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Nonsimilar Normal Mode Vibrations of Nonlinear Systems Having Two Degrees of Freedom

When a non1inear system /l(wing several masses vibrates • in normal modes, the t• ime histories of the mot-ion of these masses are, in general, d~fferent in wave shape (although in certain specialnonl-inear systems they differ at most in amplitude, but not in shape). Wh en the 1uave shapes d• i:(fer, the normal mode vibration is called nonsimilar. In this pa.per, 11011similar itormalmode vibrations are analyzed with respect to wave shape and stabihty. The systems considered are those lying close to systems having similar normal mode vibrations. An example is worked out in detail, and a compar• ison with an experimental stu. dy i s reportea.

IN several earlier• papers [J, 2, 3, 4), 1 t he normal mode vibrations of certain nonlinear systems, having many degrees of freedom, have been studied. These systems consist of a chain of masses, each mass having a single degree of freedom of translaLion in the direction of the chain. Each is connected to others by nonlinear springs, and every spring force is an odd function of t he length change of that spring.

The term "normnl mode vibration" describes a vibration in wu•son of nil elements of the system, and "vibrnLion in unison" means that all masses execute equipcriodic motions, all pass through equilibrium at the same instant, all attain maximum displacement at t he same instant, and the position of any one mass at an .Y given instant of time defin es uniquely that of every other mass at the same instant.

\V hen the system is linear, the motion of every mass duriug a uormal mode vibration is a simple harmonic function of time havi ng t he same frequency aucl t he same zeros as every other, or

x,(t)/l' ;(l) = A, cos wi/A; cos wt == C;; where C;; is a constant.

Yl'hen the system is nonlinea r, the normal mode vibrations are no longer simple harmonic. Nevertheless, it is quite possible that, eveu then, the rntios of the displacement.s in normal mode vibrations are identically equal to constants. In fact, it wns shown t hat symmetric two-degree-of-freedom systems [START_REF] Rosenberg | On t he Natural Modes and Their Stability in Nonlinear Two-Degree-of-Freedom Systems[END_REF] and homogeneous n-degree-of-freedom systems [START_REF] Rosenberg | On Normal Vibrations of a General Class of Nonlinear Dual-Mode Systems[END_REF][START_REF] Roscnberg | The Normal Modes of Nonl incar n-Degreeof-Frccdom Systems[END_REF] are such t hat t heir normal mode vibrations satisfy

x,(t)/:t';(l) == const [START_REF] Rosenberg | On t he Natural Modes and Their Stability in Nonlinear Two-Degree-of-Freedom Systems[END_REF] no matter how strongly nonlinear the systems or how large the displacements. T he physical interpretation of [START_REF] Rosenberg | On t he Natural Modes and Their Stability in Nonlinear Two-Degree-of-Freedom Systems[END_REF] is that the motions, i.e., the wave shapes in the time-displacement plane, are similm• when the system vibrntes in normal modes.

While it has also been shown [START_REF] Rosenberg | Normal Modes of Nonlinear Dual-Mode Systems[END_REF] that normal mode vibrations of arbitrary spring-mass systems do not, in general, satisfy [START_REF] Rosenberg | On t he Natural Modes and Their Stability in Nonlinear Two-Degree-of-Freedom Systems[END_REF], all detailed studies have so far been restricted to cases of similar normal mode vibrations.

When t he displucements of any two masses m, aud m; during normal mode vibrations are such that x;(l)/x;(l) ~ const [START_REF] Rosenberg | Normal Modes of Nonlinear Dual-Mode Systems[END_REF] we shall sny that the normal mode vibration is nonsimilar. In this paper, normal mode vibrations of two-degree-of-freedom systems nre examined. However, the results can be extended in nn obvious wny to systems having many degrees of freedom. For t his reason, we shall describe a system of many degrees of freedom and specialize it Inter to the case of two degrees of freedom.

The System

As a physical model of admissible systems, consider a chain of n mass points P,, U = 1, . ., n), the mass of P, being m, . Since an infiuitely large mass eau only be accelerated by an infinitely large force, Lhe motion of a mass 111 0 = oo is u. = 0, or P 0 corresponds to a fixed point. T herefore we may, without increasing the number of degrees of freedom of the system, include a mass mo = oo in it; such an addition to the system prevents the degree of freedom of "rigid-body translation." Each mass m., (i = I, . . . , 11) has n single degree of freedom of translation 11; in the direction of Lhe chain. Each is connected to one, several, or all others by spri11gs that may be equal or uuequal, linear, nonlinenr, or nonlinearizable.! Thus, a system comprising n masses may have as many as tfn(n -1 )) springs. T his system is illustrated in Fig. 1. The corresponding system having two degrees of freedom is shown in Fig. 2.

We assume that there exists at least one configuration in which t he system can remain at rest indefini tely. This is the equilibrium configuration and, in the equilibrium configuration, every 11; == 0.

The spring forces are the only forces acting on the system. These are derivable from a potential functiou U where u = -lT [START_REF] Rosenberg | On Normal Vibrations of a General Class of Nonlinear Dual-Mode Systems[END_REF] and l' is the potenLial energy. The potential energy stored in any spring is a function of the absol-ute vcc/11e of the length change of that spring. In physical terms, this implies that a. spring resists (or aids) in the same degree being deflected by a. given amount, whether that deflection is a compression or extension.

If we put u, = u, 112 = v, the equations of motion of the twodegree-of-freedom system are into (4) one has () (X y)

0 mzv = -U('u, u) ou (4)
x = u:r; u m2'/t' m2'/t ' () ( X y) y = -U ---- o y m 1 ' /t' m/ /t (6)
and these may be regarded as t he equations of mot ion of a unit mass that moves in the :ry-plane under forces uU /ox, oU /uy.

That system of forces and unit mass will be called t he p seudosystem. To each motion u, v of the physical system there belongs uniquely a motion of the pseudo-system in the xy-plane, a nd the trajectory of the unit mass satisfies the E uler equat ions of f " "

o (U + h)'h (1 + y' 2 )'1•dx = 0 %1 (7)
T hat equat ion is [START_REF] Rosenberg | Normal Modes of Nonlinear Dual-Mode Systems[END_REF][START_REF] Knuderer | Nichtlincarc Mechanik, Springcr-Vcrlag[END_REF] 2(U + h)y" + (1 + y' 2 )(y'U: -U~) = 0 [START_REF] Unng | Harmonic Oscillations of Nonlinenr Two-Degree-of Freedom Systems[END_REF] where primes denote d ifl'erentiation with respect to x.

Inasmuch us the system is conservative, t he energy integral

T -U= h (9)
exists where his a nonnegalive constant equal to t he tot al energy and, for the physical and pseudo-systems, respectively,

U = U(u, v) } ( X y ) u = u --.-1 ' ---;-; 111! , 1n2 ' ( 10) 
We admit only systems in which U is negative, definite.

Trajectories of Norm al Modes

One sees from [START_REF] Cournnt | cthodcn dcr J1lathcmatischen Physik[END_REF] 

U + h = O ( Ll )
That r is a closed curve surrounding Lhe origin follows d irectly from the fact t hat U is negative definite, and h is nonnegative. The r -curve will be referred to as t he bounding curve. It is also the maximum equipotentialline because [START_REF] Su | On a Restricted Class of Cou]>lcd Hi ll's Equat-ions and Some Applications[END_REF] coincides with (9) when T = 0; i.e., when the velocities vanish, and at such an instant the total energy is potential. Finally, r is symmetric with respect to the origin [START_REF] Rosenberg | Normal Modes of Nonlinear Dual-Mode Systems[END_REF], and every traject ory which actually int ercepts r does so orthogonally [START_REF] Rosenberg | Normal Modes of Nonlinear Dual-Mode Systems[END_REF][START_REF] Roscnberg | The Normal Modes of Nonl incar n-Degreeof-Frccdom Systems[END_REF][START_REF] Knuderer | Nichtlincarc Mechanik, Springcr-Vcrlag[END_REF]. Solutions of (8) which correspond to vibrations in normal modes are called modal lines.

We shall use perturbation t heory t o determine the modal lines of systems which lie in the neighborhood of a " parent system" having known modal lines. In t lus respect, this paper has the same objective as Duffing's memoire [START_REF] Hang | Osdl/atory ,){otions, English translation[END_REF] had with respect to slightly nonlinear single-degree-of-freed om systems. However, our study is neither restricted to single-degree-of-freedom systems nor to nearly linear ones because the exact modal lines of many highly non linear multi-degree-of-freedom systems arc known [START_REF] Rosenberg | On t he Natural Modes and Their Stability in Nonlinear Two-Degree-of-Freedom Systems[END_REF][START_REF] Rosenberg | On Normal Vibrations of a General Class of Nonlinear Dual-Mode Systems[END_REF][START_REF] Roscnberg | The Normal Modes of Nonl incar n-Degreeof-Frccdom Systems[END_REF], aud t he theory to be presented here will hold for the modal lines of any systems in the neighborhood of these non linear parent systems.

The Perturbed System

Let U = U(x, y) be the given potential fun ction of a parent system fo r which a modal line

Y = y*(x) (12) is known. Further, let O(x, y) = U(x, y) + ew(x, y) ( 1 3) 
be the potential function of a perturbed system. In ( 13), E is a given constant and w(x, y) is called the perturbatio1t potential; it is supposedly known. If lel is small, and if

ew(x, y) = O(e)
everywhere in the closed domain Jj bounded by the curve r,

where t he f'-curve is defined by

() + h = U(x, y) + EW(x, y) + h = 0 ( 14) 
then t he perturbed system lies in the neighborhood of the "parent system" whose modal line is (12). We may, then, use first-order perturbation theory to find the modal line

y(x) = y*(x) + t1J(x) + . . . (15) 
everywhere where the equation which (15) must satisfy is regular in 15. In view of ( 8) and ( 13), that equation is

• ( 1 + y' 2 )[y'(Uz + EW:)-(V~+ ew.) ] 11 = - 2(U + EW +h ) ( 16 
)
I t is evident that ( 16) is singular on the f'-curve and, hence, does not possess a uniformly convergent power series in e about any point on f'. Nevertheless, it is always possible to use t he perturbation series (15) for constructing solutions t hat are valid everywhere in the open d omain D, and to continue these solutions analytically unt il they reach the f'-curve. The complications arising from the fact that ( 16) is singular on r will be di~cussed more fully later on, but first we should like to show that y• is bounded OU r even t hough the denominator of ( 16) vanishes OD it.

Let us suppose t hat a solution (15) exists which intercepts t he f'-c urve at a point (X, Y) where Y = y(X ). Then, ou f',

x(X, Y ) = y(X , Y) = 0 because t he f'-curvc is defined by ( 13), and Lhnt equation is the energy in tegra.! when the kinetic energy vanishes. Then, by I 'Hospi tal's rule,

y(X, Y) y(X, Y) V. (X, Y) y'( X) = ---= ---= -_L'--'----' x(X, Y) x( X, Y ) Ux(X , Y)
where use has been made of [START_REF] Hang | Osdl/atory ,){otions, English translation[END_REF]. But ( 16) is indeterminate when the foregoing value of y' is substituted in it; hence, it may also be evaluated by !'Hospital's rule. l' vfaki ng use of

d Tr 0 - dx v(x, y) = • + y'Uv
one finds, aft er some computations,

y "(X, Y) = _!. [ O•v + y'(Ovv -0 .. -y'O • • > J 3 0, ,., -X
By definition of V,(x, y), that quantity cannot vanish at (X, Y )

[because (X, Y) lies on r, and r does not pass through the origin).

Therefore, t he denominator of t he foregoing equation is not zero. Similarly, the above expression for y'(X) shows that that derivative is bounded when O,(X, Y) ;e 0. It follows that y"(X, Y) is bounded, and its value is given in the foregoing equation.

We shall now use first.-order perturbation theory to construct a solution of the form ( 15) which satisfies the equation ( 16) everywhere inside but. not on r. Using the notation

Q(x, y*(x) ) = Q*(x )
for U and w and for their partial derivatives, standard perturbation technique yields the equation which 1J(x ) must satisfy. It t urns out to be

2(U* + h)?J" + [2y*'(y*'U,*-U.*) +( I+ y*'•)U,*] ?J' + [2y*"Uv * + (1 + y*' 2 )(y*'U•v * -Uvv *)) 1/ + 2y*"w * + ( 1 + y*' 2 )( y*'w, * -w. *) = 0 (17)
But, we seek modal lines lying in t he neighborhood of ~traight ones. Therefore,

y*(x ) = ex ( 18)
For straight modal lines, y*" = 0, and one sees from (7) that, then, everywhere in D,

v*' == u.;u. = c ( 19)
Substituting ( I S) and ( 19) in ( 17), t hat equation simplifies considerably and becomes

2(U * + h)TJ " + (1 + c 2 )Ur*1J' + (1 + c 2 )(cU./-Uv/)1J = ( 1 + c 2 )(wv * -cw, *) (20)
The integration of t his equation is fncilitated by the recognition t hat nearly all coefficients are derivntives of U*(x) = U( x, y*(x)). For instance,

.!!_ U* = U* = ~ U(x, y*) + ~ U(:~, y*)y*' dx ox oy*
and in view of (19),

d -U* = (1 + c~) U, * dx One finds, similarly, that c/2 1 + c' -U* = (I + c 2 )U * + --U * dx2 vv c ••
It. follows t hat, i(one defines,

U*(x) + h = G(x)
the perturbation equation ( 20) becomes

(21) ( 22 
) (23) = (1 + c 2 )(wv * -cw, *) (24)
It is this equation on which all further development is based.

In certain cases, it may be advantageous to introduce a transformation of the independent variable given by (25) This reduces (24) to the form

2 :~-[ G" -( 1 ~ c•)• U.v*] 1J = (1 + c 2 )(wy* -cw,*) (26 )
The t ransformation (25) has an interesting significance. Suppose we wish to determine the time t, required for the unit mass of the unperturbed pseudo-system to traverse a given arc of any trajectory in the xy-plane. If we denote the velocity of the unit mass by w, we find from the energy integral !w 2 = U + h that the transfer time along any trajectory is

1 f (dx 2 + dy 2 )'1• y2 [U( x, y) + h]'lt
If t hat t rajectory is a straight modal line, so that (18) holds, the transfer time becomes

( 1 + c 2 ) '/•f dx (1 + c2) '/tf dx t = -2- ( U* + h)'lt = -2 - G(x)'l •
But this is, except for a constant, t he transformation (25). Let us denote by T = (2/(1 + c 2 ) ] 'l•t the pseudo-time which t he unit m!U !S of the unperturbed pseudo-system requires to move from the origin along a straight modal line to a point whose absci~sa is x . Then the relation between ~ and x is the same as that between T and x. The times T and t coincide when c = ± 1; i.e., for modal lines whi ch are inclined by 45 deg to the x-axis.

Equation ( 26) is simpler in appearance than (24). However, the coefficients in (26) are still functions of x, not ~. It is necessary to replace x by ~ in them, before the equation can be integrated; this step is accomplished through the inversion of (25);

i.e., by x = ,p-•w.

Equations ( 24) or (26) are second-order differential equations having solutions of the form

1J = 1J(x, a, {J)
The constants of integration a and {J must be determined such that

y(x) = y*(x) + E1J(x, a, {J)
is a modal line. Since U(x, y) and w(x, y) are given functions, and h, c, and E are known constants, the integration of (24) could always be done on a computer.

Integrable Cases

There exist two cases of considerable physical interest where the perturbation equation can be integrated in terms of quadratures. One of these is the case of "weak coupling" while the second does not require t hat coupling be weak. We shall discuss these in order.

When the force in the coupling spring is of O(E) for any finite deflections of that spring, we shall say that the coupling is weak. Such weak coupling has been the subject of many investigations in the theory of nonlinear differential equations [START_REF] Hang | Osdl/atory ,){otions, English translation[END_REF].

The potential energy of the system arises from t he potentials U01, U02, U12 stored, respectively, in t he anchor s prings S 0 ,, So 2 , and the coupling spring s,. (Fig. 2). Clearly, Uoo is a fun ction of x only, a nd Uo~ is a function of y only . Hence, t heir mixed derivatives U, v vanish; in other words, the mixed derivative of the entire system is represented by the mixed derivative o 2 /oxoy-( u,.) of the coupling spring.

When coupling is weak, Uzv can only appear in a second-order theory and, hence, will not be present in (24 ). That equation, then, reduces to

2GTJ" + G'TJ' -G"TJ
A first integral of ( 27) is

(1 + c 2 )(wu * -CWz *) 1 '1) 1 = - [G'TJ + a -Sl(x)] 2G
where we have used the notation (27) (28) and , since G'(O) = r2(0) = 0, the initial slope is, from (28),

TJ'(O) = a/(2h) (31 )
These constants must be so determined that y y*(x) + ETJ(:t, a,/1) is a modal line; i.e., y(x) must pass through the origin, and it must intercept the f-cmve. From the fi rst condition one has 11 = 0.

As stated earlier, the perturbation t heory used here does not furnish a solution which is valid on r ; however, t he solutions may be continued analy tically tor.

Let the points whose locus is the r -curve be denoted by (X, Y) .

Then, the equation of the f -curve is

U(X,Y) + ew(X,Y) + h = 0 (32)
The condition that t his curve be intercepted by the analytical cont inuation of y(x) is satisfied by substituting into (32) the relation

Y = y*(X) + HJ(X,a) rl(x) = (1 + c 2
) fo"' (cwz *wu *)dx and the general solut ion of ( 27) is ( 2 9) where rx a-r2( 11) A second integrable case is that of the in-phase mode of almost symmetric systems, provided the coupling spring is nonlinearizeable or a lmost nonlinearizable. 3 H owever, it is not required t hat coupling be weak. A system of potent ial function . ' Thus, if A , = 0 or of O(e ), the term u •• * will be absem from (26). Then, the equation in 1J is (27) with c = 1, and its general integral is (30 ), again with c = 1.

TJ(X,a) = }[G(X)]'h Jo G(n)'h dn (33) ( "' a -rl(u) , 1 TJ(x) = ![G(x)]'h Jo G(u)'h du + {1[G(x)] ' ( 

Determination of Constants

The arbitrary constants a and 11 in (30) define the values of TJ U(X,y*(X) + ETJ(X,a)) + Ew(X,y*(X)

+ ETJ(X,a))

+ h = 0 (34)
It is readily seen t hat this equation will yield a relation of the form a= a(X) (

i.e., an equation connecting the init ial slope of '1 with the v!Liue X at which the f-curve is intercepted, and X is the x-amplitude of the motion. In other words, the analy tical continuation of every integral curve that lies sufficiently close to the straight modal line of the unperturbed system does intersect the f-curve at some point whose abscissa is X. Clearly, it is not possible to determine t he constant a uniquely from that result . Nevertheless, for future developments, it is necessary to determine the explicit relation between X and a. Let t he value of X be given by

X= X o +eA ( 36 
)
where Xo is the (known ) amplitude of the unperturbed system in the mode whose modal line is y* = ex. Let it be assumed further that both the unperturbed and perturbed systems move at the same energy level h. T hen, the point a t which the straight modal line of the unperturbed system intercepts the l'-curve is found from

U(Xo,y*(Xo)) + h = 0 (37) 
To find X , one must substitute (36) in (34) and expand the resulting equation in powers of €, retaining only terms up to the first power. In d oing this, it is necessary to evaluate

{ rx• du rx• Sl(u) } TJ(X o) = tlG(Xo)]'h a Jo G(u)'h -J o G(u)'h du Now, G(x)
is an even polynomial of at least second degree in x (when t he unperturbed problem is linear, otherwise it is of higher degree), and it vanishes at X o. The function r2(x) is also at least of second d egree in x ; it takes on its maximum v alue at Xo and it vanishes a t the origin. Therefore, bot h integrals in the foregoing equation always diverge; however, their products with [G(Xo)J'I• are bou nded, and one can readily fi nd, either from a limi t analysis or from l'Hospit.al's rule,

_a_ rl(Xo) TJ(X o) = -G'(Xo) + G'(Xo) (38) 
When (38) is substituted in Lhe expansion of (3•1) a nd (37) is introduced in that relation, one find s after sonHl compu tat.ions

1 + c~ a = --[AG'(Xo) + w*(Xo)] + !l(Xo) c ( 30 
)
Sin<:e a is a measure of the change in initial slope bet.wecn unperturbed and perturbed problems, and 1i is a measure of the change in x-a mplit.ude beLween the unperturbed problem and the analytical cont.inualion of t he integral curves of t.he perturbed problem, equations ( 30) and (36) jointly consLit.utc the explicit form of (35).

\Ve shall now show that there exists at m ost a single integral curve of t he pert,urbed problem which actually inter cepts the fi-curve ; in other words, there exist. s at most one value of init.ial slope (i.e., one v alue of a) for which an in tegral curve of the pert.tu•bed problem is a. modal line.

Let us write, in accordance with (30), .

.

-o

Hence, the rate of change of the end slope 1J'(X 0 ) 1Yith respect to a is given by o '(K) 2~ = J'(Xo) oa and a limit analysis (whose details are not r eproduced here) yields

J'(Xo) = lim _ r -•H-G' (Xo)J'I• _ _ u_ { 1 < i Xo-6 d .,-o v Eo - o G(tt)'h + 1 V~ ( -G'(Xo))>}
where lol > 0 is a small parameter and G'(Xo) < 0. In consequence, we find 101'/~~Yo)l = 00

Assume now that an integral exists which is a modal line; i.e., which intercepts the fi-curve. Then, the last equation states that no other integral curve passing through the origin and having an initial slope neighboring on that of the modal line can also reach the bounding curve b ecause the end slope 1J'(X 0 , a) is not a continuous funct.ion of a.

This result is not in contradiction with (30) because that equation holds only for the analytical continuations of t he integral curves. Nevertheless, (39) must be satisfied by the actual modal line because that line is t he only integral curve which coincides with its analyt.ical continuation.

The condition that 1J'(Xo) be bounded, together with the observation that J'(X 0 ) is unbounded might lead one to conjecture that a = 0; however, that conjecture contains the implicit a~s umpti on tha t l '( Xo ) is bounded, and such an assumption cannot be verified because w, and hence !1, are largely arbitrary.

To determine t he initial slope of the modal line of the perturbed system we observe that the left-hand side of (27) becomes self-adjoined when that equation is multiplied by G(x) -'h; it then becomes and the correspond ing self-adjoined homogeneous equation is One secs from (30), that tlie general solu tion of ( 41) is

1 { "' dn {3 , 1 1J = 1'/o(:r, a, {3) = } G(x ) h a J 0 G(u.)'h + G(x) ' (42) 
Inasmuch as 1J must pass through t he origin, t he only case of interest here is t hat of {3 = 0, as sh own earlier.

Now, it is well known t hat for existen ce a nd uniqueness of solutions of cer tain inhomogeneous equations, these mus t satisfy a well-known orthogonality relation [START_REF] Cournnt | cthodcn dcr J1lathcmatischen Physik[END_REF]; however, because of t he unusual "boundary condition" that y(x) intercept a cert.ain curve (rather than t hat it pass through a given point on a given curve), one must investigate the question of applicability of that orthogonality condition. This is clone by multiplying t he inhomogeneous equation (40)

by l)o( x , a:) and integrat.ing it over 0

~ x ~ Xo, or rx• fx, rx• 2 Jo 1/o(G'/t71 ')'rlx - 0 1JoG-'I•G"1)dx = Jo l)o<pdx (43)
If one integrates t he first integral twice by parts, ( 43

) becomes rx• -a-'hG"1Jo) )dx = Jo 1Jo<Pdx (4-!)
The first term in equ ation ( 4< 1) vanishes in the lower limit because 1] 0 (0) = 1](0) = 0, a nd in the upper limit because G'h(Xo) = 0 a nd we require that the derivatives of 1J and l)o be bounded at the uppe r limit. The integral on t he left-hand side of ( 44) also vanishes because the quantity in the square brackets of t.hc integral is (•ll ), a nd that quantity is identically zero since 1' /o satisfies ( < !1 ). Hence, the ort.h ogonality condition [START_REF] Cournnt | cthodcn dcr J1lathcmatischen Physik[END_REF] is applicable; it is or, explicitly We, then, have the result that, to the first order in E, the modal line of an integrable, perturbed syste:m is tangent at the origin to that of the unperturbed system on which it ne:ighbors.

f x , •}a 0 rx• J 0 1]0rpdx = 0 Since G(u) ?-0 in 0 ~ 1t ~ Xo, the integral { "' du J 0 G(1t)'h ( 
In view of this result we have from ( 30 

The solutions of unperturbed and perturbed systems are illustrated in Fig. 3. From this diagram, one sees that the perturbation has first-order effects on the x and y-amplitudes of the normal mode vibrations.

A meaaure of the change in y-amplit.ude is found from y(X) = y = y*(X) + e?)(X)

= y*(Xo +eA )+ e?)(Xo +eA) used standard perturbation techniques on the equations of motion, not on the geometrical equation ( 8) used here, and concluded that the vibration amplitudes of the perturbed system are in the same ratio to each other aa those of the unperturbed problem. That Huang's results are incorrect was shown recently by Szemplinska-Stupnicka [9] who showed that, in fact, certain first-order efl"ects are neglected in Huang's analysis, and that these can only be recovered by a second-order analysis (that one in turn losing certain second-order effects which must be recovered through a third-order analysis, and so forth). However, when using the geometrical methods applied here, all first-order effects are accounted for by a first-order analysis.
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  30 ) This results in an equation of the form where a and 11 are arbit rary constants of integration.

U( 1 : 1 11

 11 ,y) = Uo,(x ,y) + Uo.(x,y) + U, .(x,y ) is said to be symmetric if Ulo * == Uo•*• This requires, in physical terms, that the masses a re equal, or m, = m2 and t hat t he anchor springs are equal, or S01 = So•• The system is said t o be almost symmetric if IUoo*-Uoz*l = O(E). Itwillnowbeshown why the in-phase mode of an a lmost symmetric system is an integrable case when the coupling spring is a lmost, or altogether, nonlinearizable. As stated, t he mixed d erivative o•O / oxoy is equal to o•V,./ oxoy. Now, by definit ion of admissible systems, t he potenLial 0, 2 is a fun ction of t he absolute value lx -vi of the lengt h change. Hence, its Taylor expansion must be of the form "\' A m u,. = -L..t ---(x -y)"'+' m = l,3, . .. m+ 1 and I: mA,..(xy)"'-But for the in-phase mode of symmetric systems, y*(x)

and 1 ]

 1 1 a t t he origin. In fact, since G(O) = h in virtue of (23), one has from (30) 7](0) = /1h'l• s A spring is almost nonlincarizable if the linear component of the spring force is of 0 (<) .

rz

  21]= aJ(:c) -l (x) Sl(1l)l (x ) = [G(x)) /2 Jo G(u)'h duand where we have already put {3 = 0. Then, the end slopey'(X) = c + €1J'(Xo + EA) = c + €1J'(X0 )within O(e), and 21]'(Xo) = lim [aJ'(Xo -Eo) -l '(Xo -Eo))

  sign in t his interval, and ( 4G) may be written1 in the form rx'f "' dn~( 1 + c2)(wv * + cw, *)a J o o G(u)'l• dx = 0 where wv • -cw. * = wv *(x) -cw, *(x)(47) a nd :\: is some value of x in [0, Xo]. \Ve cannot impose the con• straint w. * -cw •• = 0 'By the mean-value theol'y of the integral calcnlus. on w, because w is largely an arbitrary function. For instance when the perturbation consista in perturbing one of the anchor springs only, either Wv * = 0, w. * .= 0, or vice versa; and the nonvanishing quantity never changes sign in [0, Xo]. Hence, the orthogonality condition becomes, finally, rx• rz du a Jo Jo G(u)'l• dx = 0 (48) But, as s(ated earlier, G(x) is nonnegative; hence, (48) can only be satisfied by a = 0.

  x) = -t !G(x)] / • J o G(u)'!s du (49)and, from (39), the change in x-amplitude between unperturbed and perturbed systems is defined throughA = -G'(~o) [ w*(Xo) + 1 ~ c 2 fl(Xo)]

A spring is said to be "nonlineariznble" if the Taylor expansion of the spring force lacks n linear term.
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The M otion and Its Stability

Once the modal line y(x ) of the perturbed system has been found by the methods described here, the motion of the perturbed system in the normal modes can be found by a simple quadrature. The substitution of the modal line where l' 0 = y' (Xo) is they-amplitude of the unperturbed system. If we write, similar to (3G ),

we have

where A is given in (50), nod ?](Xo) in (38) (with a = 0). l:Vfaking use of t hese, one finds

The result that the perturbation has first-order efJects on the amplitudes is at odds with those of Huang [START_REF] Unng | Harmonic Oscillations of Nonlinenr Two-Degree-of Freedom Systems[END_REF] who examined the nearly linear dynamic vibration absorber with a slightly non linear coupling spring. In our terminology, Huang's problem lies in the neighborhood of a homogeneous system of degree 1. Huang y Fig. 3 x(O) = Xo + eA, :t(O) = 0 where A is given in (50). The solution may be found by one quadrature and is of the form

It is expressly noted that (55), and hence (56), is free of '1• The y-motion is

and (57) does contain?). Since (57) depends on ?J and (56) does not, the normal mode vibration is, in general, nonsimilar.

Next we show that the ~/ability of the normal mode vibration of the 71erturbed system is the same as that of the unperturbed system.

The solutions whose stability is to be examined are

and the equations, identically satisfied by (58), are

Let the solutions of the perturbed system (59), but with slightly ditTerent initial values than (58), be

Then the solutions (58) are said to be stable if p(t) and q(t) are bounded for all t.

The equations of the first variation of (59) with respect to (58) are readily computed ; they are

But these are precisely the variational equations of the unperturbed system. Hence, the stability of t he normal mode solut ions of the two systems is the same. The stability problem is now solved because the stability of the unperturbed problem is deducible by known methods [START_REF] Rosenberg | On t he Natural Modes and Their Stability in Nonlinear Two-Degree-of-Freedom Systems[END_REF][START_REF] Rosenberg | On Normal Vibrations of a General Class of Nonlinear Dual-Mode Systems[END_REF][START_REF] Roscnberg | On t.lie Geometrizntiou of Normal Vibrations of No1tlinenr Systems Having Many Degrees of Freedom[END_REF][START_REF] Su | On a Restricted Class of Cou]>lcd Hi ll's Equat-ions and Some Applications[END_REF].

Example

An an example of the foregoing theory, we shall consider an almost symmetric system consisting of two masses and three springs, as shown in Fig. 2. The symmetry is disturbed by a slight change in the spring So2 which connects the mass m2 to t he fixed point. This change is to be such that the force of the per-. turbed spring remains an odd function of the spring deflection. Consequently,

The change in the bounding curve resulting from this perturbation is readily discussed. Because of t he third of (62), the perturbed bounding curve is tangent to that of the unperturbed problem where y = 0, i.e. , where both cross the x-axis. If the perturbation strengthens the spring S 0 2, the r-curve lies inside the r-curve for every y >= 0; if the perturbation weakens s 42, r lies outside r for every y >= 0.

We shall examine the in-phase mode of the perturbed system. Then, since the parent system is symmetric, y* = x or c = 1 [START_REF] Rosenberg | On t he Natural Modes and Their Stability in Nonlinear Two-Degree-of-Freedom Systems[END_REF], and

Substituting these quantities in (50 ), one has (because of c = 1) A = 0. Therefore, under the proposed perturbation, the X-amplit ude remains unchanged .

The change in y-amplitude is found by substituting the foregoing quantities in (52). The result is

~ow, G'(X 0 ) < 0 for all 0 < x ~ Xo. H ence, B has t he same sign as j (Xo ). If the perturbation is such as to strengthen the spring So2,J(x) < 0 for a ll 0 < x ~ Xo; therefore, they-amplitude will be diminished. If the perturbation weakens S o2, f(x) > 0, and the y-ampli tude will be increased. Both cases are illustrated in Fig. 4.

If it is the spring So 1 which is pertmbed rather than So2, one has w, = w. * = f'(x) and w. = 0. Then, in view of (29), Q(Xo) = 2j(Xo), and one finds as expected 2j(Xo) A = -G'( Xo)'

B = O

In that case, t he rand r-curves are tangent to each other OD the y-axis, and r lies inside I' for f(x) ~ 0, and outside for f(x) ;::: 0.

T he first of t hese results has also been checked experimentally on the analog computer. The unperturbed system chosen in the experiment was a symmetric, homogeneous system of degree 3 and with potential function The perturbation of the spring S 0 2 consisted of the addition of a small linear term which perturbed the homogeneity all well as the symmetry. In the case of a strengthened spring, the perturbation potential was EW(x, y) = -ty 2 and, in the case of a weakened S 0 2, the negative of the foregoing function was used. The resulting curves in the xy-plane are shown in Fig. 5 for both the unperturbed and the perturbed systems. Thus, these curves are the experimental counterpartB of Fig. 4 . All lines in Fig. 5, including the axis system, were recorded by an xy-plotter and only the lettering was added by hand. A comparison between Figs. 4 and5 shows that the agreement is excellent even though the perturbation was much larger than contemplated in a first-order theory. Quantitatively, the dif!'erence between the predicted and observed amplitude changes is hardly mensurable.