

EW(x, y) = - ty2 

and, in the case of a weakened S 02, the negative of the foregoing 
function was used. The resulting curves in the xy-plane are shown 
in Fig. 5 for both the unperturbed and the perturbed systems. 
Thus, these curves are the experimental counterpartB of Fig. 4 . 
All lines in Fig. 5, including the axis system, were recorded by an 
xy-plotter and only the lettering was added by hand. A com
parison between Figs. 4 and 5 shows that the agreement is ex
cellent even though the perturbation was much larger than con
templated in a first-order theory. Quantitatively, the dif!'erence 
between the predicted and observed amplitude changes is hardly 
mensurable. 
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