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A system of n masses, eqttal or not, intercomrec;ted ~Y 1101rl.~near "symmetrit;'' springs, and haui1rg " degrees of freedom is examitzed. The concept of tiormal modes is rigormesly defimd and the problem offi.11ding them is reduced to a geometrical maximum-mi11imum problem i1r an n-space of known metric. The solution of the geometrical problem redttr;es the conplcd equations of motion to 11 uncottPled eqteations whose n.atural frequettcies can alwa,•s be jou11il by a single gteadrature. An infinite class of systetns, of which the li1Jear system is a memher, has beett isol. ated for wMch the freqttency ampliltule can be}tnmd in closed form.

In some earlier papers {1, 2, 3) 1 the "normal modes" of certain nonlinea.r two-degre.e-of-!reedom systems were discussed, These systems consisted of masses and springs, a restriction being that the forces with-which the springs resist being. deflected are odd functions of these deflections.

Evidently, these papers have dealt with a heretofore undeJined subject matter since the concept,Qf normal modes is generally defined for linear systems only. In them, "normal solutions" is the term associated with a fundamental set of solutions, and it is a. well-known property of these, that a linear combination of the normal solutions yields all solutions of the system. Even if "it should be possible to isolate, for nonlinea.r systems, solutiol!s which are equivalent to the normal Yibrations of ,linear systems, such solutions cannot be used to construct new aolutions, sinc. e th~ superposition principle is ipso factQ inll.dmissible fu nonlinear systems.

The earlier method [2) consisted in identifying the search for the eigeovectors with the solution of a maximum-minimum problem in two-sp~~oce. Once the eigenvectors had been found in this manner they could be u' tilized to transform the two-degree-offreedom problem into two separate problems, each in a single degree of freedom. This approach suggested itself readily, and it was relatively simple to exploit it, because the geometrical problem (which is the equivalent of the dynamical one) is oue of geometry in two dimensions. It is natural to inquire whether it is even poasible, and if so, whether it is useful to extend this theory to n-"dimensions~ In fact, doubt as to the feasibility of this extension has formed the substance of a discu~ion of an earlier paper [START_REF] Rosenberg | On Normal Vibrations of a General ClaSl! of Nonlinear Dual-l\iode Systems[END_REF].t It is the purpose of this paper to extend the ea.rliEU" fElBUlts tO 1;ystems having n-degl'ees Of f reed01,11.

Equations of Motion

Conside. r a • system of ?Hnnsses (either equal t o or diffel'ent from each other ) interconnected by nonlinear springs, .and t he first r NumberS' in brackets designate Ueferences at end of paper. • This public discussion was offered as •a resua of the. presentation of reference [START_REF] Rosenberg | On Normal Vibrations of a General ClaSl! of Nonlinear Dual-l\iode Systems[END_REF] and last of the masses connected by nonlinear springs to fixed points (or to infinitely large masses). The springs also may be equal to or different from each other. The system has n degrees of freedom and is illustrated in Fig . . 1. The spring force of each spring is an Odd function of the spring deflection. Thus, if a ~pring S, is deflected by an amount u 1 , it rllSil!ts this deflection with a force S 1 (u;), and

S,( -t~) = -S;(u;)

There exists (by definition of admissible systems) an equilibrium position of the system, and the displacement of the ith mnss from its equilibrium position is denoted by x 1 , so that the x;, (i =(1, 2, ... , n) are the co-ordinates of the problem. Then, the equations of motion of the system are

In what follows, we shall only admit springs whose forces are everywhere analytic in the deflections and, moreover, we shall assume that these forces are represented with a. l!9.tisfactory degree of accuracy by finite Taylor expansions. In the technical sense, these restrictions represent no limitations on the springs.

Under them, the equations oi motion become

Yl m,x, = E a;.;(x;-1 -x 1 )i j=I, 3, ••• ~ i = 1, 2, ... , n} L-t a;H, ;(x 1 -Xc+t)l, _ (2) 
j -1,3,. .• Xo"" Xn+1=0
Finally, it is convenient to normalize the. co-ordinates b:t means of the transformations

The equations of motion then take on their final form

Fig. 1 i = 1, 2, ... , n (4) 
Since the system is conservative, the right-hand sides of the equations of motion must be derivable from a potential function.

In fact, one finds readily

~~ = :~, i = 1, 2, .•. , n (5) U-- ~ ~ {~ ( ~H -~)/+1} LJ LJ • + 1 l/1 1/t I ; • -t, 2., ... j-1, 3, ... J 'llli-1 'll~t . mo = 'llln+t = !X> (6)
Evidently, U i~ . symmetric with respect to the• .origin; in other words, U remain!! unchanged if any one, or some, or all of the ~H are replaced by -~H provided that, at the same time, the corresponding~. are replaced by -~,. This important property is a direct consequence of the fact that all spring forces are odd functions of the spring displncements.

The transformations (3} have normalized the system so that, in the transformed co-ordinates, the kinetic energy is

n 2T(~;) = L: ts • while, in the physical co-ordinates, n 2T(x;) = Y: m,:i:, 1 i
However, this transformation also admits a physical interpreta,tion. The nontransformed equations (2) are those of the physical system of Fig. 1. However, the trllollsformed equations of motion may be regarded as those of a unit ma&s which moves in an n-dimensional space under forces which are derivable from the poteritialfunction U defined in [START_REF] Klotter | Steady State Vibrations in Systems Having Arbitrary Restoring and Arbitrary Damping Forces[END_REF]; the~~ are, then, an orthogonal co-ordinate system in the n-space. Finally, it should be observed that the system ( 4), or (5) and ( 6), reduces to the linear problem when j = 1.

•

Normal Modes of Linear System

When dealing with the linear system, the normal modes, or the eigeove. ctors; are usually determined after the eigenvalues are found. In fact, one usually substitutes sinusoidal functions• of time

~1(1) = b, cos wt, i = 1, 2, . •. , n (7) 
into the equations of motion and finds in this manner a characteristic function whose zeros li.re the eigenvalues. Then, the rth eigenvector v,(w,) is found by attaching to each eigenvalue w, the associated eigenvector ri,.. The b;, are then the n.-components of v,. It is evident that, in the very first step, thi11 n:tethod makes use of a property which is unique to the linear problem; namely, that the displacemeots are_ sinusoi4al functions of time. Consequently, this method can never lead to a generalization of the concept of normal modes which comprises the nonlinear problem, and which reduces to the familiar meaning of the eigenvectot when the problem reduces to the linear one.

Here, we wish to find a. new way of defining normal mQdes of the lin6llor system which must be such that (a) the normal modes of the linear system are uniquely and correctly defined by it and (b) the definition must be capable of a simple extension to the nonlinear system. This definition begins with the observation easily deducible from [START_REF] Courant | [END_REF], that

~.(1) = Mt + T) l • i-1, 2, ..• , n ~Ht(t) _ bm 1- _ 0 (8) --= -= Ci+l <;"+I= ~,(t) b,
The first of these states that the normal solutions of the linear system are all periodic of the Bame period, while the second states that the ratio of the displacement of any o.ne mass t o that of any other is identica.lly equal to a constant for all time. The first is a property whic:h muat be ret-ained in the nonlinear case while the second may either be retained in the form or, it is capable of the obvious generalization

i -1, 2, ... , n ~HI ~ ~i+lat), 1: <;11+1 = 0
where the ~i+t are single-valued functions of ~,.

(9)•

The second of (8) harbors a well-known property of normal vibrations. Suppose there exists o. time lo such that ~1(41) = 0.

Then, it must be t rue, in view of the second of (8), t hat ~., ~~ •... ~n all vanish at the same instant. In other words, all roasst>s of the system of Fig. 1 pass through their equilibrium position at the same instant if the system vibrat• es in normal modes. The two properties of vibrations in normal modes, (a) that all mnsses vibrate at the same frequency and, (b) that they pnss through their equilibrium position at the same time is, irl fact, a description of normal vibrations. If these properties are to be retained in the nonlinear system as generalized in (10), the boundary conditions

t;+t(O) = O, i -1, 2, ... , n -1 (11)
m\Jst be added to (10). If, however, (9) is to be retained, the condition (11) is .automatically satisfied.

One additional property of the normal modes of linear systems must be exhibited before the array is sufficient for actu{l.]ly finding the eigenvectors; this property is connected with the manner in which the system is set into motion. Let us suppose that we start the motion without initial velocity, so that the initial conditions are

~,(O) = b,, f,(O) .. 0, i -1, 2, , .• , n (12)
{We note here that the b; are not arbitrary. In fact, with arbitrary values ofb, the system would not vibrate in normal modes; instead, energy exchange between the mlloSSes (or in the transformed system Lissajoux figures of the unit mass) would result.

In fact, the b, are the ~,components of an eigenvector; finding these is the essential problem in the l!Olution of the eigenvalue problem. However, we assume here a priori. the well-known fapt that initial conditions like (9), and resulting in normal vibrations do exist. If it shoul(). be found in the generalization to nonlinear systems that such initial conditione do not exist, we shall say that the nonlinear system ia not capable of vibrating in normal modes.]

It follows from a.n application of L'Hopita.l's rule that

tH1(0) ~l+t(O) CIU /b~HI i -1, 2, •• . 1 n ~1(0) = ~,(0) -bU /b~l I en+1 =:!! 0
or, at the time t = 0, d~.

... = ()Uf?J~R

The meaning of this important property will be discussed a little further on. All these propertiE!I! of normal modes of linear systems are easily interpreted in a geometrical manner.

Consider the (n + I)-dimensional space whose orthogono.l coordinates are~., f2, ... , ~ •• U. When the system is released at the time t = 0, it occupies a position of mrucimum potential

U = -Uo (14)
because it is released without initial velocity. But U = -Uo defineS an n-dimensional equipotentialsurface or, more precisely, it definea the projection of the equipotential surface U = -Uo on the (~,, ~2, We are now in a position to discuss the meaning of (13). At the time t = 0, the point moving along the straight line defined previously, and termed a "modal relation" [START_REF] Roaenberg | Normal Modes of Nonlinear Dual-Mode Systems[END_REF], lies on the bounding surface, or in the domain defined by (14). At the !lame in~ stant, the relations (13) apply. But, since from ( 13)

n dU = L: (15) i ..... 1. 2, ...
It is evident that (13) are merely the well-known expreesions for the conditions that the modal line intersects the bounding surface defined by U = -Uo orthogonally.

We have now collected the properties, necessary to define a normal mode of the linear system having n degrees of freedom. 

where u is given by ( 6) with j = l, it is a straight line in the ah ~~ •... , E.,)-space defined by the (n -1) equations (17) which are 11atisfied for all t by periodic solutions Ut) ~ Ut + T) of ( 16) in the closed domain u = -Uo of the celE!,' .. , En)-space, which passes through the origin of that space and which intersects the bounding surface defined by U = -Uo orthogonally.

An Example. AB an example of the foregoing definition, consider the three-dimensional linear problem, and let e. = e. ~~ = t], ea = r

The equations of motion of the physicAl system are nJt:i! -a,x -a2(xy)

Cit(x -y) -aa(Y -z) 1113i = aa(Y -z) -a.z
The transformed equations are f= as(TI r)

+ n~<~'/• 'fnt'/• -ma'l•
We may also write the system a8 where the potential function is defined as

u = ~ Cn~~.r -•~ C~~•;, -,:J;.r -~~ (nl!~;, -,~~.r -~ (m:.~.r
It is evident that U = -Uo defines an ellipsoid in the ce, Tf, .n-space which is symmetric with respect to the origin.

Let the normal solutions be

Tt(t) t{t) l ~(t) = c~, ~(t) = er ~.rare constants or ., = c~~. r = er~
The first of these defines B plane in the ( ~. Tf, n-space which contains the r~axis, and which intersects the(~, t])-plnne on the line 11 = c~~• The second defines another plane which contains the Tt-axis, and which intersects the (~. n-plane on the line r = er~• The intersection of these two planes is the line (OP), as shown in Fig. 2, and that line is the modal relation. Moreover,

( ( B<lUNOING ElllPSOIO
Fig. 2 thll.t line intersects the ellipsoi~ U ~ -Uo a~ two points P and P' and, at these points, the modal line is normal to the surface of the ellipsoid.

The model of the motion in hand is that of the unit mass traveling along the modal line in simple harmonic motion between the points P and P' where the modal line intersects the surface of the ellipsoid. At the extremities, the velocity vanishes, Jl,nd the co-ordinates of the point P are the initial displacement components.

Generafization of Normal Modes

In a purely verbal manner we shall say that the nonlinear system in Fig. 1 vibrates in normal modes when all masses execute periodic motions of the sam~ period, when all of them pass through the equilibrium position at the same instant, and when, at any time t, the position of all the masses is uniq1tely defined by the position of any one of them, In view of these properties and of the pre::ceding section, we give for normal modes, in genetal, the following:

Deflnlllon. The mth normo1 mode of the system

.. bU ~j = ac,' i = 1, 2, .. •i n ( 18 
)
where U is given by ( 6) is a line {curved or straight) in the (~1, ~2, An illustration corresponding to that of Fig. 2 but applied to the nonline!J,r system of three degrees of freedom is shown in Fig. 3. It should be abserved that, in the linear case, the bounding surface is an ellipsoid while, in the nonlinear case it is an ovaloid which is, in general, not au ellipsoid.

While only one modal relation is referred to in th~ definitions and only one has been illustrated in Figs. 2 and3, it is known that, in the linear case a.t least, as many such modal lines exist as there are degrees offreedom. For instance, in the example of the three::degree-of-freedom system shown in Fig. 2, three modal lines e>dst and they are 1 in fact, the principal axes of the ellipsoid.

The Decoupled Equations

For the present, we leave open the question as to whether, or how, the modal lines can be found. Supposing simply that they ' -BOUIIOJNG OV~LOJ D fig, 3 are known, they ca,n be used in an obvious way to reduce the n-degree-of-freedom system of n-equa.tions, each in a single degree of freedom. For instance, the rth equation of motion is (20) in accordance with [START_REF] Den | Mechanical Vibrations[END_REF]. In (20} 1 the expression on the right-baud side d~notes the fact that, in general, the derivative oU/o~, depends on the three variables g,-,, The application of this procedure to the linear three-degree-offreedom system may be instructive. • The first equation of motion 

(n~t)'/• ]} ~ = -m, 1 -~ 1 -1!h C~r . t r = 1, 2, 3
From these, the three natural freqtiencies, or eigenvalues, can now be found without difficulty.

It should be noticed .that knowledge of the eigenvectors has been assumed without any indication as to how they can be found. We shall now discus~ the questipn of finding the eigeuvectors withant prior knowledge of the eigenvalues.

Determination of the Eigenvectors

The dynamical problem in hand is to find the normal solutions of the system .. bU

~~ = o~,, i = 1, 2, ... , n (25) 
Any solution of this system (including the normal solutions) is of the form

~~ = Mt), i = 1, 2, .•. , n (26) 
Elimination of time between these functions and regarding ~I (for instance) as the independent variable, transforms (26) into

~~ "" ~~(td, i = 2, 3, ••. , n (27) 
These functions constitute the trajectory of the system in the (~t, ~~ •... , ~ .. )-space. In a physical sense, they represent the trajectol'Y of the unit mass of the system (4), or ( 5) and ( 6).

It is well known [START_REF] Da | Le9ons sur la Th~orie Gberale des Surfaces[END_REF] that this trajectory is the geodesic in an n-dimensiona.l space whose metric is du~ = (Uo + U(~r, ~21 i, j = 2, 3, ... , n

While every solution of (30} represents a trajectory of the dynamical system in the (~1, ~2, , , ., ~n)-space, not all are modal lines. The modal lines are those solutions of (28) which satisfy the boundary conditions listed in the definition of normal modes. Since (30) is a system of (n -1) second-order equations, it gives rise to 2(n -1) constants of integration. But the trajectory is defined by the (n -1) equations ( 27), and the satisfaction of the required boundary conditions (one being the value a.t the origin, the other the value of the slope on the bounding surface) requires the determination of 2(n -1) constants. Therefore, it is possible, in principle a.t least, to solve the problem. N evertilelesa, the system (30) is such a. complicated system of highly nonlinear differential equations that the prospect of finding the general solution may be confidently regarded as hopeless.

Straight Modal Relations

Let us assume that, for certain forms of U, the modal relations are st,•aight lines. If tiley a,re, the second derivatives ~/, (j = Z, 3, ... , n) vanish. Then, since 

bt;

i, j = 2, 3, ... , n (31)

Writing (31) in terms of differentials (instead of derivatives) and adding (G>U /b~;)d~; 2 to both sides of the equation, it is found that r.l~. d~.

?JU/?J~. = oU/b~2 =

[Actually, proceeding in the manner indicated yields (32) with dtt e>u;o~, absent. However, ~.is not intrinsically a. preterred co-ordinate;

it has assumed a apecia.l position only because we have assigned to it the role of the independent variable, Tbus it is clear that the first term in (32) may be added to the set. One can also obtain this result in a fom1al manner by considering all ~~ to depend on a parameter a, and by treating the variational problem J:

(Uo. + U)' 1 • (._ 1 ~ ••• ~r)''' da =stationary
where primes denote differentiation with respect to a.] But (32) i3 similar to (13), the only difference being that (13) was valid only at t = 0 while (32) applies at every value of t. Therefore (32) implies that tile modal line under discussion is normal to

all equipotential surfaces U ~ -H ~ -Uo
This leads to tile following: Theorem. Every straight line in tile(~.., ~a, ... , t.)-space which intersects all equipotential surfaces orthogonally is a modal line.

Conversely, every modal line which is straight intersects all equipotential surfaces orthogonally.

Homogeneous Systems

Among the systems illustrated in Fig. 1 whose equations of motion are given by ( 4), we select the cla~s who.se equations of motion are

i = 1, 2, ... n } mo = 1nn+t = oo • (33) k = odd integer
This class is called the homogeneous system of degree le because the right-hand sides are homogeneous functions. in the~~ of degree k. We shall show that, for this class, the modal relations are straight.

The system (33) has considerable interest, both from the mathematical and from the physical point of view. lts mathema tical interest resides in the fact tilat it represents a broad generalization of the linear problem since tile linear system is one of its members. Moreover, as we shall show later, in homogene-Olll> systems, the eigeuvalues as functions of the amplitudes can be found in terms of tabulated functions and without the approximations that must usually be made in the treatment of nonlinear problems.

Physically, the homogeneous system is such that the springs resist being deflected with a force that. is proportional to the kth power of the deflection. Thus the system is of interest wherever springs are used which have this property.

For our purposes, it is more convenient to write (33) in the form

•• "()U t = "()~,, i = 1, 2, .•. , n
We uow make u~ of the following J>roperty or surfaces in Euclidian n-space 1 : Consider a smooth surface in this space.

Then, the straight line between the origin (of that space) and tha.t point on the surface which is nearest to, or farthest from, the origin intersects the surface orthogonally.

We consider the equipotentialsurfaces

U = -H = const 0 > -H ~ -Ua
and we seek those points on each of them whose distanee from the origin is stationary. If the locus of these points is a straight line, its equation will not contain the distance of these points from the origin. Therefore the procedure is to write the equations of the equipotentialsurfaces in generalized pola.r co-ordinates and, then, to apply the• condition which singles out those points on the surfaces whose distance from the origin is stationary. A neeessary condition for the existence of straight modal relations is that the modules of the position vectors of these etationary points do not appear in the equations of the locus of these points. If the equations of the locus have real zeros, the conditions which are, both, necessary and suffident. They are such that, when r = 1 and the 0 1 take on all possible values between 0 < 8; ~ 211", all points on a hypersphere of radius Now, the locus of the stationary points in question is defined by

dr = 0 which implies oU "()(}; = 0, i = 1, 2, ..• , n -1
In view of (36), the last equation is equivalent to 1 This iti. not the I'H!paee whose metric is given in (26), The nspace under consideration here has the metric • oe ?18, = 0, i = 1, 2, ... , n -1

(37) and, thus, the condition which is neeessary for the existence of straight modal relations is sntisfied since e is a function of the angles 8; only. Whether the relations (37) have real roots 8 1 "

(r = 1, 2, ... ) cannot be answered without further calculation beca.use the f 1 have not been expressed explicitly as func.tions of the angles. We shall examine this question further for the rase of the nonlinea.r three-degree-of-freedom system. It is instructive to reduce these equations to the linear case and equal springs. In that case, the foregoing equations become cos 1 tp -sin 1 tp = -cos tp cot 0

Homogeneous System With Three Degrees of Freedom

, ( ~ •)k+l a 2 ( ~ fJ )4+1 k + 1 m1'!1 + k + 1 mt'/• -n~.t'l• a, ( fJ r )•+1 "' ( t )•+1 +---,---,- +---,- =H k + 1 1»2 I• m 1 I• k + 1 ~ /i
2 cos tp = (1/cot 0} -cot 8 
This pair of equations has the following roots:

2 mode: tp = 0, 0 3 mode: lP !::: 305° 15', 8 60°

The eigenvectors corresponding to these roots are shown in Fig. 4.

Fig, 4

The roots of the transcendental equation yield the following wellknown results [START_REF] Den | Mechanical Vibrations[END_REF] (as is evident from Fig. 4):

1 mode: 1J 2'/t~, t ~.
2 mode: 11

3 mode: fJ

In the nonlinear homogeneous case, the solution of the transcendental equations will yield the values of the constants c in Fig. 5 properties stand out. For instance, in the linear problem, ( k = 1 ), the frequency of free vibrations is independent of the amplitude, while, in the nonlinear case, the frequency of free vibrations does depend on the amplitude.

When the spring is hard' (k > 1), the amplitude increases with the frequency; when the spring is soft' (0 < k < 1), the amplitude decreases when the frequency increases, These a.nd other properties of the backbone curves, easily deducible from (43), are illustrated in Fig. 5.

t] = c~,~• r -er,~. r -1, 2, ••.
< 41 ) Maximum-Minimum Properties and the largest value of r is equal to the number of modes. In general, one may expect as many sets of constants as there are degrees of freedom (i.e., here three), but the existence of superabundant modes [START_REF] Rosenberg | On Normal Vibrations of a General ClaSl! of Nonlinear Dual-l\iode Systems[END_REF] is not excluded. In all that follows, it will be assumed that the transcendental equations (40) have been solved, and that the constants in (41) are known.

The Eigenvalues

If the first of ( 41) is substituted in the first equation of motion, one finds [START_REF] Roaenberg | Normal Modes of Nonlinear Dual-Mode Systems[END_REF] (in view of the assumption that. the three masses are equal) ~ = -[a1 + a,(l -c~,)k)~; r = I, 2,...

(42)

If the eigenvalues are denoted by w, (r -1, 2, ..• ), (42) is integrated over one period tmder the initial conditions ~(0) = x, ~(0) .., 0, and use is made of the nomenclature w•/ar = P 1 , at!a2 = a,. it has been shown [START_REF] Rosenberg | On Normal Vibrations of a General ClaSl! of Nonlinear Dual-l\iode Systems[END_REF] that Before discussing thl11 equation, it should be remarked thn.t our entire discussion of the homogeneous system remains valid for noninteger, positive values of kif provisions are made for the odd characte~ of the spring forces. Tlus ca.n be done, for instance, by replacing terms of the sort ~1 in the equations of motion by ~~~~~-1 and terms like (~i-1 -~1)1+ 1 in the potential functions by 1~•-t -~~IH•. The reason for the extended validity of our discussion is that, with these provisioll8, the equipotential surfaces rema.in symmetric with respect to the origin. Equation ( 43) has been diiiCussed heretofore. [START_REF] Rosenberg | On Normal Vibrations of a General ClaSl! of Nonlinear Dual-l\iode Systems[END_REF]; it is the equation of the frequency-amplitude relations of free normal vibrations, called by Klotter [6) the backbones. A number of familiar It is well known [START_REF] Courant | [END_REF] that the eigenvalues of linear problems possess maximum-minimum properties. Moreover, it has bee.u shown [2) that the modal relations of the (linear or nonlinear) two-degree-of-freedom problem also have such properties. We would like now to show that this property also holds for n degree!! of freedom.

To do this, we focus attention on the geodesics in the space whose metric is Clearly, all are eolutions of the dynamical problem. Suppose we seek the geodesics between the origin of this n-space and a point which is mov~~oble on the bounding surfnce U ~ -Uo. This movable-end-point problem produces not only the Euler equa.-tiollB (30) (and thus solutions to the dynamical problem), but also tra.nsversality conditione. But these transversality conditions state (8] that the geodesics must intersect the bounding surface orthogone.lly. Therefore they are the modal relations.

In other words, the modal relations are the shortest and the longest of the lines of minimum length (geodesics) in then-space between any point on the bounding surface and the origin, where the space is defined by the metric (28).

  the relationsThe first of these, i.e., ~ = Ct~, robs the n-space of one dimension (because one of the co-ordinates is e.'Cpressible in terms of another). In fact, it defines an (n -I)-dimensional hyperspace which intersects the ~~~rplane on the line ~~ = C2~l• In this hyperspace, the equation~~ = c 3 E 1 defines an (n -2)-dimensional hyperspace which intersects the ~~EJ-plane on the line ~~ = c 1 E 1 •A continuation of this argument finally defines a. straight line passing through the origin of the n-space and intersecting at least twice the bounding surface within which the solutions must lie. The component of this straight line along the ~ra..xis, say, is b;~;. We may picture the normal vibration as a periodic (and in the linear problem a simple harmonic) motion of the unitmass traveling along this line between the. points where tbnt line pierces the surface defined by U = -U 0 • The projections of that motion on the ~;-axes, (i = 1, 2, ... , n) are the normal vibrations of the system.

  Definition. A normal mode of the linear system ): <>U ~,;; = ~~ i = 1, 2, .•. , n <>,.;

+

  T) of (18) in the closed domain U ~ -Uo of the(~~~ ~t, .•• , tn)space and which satisfies the boundary conditions that: (a) All ~;.,(0) = O, or the line passes through the origin of the (~1, ~2, •.. , ~,.)-space. (b) The line intersects the bounding smfa.ce defined by U = -Uo orthogonally.

  IS and the eqlmtions of the modal relations are supposed known. But this implies knowledge of the three const~nts c~, in ,. = 1, 2, 3 Intruducing this relation into the first equation of mo. tion yields the three equations . . a1 { a2 [

n 1 +

 1 2:: ~ / 2 > o, i these straight modal relations must satisfy the.eystem of equations I ?JU ~ I I C>U !• ~ + 4. tt ~-

Consider u homogeneous system

  like that of Fig. 1 but having only three degrees of freedom, and let a1.• = a,, at.t = a:, aa.t = aa, ~.~ = a, ~. = ~. ~2 = fJ, ~~ = !, 81 = 0, 82 = "'' H = B The equation of the equipotential surface is a

  n du' = (Uo + U) L dt' i-1, 2, ...

  • at the Tenth International CongFess• of Applied Mechanics in Stresa, Italy, 1960.Cpntributed by the Applied MedUioics Divis.iorr a.nd presented at the Wint.l!r Annual Meeting, New Yo-rk, N. Y., November 26-December 1, 1961, of TBB AMEIUCAI'i" SociETY oF l\b:cHA!'i"IOAL EwGlNEERS.
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  ••• , ~n}-space. In fact, (14) defines a domain in the 1Hl]}nce .surrounding the origin, and eJl solutions must lie in this domain (for, if they did not, the potential would have to exceed its maximum value-Uo). We shall, therefore, call it the "bounding surface."Now, in virtue of the second of (8), the normal modes satisfy

  ~" ~•H• If the equations (19) in one of the modes are known, one knows in particular the functions

	~r-1	~.---1(~1)
	~.	~.(~!)
	Introducing them into (20) gives	
	where prin1es denote differentiation with respect. to ~1, and dots
	differentiation with respect to time t. (22)
	Knowledge of the equntions defining the modal relation includes
	the equation	
		(23)
	Then, (19) becomes simply	
		(24)

It follows that (21) is au equation in the single dependent variable ~~• If there are n modes r = 1, 2, ....• n, the system has now been reduced to n equations, each in the variable~~• A simplification of (21) can be. ~chieved if we choose r = 1 (which we are free to do). In that case, (17) is .. CJU b = ~ c~~~ e2> which is, obvipusly, an equation in ~1, only. If there are n modes, there are n equations (23) and, introducing each in turn into (22), there are n equations of the form (24), all in ~1•

  ••• , ~.)) t d~; 2 (28)

	j=l, 2, -..
	Consequently, the differential.equations of this geodesic are the
	Eulerequations of the variational problem

r~ ( n )~ J£, (Uo + U)'l• 1 + ._ L ~/~ d~1 =stationary e J-2,3, ... (29) These Euler equations are 2(Uo + U) {~;'' ( 1 + ~ ~/')-~ ~/~/~/'} + (1 + t t/') {tl' ?JU + t ~/~/ ?JU j Cl~; i*' ?Jt; -(r + f: ~/•) ?JU} = o (30) j:j::& bt;

  foa• the existence of str(l.ight modal relations are fulfilled Let the generalized polar co-ordinates be ~{ ... rj,(81, o~ . ... , 0,.-.), i ~ 1, 2, ...• n (34)

  1 in then-space are defined. If these co-ordinates are introduced into the equations of the equipotential surfaces -U = I; ~ ( ~~-~ . -+)Hl = 11 < Uo

		i=l k + 1 7nH/• rn.l•	-
	one finds		
	_ U ~ ri"H	n+l 2::.:; i-1, 2, ... k + 1 a;.k	(35)
	or, more generally	
	U(r, 81, 8~, ... , 8,.-1) = R(r)S(81, 82, •. , 8,.-1) = H (36)
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• In hard sprin,gs, the spring stiffness (i.e., the slope of the spring force) inorea.sss with increasing deflection, in soft springs, it decreases with increasing deflection.