
HAL Id: hal-01344448
https://hal.science/hal-01344448v1

Submitted on 18 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using feedback in adaptive and user-dependent one-step
decision making

Abir-Beatrice Karami, Anthony Fleury

To cite this version:
Abir-Beatrice Karami, Anthony Fleury. Using feedback in adaptive and user-dependent one-step
decision making. 25th International Joint Conference on Artificial Intelligence (IJCAI-16) Workshop
”Interactive Machine Learning”, IJCAI/AAAI, Jul 2016, New-York, NY, United States. pp.5. �hal-
01344448�

https://hal.science/hal-01344448v1
https://hal.archives-ouvertes.fr

Using feedback in adaptive and user-dependent one-step decision making

Abir B. Karami
Mines Douai, IA, F-59508 Douai, France

Univ. Lille, F-59000, Lille, France
Email: abir.karami@mines-douai.fr

Anthony Fleury
Mines Douai, IA, F-59508 Douai, France

Univ. Lille, F-59000, Lille, France
Email: anthony.fleury@mines-douai.fr

Abstract
Several machine learning approaches are used to
train systems and agents while exploiting users’
feedback over the given service. For example,
different semi-supervised approaches employ this
kind of information in the learning process to guide
the agent to a more adaptive and possibly person-
alized behavior. Whether for recommendation sys-
tems, companion robots or smart home assistance,
the trained agent must face the challenges of adapt-
ing to different users (with different profiles, pref-
erences, etc.), coping with dynamic environments
(dynamic preferences, etc.) and scaling up with
a minimal number of training examples. We are
interested in this paper in one-step decision mak-
ing for adaptive and user-dependent services using
users’ feedback. We focus on the quality of such
services while dealing with ambiguities (noise) in
the received feedback. We describe our problem
and we concentrate on presenting a state of the art
of possible methods that can be applied. We de-
tail two algorithms that are based on existing ap-
proaches. We present comparative results by show-
ing scaling and convergence analysis with clean
and noisy simulated data.

1 Introduction
Nowadays, people expect new technologies in web services,
recommendation systems, robotic assistance, smart assisted
living, etc. to be adaptive and personalized to their own pref-
erences.

It is important that adaptive systems (or agents) learn and
update their knowledge and models continuously and in a nat-
ural way while offering their services. At the beginning, the
interaction with such systems was unidirectional (a system
service towards the user). However, in the last two decades,
bidirectional architectures started to appear permitting users
to express their level of satisfaction (feedback) back to the
system allowing the latter to improve the quality of its ser-
vice.

Learning an adaptive policy from user feedback is com-
monly used in the literature whether for sequential (long hori-
zon planning) or one-step decision making frameworks. In

sequential decision making a policy is calculated to maximize
the long-term received rewards. Such problems are often rep-
resented by Markov Decision Processes (MDPs) [Howard,
1960] in which the MDP model and/or the policy are learned
classically by Reinforcement Learning (RL) [Sutton and
Barto, 1998] among other methods. Several authors take into
consideration the user feedback in the RL process by con-
sidering them as shaping signals [Knox et al., 2013], advice
regarding the agent policy [Griffith et al., 2013] or a simple
evaluation of a selected action [Akrour et al., 2012].

In one-step decision making a policy is calculated to max-
imize the immediate (one-step ahead) reward. Contrary to
sequential decision making, no representation of the sys-
tem dynamics is needed to calculate the policy. Such prob-
lems can be represented with Contextual Multi-Armed Ban-
dits (CMAB) [Wang et al., 2005; Langford and Zhang, 2007]
(also called associative reinforcement learning [Strehl et al.,
2006]). User feedback is also employed in CMAB policy
learning algorithms [Loftin et al., 2014]. However, efficient
proposed algorithms to solve CMAB problems have a high
complexity and are time consuming [Agarwal et al., 2014].
In addition, most proposed solutions do not represent nega-
tive feedback.

In this paper, we concentrate on adaptive one-step decision
making using users feedback for agents in multi-users envi-
ronments. We discuss about the capacity of such agents to
make personalized decisions by representing users’ profiles
in the context set of attributes. It is expected from learning
agents to adapt to dynamic change in their environments, in-
cluding change in users’ preferences. However, in this paper,
we also discuss about the capacity of the agent to handle am-
biguities in received feedback (communication errors, noise
or missing information in the representation).

The approaches presented in this paper are based on de-
tecting the relevance between the learned rewards (user x
prefers watching cartoon media), the attributes representing
the environment (rainy day) and the user profile (age < 10).
Such relevance is an important key element for generalizing
the learned adaptive behavior to new situations and unknown
users and for decreasing the complexity of convergence to an
optimal adaptive policy (decreasing the size of needed train-
ing data to reach an acceptable adaptive behavior).

In the following we will present a state of the art of existing
methods for one-step decision making in Section 2. In Sec-

tion 3, we present our two proposed algorithms for learning
an adaptive reward function by generalization and by using
users’ feedback. Then, we present, in Section 4, our results
based on simulated training data to show scaling and perfor-
mance analysis. Finally, we conclude with a brief discussion
in Section 5.

2 Learning with feedback - state of the art
Our problem concerns an agent that makes a sequence of de-
cisions during trials {t1, t2, . . . , T}. At each trial, the agent
is given a context represented by an attribute (feature) vector,
or what is called a state in reinforcement learning. A context
xt ∈ X contains a set of attributes values representing the en-
vironment state and the current user profile. The current user
is the one in interaction with the agent during the trial t, as-
suming that there is only one user during a trial. The agent is
also given a set of possible actions A = {a1, . . . , a|A|}, sim-
ilar for each trial. At each trial the agent selects an action and
collects the feedback over the selected action in the form of
a reward r ∈ [−1,+1]. Therefore, in t trials the agent regis-
ter the following sequence of (context, action, reward) triples:
(x1, a1, r1)(x2, a2, r2) . . . (xt, at, rt). We will also call that
training examples and refer to them by T E . These sequences
or a processed version of them (through learning algorithms)
are represented in a reward functionR : x, a→ [−1,+1]. In
the next trial (t + 1), the agent chooses the action that max-
imizes the immediate expected feedback reward knowing R;
at+1 = argmaxaRt(xt+1, a),∀a ∈ A.

We are interested in learning, with the least number of
training examples, a generalized reward function that permits
the agent to behave in an adaptive and personalized manner
depending on the given context (that represent also the cur-
rent user). We are also interested in the capacities of the
learning algorithm to deal with ambiguities (noise) in users
feedback. In other words, we are interested in the attitude
of the learning algorithm and the performance of the resulted
behavior if the agent receives the following two sequences
(x1, a1, r1)(x2, a2, r2), where x1 = x2 and a1 = a2 and
r1 = −1 ∗ r2.

The feedback received by the agent represent only the feed-
back over its chosen action. Feedback concerning the non-
chosen actions remain unknown by the agent. Therefore, this
problem can not be defined as a supervised learning problem.
Other related approaches use semi-supervised learning, like
active learning methods, where agents interactively query the
user feedback on certain contexts that are determined as im-
portant in the learning process. However, such mechanisms
are difficult to use in service agents scenarios (companion
robots, smart homes, etc.) where the system is not in con-
trol of the current context nor of the current user.

In the following we present a brief state of the art while
concentrating on methods related to those proposed and an-
alyzed in this paper and that we chose a priori as interesting
solutions regarding the described problem and its properties.

Using supervised (or semi-supervised) learning algorithms
to learn decision rules from training sets is a known problem
in the literature. The ID3 algorithm [Quinlan, 1986] is a very
known supervised learning algorithm that learns the smallest

decision tree that represents all the training examples. The
ID3 algorithm is based on selecting the attribute with the
highest information gain and splits the data (the decision tree)
to a number of branches equal to the number of values of this
attribute. The algorithm iterates until each branch of the de-
cision tree represents only one class of the training examples.
An important drawback of this algorithm is the fact that it can
over-fit the training data. Pruning methods [Mingers, 1989]
can be used to deal with this problem. We present in this
paper a slightly modified version of the ID3 algorithm that
learns a generalized reward function by selecting the impor-
tant attributes with the highest information gain.

The version space [Russell and Norvig, 2003] is a super-
vised learning approach used for binary classification. It
searches for a predefined space of hypotheses. While being
presented with the training examples, the candidate elimina-
tion algorithm works on two sets of hypotheses, the most spe-
cific one and the most general one. If both sets reaches a
similar representation, the algorithm reaches a solution. The
major drawback of this algorithm is its inability to deal with
noise, which means that any detected contradiction can cause
the version space to fail in the learning process. In a previ-
ous work [Karami et al., 2016b], a generalized version of the
classic version space algorithm was proposed. This version is
inspired by the idea of specializing and generalizing the set of
rules representing the training examples. It is also based on
the idea of detecting important attributes which helps in gen-
eralizing the learned rules in a way that represents not only
the training examples but also other examples that were not
yet evaluated. We also present the Generalized Version Space
algorithm in this paper.

3 Methods for one-step adaptive and
personalized decision making using
feedback

We detail in this section, a method that is based on the ID3 de-
cision tree induction algorithm and another based on the con-
cept of generalization and specialization of the version space
candidate elimination algorithm. Both methods benefit from
the concept of detecting important attributes for each possible
action. By definition, an important attribute (whether a user
profile attribute or another environmental attribute) is one that
has a value that affects the Feedback-value-Direction (FD)
(i.e. the user feedback r is positive or negative). We denote
IAT a the set of important attributes concerning the action a.
Attributes for which the values are not important are general-
ized to any value (*) in the generalized reward function R of
the concerned action a.

In the generalized version space algorithm (GVS) (Algo-
rithm 1), R is initiated with a very general rule (one reward
with all the attributes represented by a * for all the actions
and r = 0). However, while receiving new sequences, the al-
gorithm tries to detect important attributes by detecting con-
tradictions between a new sequence and the rules in R. If an
important attribute is detected, a specialization phase is re-
quired in which all the past registered sequences are used to
add new specified rules to R with respect to the important
attributes values.

The Reward Learner Iterative Dichotomiser 3 (RLID3) al-
gorithm (Algorithm 2) contrary to the GVS algorithm uses the
whole set of past registered sequences with the new received
sequences to conduct the rules ofR.

Detecting important attributes allows to learn the reward
function faster, minimize the needed number of training ex-
amples and generalize the learned function to represent un-
known contexts (unknown users with new profiles and/or new
environmental settings).

3.1 The Generalized Version Space algorithm
The used mechanism in this algorithm is inspired from the
version space generalizing and specializing techniques. The
algorithm input is the new received training example tea, the
current reward function regarding the same actionRa, the set
of important attribute IAT a, and the set of Treated Train-
ing Examples T T Ea. Those sets are initialized as empty sets
before the reception of the first training example and then up-
dated during the treatment of each new received one. The
outputs are the modified versions of Ra, IAT a, and T T Ea
after treating tea. This algorithm is called at each reception
of a new training example and only subsets and functions that
are related to the action a are used and potentially modified.

The algorithm backs up all received and treated training
examples (past sequences) (line 17), so there is no loss of in-
formation because of the generalization. The T T Ea set is
continuously used in the process of detecting important at-
tributes.

Algorithm 1 The Generalized Version Space (GVS) algo-
rithm

1: INPUT tea,Ra, IAT a, T T Ea.
2: OutputRa, IAT a, T T Ea
3: for all ra ∈ Ra do
4: if (ra includes tea) and (ra not same FD as tea) then
5: Put in related T T Ea all related to ra.
6: for all rtte ∈ related T T Ea do
7: for all at ∈ AT do
8: if (at in rtte! = at in tea) then
9: if (IAT a is empty) then

10: Add at to IAT a.
11: else
12: if (iat !pertinent with IAT a) then
13: Add at to IAT a.
14: Add tea toRa.
15: Generalize all non important attributes inRa.
16: CheckRa for redundancies.
17: Add tea to the backup set T T Ea.

The algorithm searches for contradictions between tea and
Ra to detect important attributes (line 4). If a reward ra in-
cludes tea and if both does not have the same FD (one has a
positive or null reward and the other has a negative reward),
then a contradiction is detected. The inclusion of a tea by an
ra is guaranteed if the attributes values are equal or general
enough in ra (* for example) to represent the values of the at-
tributes in tea. In our simulated experiments, we considered
null feedback (0) as positive feedback.

If a contradiction is detected, the algorithm tests if there
is an important attribute concerning the action a (lines 5:13).
To do that, first, a non empty set of related treated training
examples is set to relatedT T Ea

(line 5). We consider an
rtte ∈ relatedT T Ea

related to ra if they both concern the
same action, they have the same FD and the attributes values
in rtte are equal or represented by the attributes values in ra.
Secondly, the algorithm searches for attributes in rtte with
different values than tea (line 8). If found, the concerned at-
tributes are added to the set of important attributes for action
a (IAT a) (line 10).

When dealing with noisy data, it is possible that the algo-
rithm marks some attributes as important when they are actu-
ally not. To overcome this problem, we added a function that
checks for falsely detected important attributes (Lines 12:13).
In more detail, an important attribute iat is pertinent and con-
firmed if the following condition is true for each ra ∈ Ra:
there exist at least one other reward inRa where: for all other
important attributes iati 6= iat the value of the attribute in rai

is equal to its value in ra and both rewards have differentFD.
If any change occurs to the set of important attributes, the

algorithm updates the set of learned rewards by generalizing
all attributes that are not set as important (setting their values
to *) (line 15). Moreover, after generalizing all non important
attributes, the algorithm checks the set of rewardsRa for any
redundant rewards (line 16). The step of checking for redun-
dancies insures that at each reception of a new tea there is
at most one ra ∈ Ra that could match it. In this case lines
(6:15) are applied. If no match exists, tea is simply added as
a new reward inRa (line 14).

3.2 Decision tree induction based algorithm
Decision trees are known to be interpretable and compact.
More importantly, algorithms like ID3 handles irrelevant at-
tributes which helps in decreasing the complexity of needed
examples to learn a representative decision tree. Algorithm 2
presents the Reward Learner Iterative Dichotomiser 3 algo-
rithm (RLID3). The RLID3 is similar to the ID3 algorithm,
however, the output is represented as a reward functionR in-
stead of a node based decision tree.

Algorithm 2 input is the set of all training examples T Ea,
the current reward function regarding the same action Ra,
and the set of selected attributes which helps in guiding the
algorithm through its recursive mechanism. The last two sets
are initialized to an empty sets at the beginning of the algo-
rithm. The output is the modified versions ofRa and IAT a,
after treating all the training examples T Ea. The algorithm is
based on the same Information Gain (IG) and Entropy (H) as
the classic ID3 algorithm. The selected best attribute is the
one that gives the higher IG of all attributes and is added to
the selected AT set and important attributes IAT a set (lines
3:5).

IG(AT , T E) = H(T E)−
∑
k∈K

p(k)H(k), where

H(T E) = −
∑
c∈C

p(c)log2p(c)

C is the set of classes in T E , here in our case we have 2
classes (the positive and the negative examples). H(T E) is
the Entropy of the set of training example. K is the subsets
created by splitting T E by the attribute AT . p(c) and p(k)
represent the proportion of the number of training examples
in the subsets c and k respectively to the total number of ex-
amples in T E . H(k) is the entropy of subset k.

If a best attribute was found, then the algorithm splits the
training examples into a number of subsets equal to the pos-
sible values of the best attribute. Each subset contains the
examples that correspond to the best attribute value (line 7).
Then, each of these subsets is tested, if all the examples of
the subset are positive (line 8) then a new positive reward is
created with the corresponding value of the selected AT and
the best attribute best at is removed from the selected AT
(lines 9:12). The same process is followed, however by cre-
ating a negative reward, if all the examples of the subset are
negative (line 13:17). If the examples of the subset consists
of a mix of positive and negative examples, the algorithm is
called recursively to select a new best attribute using the in-
formation gain function, and so on until no more training ex-
amples to consider.

Algorithm 2 RLID3 algorithm
1: INPUT T Ea,Ra, selected AT .
2: OutputRa, IAT a.
3: Select the best attribute and assign it to best at.
4: Add best at to the list of selected AT .
5: Add best at to the list of IAT a.
6: if (best at! = null) then
7: for all values of best at do
8: if (all examples are positive) then
9: New ra with values of selected AT .

10: Set the reward of ra to +1.
11: Add ra toRa.
12: Remove best at from selected AT .
13: else if (all examples are negative) then
14: New ra with values of selected AT .
15: Set the reward of ra to −1.
16: Add ra toRa.
17: Remove best at from selected AT .
18: else
19: RLID3(T Ea, Ra, selected AT).
20: Remove best at from selected AT .

4 Simulated experimental results

We present in this section some scaling and performance
analysis using the GVS and RLID3 algorithms compared
with a simple memorizing method without generalization
(where the R is equivalent to the training examples). Those
results are based on simulated training examples. In the fol-
lowing we describe the procedure that we followed to sim-
ulate the training examples, the procedure of the experiment
and the results of our analysis.

4.1 Parameters and simulation of training
examples:

In our simulations we used the following parameters: the
number of attributes representing the context including user
profile, the number of actions, the number of possible values
for each attribute, and the number of important attributes for
each action. The parameters values are detailed later. Some
of them were fixed manually and others were decided ran-
domly using predefined range of values depending on the ex-
periment.

A training example consists of a context, an action and a
feedback. We simulated contexts by giving a random value
for each attribute respecting the possible number of values
for each of them (defined in the parameters). To simulate the
users feedback we used some predefined rules of preference.
The predefined rules were generated randomly based on the
number of important attributes for each action. The selected
important attributes used in the simulations were later com-
pared with the detected important attributes by the GVS and
RLID3 algorithms.

Each simulated training example was based on a simulated
context. The action is chosen in a way that maximizes the
immediate reward (see Section 2) over the current version of
the reward function R =

⋃
∀a∈A

Ra. Then, the predefined

rules of preference are used to simulate the user feedback over
the chosen action. A predefined rule concerning the action a
is applicable in a context if the important attributes values of
the rule have the same values in the concerned context.

To balance between exploitation and exploration during ac-
tion selection, we followed the epsilon greedy method with
ε = 10. This means that with 90% chance the algorithms
chose the best action the maximizes the immediate reward,
however, with 10% chance a random action is chosen. Such
behavior helps in exploring eventually a global optima instead
of exploiting a local optima [Langford and Zhang, 2008].

4.2 Scaling Analysis
Table 1 shows some scaling analysis. We modified the param-
eters values and studied the effects on needed time to treat
all training examples and the number of detected important
attributes. During this experiment we simulated training ex-
amples with noise (ambiguity in users feedback). With a 3%
probability while simulating each training example the user
feedback was reversed (negative if positive, positive if nega-
tive).

The parameters presented in Table 1 are:

• the number of attributes |AT |,
• the number of possible values for each attribute |vAT |

(for example in the first experiment in line 1, |vAT | was
decided randomly between 2 and 4 possible values for
each attribute),

• the calculated number of possible contexts |S| using
|AT | and |vAT |,
• the number of actions |A|,
• the number of important attributes per action |IAT |

(for example in the first experiment presented in line 1,

Problem size Time Detected |IAT|
|AT | |vAT | |S| |A| |IAT | |T E| Simple RLID3 GVS RLID3 GVS

1 7 ∈ [2,4]/AT 432 5 ∈ [1,3]/a = 11 1000 <1s <1s <1s 11/11 10/11
2 7 ∈ [2,6]/AT 10368 5 ∈ [1,3]/a = 8 5000 <1s <1s <1s 8(+1)/8 8/8
3 10 ∈ [2,4]/AT 27648 5 ∈ [1,3]/a = 12 5000 <1s <5s 1min10s 11/12 12/12
4 10 ∈ [2,4]/AT 49152 10 ∈ [1,3]/a = 22 5000 <1s <5s 2min56s 19(+6)/22 11/22
5 10 ∈ [2,6]/AT 225000 10 ∈ [1,3]/a = 21 5000 <1s <10s 6min45s 19(+1)/22 11(+7)/22
6 7 ∈ [2,6]/AT 9600 5 ∈ [1,6]/a = 22 5000 <1s <5s <10s 22(+5)/22 22/22
7 10 ∈ [2,6]/AT 216000 10 ∈ [1,6]/a = 34 5000 <5s <10s 14min40s 29(+17)/34 23/34

Table 1: Scalability analysis - time versus problem size and efficiency in detecting important attributes on noisy data set (3%
ambiguity).

|IAT | was decided randomly between 1 and 3 impor-
tant attributes per action), the table also shows the total
effective number of important attributes over the set of
actions (11 in the first experiment),
• the number of training examples |T E|.
The time columns show the needed time to treat all the

training examples using the simple memorizing algorithm,
the GVS and the RLID3 algorithms. The Detected |IAT |
columns show the number of detected attributes by the GVS
and the RLID3 algorithms over the real number of important
attributes. The second experiment for example (described in
line 2), shows that the RLID3 algorithm detected the total
of 8 important attributes, however, it also detected another
attribute that was not really assigned as important in the sim-
ulations. It is important to mention that the calculated time
included the time of simulating the training examples in ad-
dition to model creation and display time.

The results show that the GVS algorithm is time consum-
ing (the calculation time is exponential to the number of con-
texts |S|). The detection of the important attributes, however,
is not optimal by both algorithms for problems with important
sizes (>50000 contexts). Nevertheless, agents can behave in
an acceptable manner even if some important attributes were
not detected. We show some performance analysis in the fol-
lowing of this section.

4.3 Performance results:
In the following experiments, we fixed |AT | = 8, |vAT | ∈
[2, 4], |A| = 3, |IAT | ∈ [1, 3] and |T E| = 100000. To eval-
uate the evolution of the performance with time, we treated
the training examples by epochs of 100 at each time. For
each epoch, the procedure that we followed for the evaluation
is as follows:

1. simulate 100 training examples by selecting actions
based on the learnedR,

2. evaluate the chosen actions during the epoch by count-
ing the number of training examples including negative
feedback (referred to as number of negative actions),

3. learn/update the reward functionR using the algorithms
over the 100 simulated training examples (the GVS al-
gorithm treats only the new 100 simulated training ex-
amples while the RLID3 algorithms treats the complete
sets used in previous epochs in addition to the new 100
ones).

Epochs are repeated until all training examples are treated
(100000/100 = 1000 epochs in our experiments).

Figure 1: Simulated results comparing the GVS and RLID3
algorithms with a simple method using an epsilon greedy
mechanism with ε = 10 in the action selection process. (a)
The number of negative actions in each epoch. (b) The stan-
dard deviation between the number of times each action was
used during an epoch.

Figure 1 shows simulated results using the explained pro-
cedure with an exact number of contexts |S| = 3072 and
an exact total number of important attributes of 12. The fig-
ure shows results using the GVS and RLID3 algorithms com-
pared with the simple method. All 3 algorithms followed the
epsilon greedy mechanism with ε = 10. The upper part of the
figure shows the number of negative actions in each epoch.
We notice that the RLID3 and the GVS algorithms needed
less than 300 and 800 training examples respectively to per-
form with less than 5 negative actions per epoch. However,
the simple memorizing method without generalization did not

reach the same performance before treating more than 8000
training examples.

Regarding the detection of important attributes, both GVS
and RLID3 algorithms were able to detect the total of 12 im-
portant attributes.

The lower part of the figure shows the standard deviation
for the number of times each of the 5 actions were used. The
value of this standard deviation demonstrates that different
actions were selected by the algorithms (and not always the
same action). In the first few epochs the GVS generates a
high standard deviation because it selected the same “with
low risk” action most of the time. However, through learn-
ing and exploring (epoch greedy) the standard deviation de-
creases because other actions were found to be more advan-
tageous.

Figure 2: Simulated results comparing the GVS and RLID3
algorithms with a simple method using an epsilon greedy
mechanisme with ε = 10 in the action selection process and
with an ambigtuiy of 3% in users feedback. (a) The number
of negative actions in each epoch. (b) The standard deviation
between the number of times each action was used during an
epoch.

Results of a second simulated experiment are shown in Fig-
ure 2. In this experiment there was an effective total of 576
contexts and 7 important attributes. We tested in this exper-
iment the capacity of the algorithm to deal with noise (am-
biguity in users feedback). During the simulation of training
examples we reversed the user feedback (negative if positive,
positive if negative) with a probability of 3%. The epsilon
greedy with ε = 10 was also respected by all algorithms in
this experiment. Results show that both GVS and RLID3 al-
gorithms converge to around 5 negative actions per epoch af-

ter treating more than 1200 training examples. However, the
GVS gave some better results (by exploiting a local optima)
during the first 1000 examples. As expected, both algorithms
did not reach an optimal convergence because the predefined
rules of preferences can not be regenerated through examples
with ambiguous users feedback. The standard deviation anal-
ysis shows that even with ambiguity in users feedback both
algorithms choose interesting actions instead of repeating the
least risky ones.

These results prove the interest of detecting important at-
tributes for a better and faster adaptation. We notice that the
RLID3 algorithm outperforms the GVS on clean data and the
GVS outperforms the RLID3 algorithm on noisy data. How-
ever, it is clear from the scaling analysis that the GVS algo-
rithm is time consuming and can reach intractability in large
contexts (with a state space of a million states and an impor-
tant percentage of important attributes for each action, up to
75% for example). On the other hand, RLID3 showed a very
reasonable calculation time with less performance in noisy
environment. We are actually studying the capacity of ID3
pruning mechanisms to deal with the problem of noise and
ambiguity in users feedback.

5 Conclusion and Future Work
We proposed in this paper two methods to guide a learning
agent to an adaptive and personalized behavior in multi-user
environments. Our proposed methods are based on exist-
ing supervised learning and classification approaches, even
though the definition of our problem shows that it falls in the
semi-supervised learning category. Therefore, the presented
state of the art was focused on the types of methods that we
chose a priori as interesting solutions regarding the described
problem and its properties. Other classification algorithms
and semi-supervised approaches can be interesting to com-
pare with, which is the subject of a future work.

In previous work, a complexity and convergence analy-
sis is presented for the GVS algorithm, in addition to a real
experiment that proved the applicability of this algorithm
for an adaptive and personalized behavior of a companion
robot [Karami et al., 2016b]. A study of user satisfaction
was also presented regarding the personalized behavior of the
companion robot. We intend to test the RLID3 algorithm in
a smart home environment that adapts for the comfort of its
occupants while using their feedback over the automated con-
trol of the smart home [Karami et al., 2016a].

Potentially, it seems interesting to study the source of am-
biguities in user feedback. The most classic reason is the
noise in the received data (voice recognition for vocal feed-
back, image processing for facial nod, etc.). However, am-
biguities can be caused because of lack of information in
the representation model. For example, a user might change
his/her preference in a rainy day, which informs us of the need
of adding weather forecast as an attribute. Integrating to the
learning algorithm an automatic mechanism to detect missing
information in the representation model can be interesting,
however, it should include a complete study of how to transfer
a complete and connected set of contexts to a human expert
to facilitate the identification of the missing attribute(s).

References
[Agarwal et al., 2014] Alekh Agarwal, Daniel Hsu, Satyen

Kale, John Langford, Lihong Li, and Robert E Schapire.
Taming the monster: A fast and simple algorithm for con-
textual bandits. arXiv preprint arXiv:1402.0555, 2014.

[Akrour et al., 2012] Riad Akrour, Marc Schoenauer, and
Michèle Sebag. APRIL: Active Preference-learning based
Reinforcement Learning. In P. Flach et al., editor, ECML
PKDD 2012, volume 7524 of LNCS, pages 116–131, Bris-
tol, Royaume-Uni, September 2012. Springer Verlag.

[Griffith et al., 2013] Shane Griffith, Kaushik Subramanian,
Jonathan Scholz, Charles Isbell, and Andrea L Thomaz.
Policy shaping: Integrating human feedback with rein-
forcement learning. In Advances in Neural Information
Processing Systems, pages 2625–2633, 2013.

[Howard, 1960] Ronald A Howard. Dynamic programming
and markov processes.. 1960.

[Karami et al., 2016a] Abir B. Karami, Anthony Fleury,
Jacques Boonaert, and Stéphane Lecoeuche. User in the
loop: Adaptive smart homes exploiting user feedback
state of the art and future directions. Information, in press,
2016.

[Karami et al., 2016b] Abir B. Karami, Karim Sehaba, and
Benoit Encelle. Adaptive artificial companions learning
from users feedback. Adaptive Behavior, 24(2):69–86,
2016.

[Knox et al., 2013] W Bradley Knox, Peter Stone, and Cyn-
thia Breazeal. Training a robot via human feedback: A
case study. In Social Robotics, pages 460–470. Springer,
2013.

[Langford and Zhang, 2007] John Langford and Tong
Zhang. The epoch-greedy algorithm for multi-armed
bandits with side information. In John C. Platt, Daphne
Koller, Yoram Singer, and Sam T. Roweis, editors,
Advances in Neural Information Processing Systems
20, Proceedings of the Twenty-First Annual Conference
on Neural Information Processing Systems, Vancouver,
British Columbia, Canada, December 3-6, 2007, pages
817–824. Curran Associates, Inc., 2007.

[Langford and Zhang, 2008] John Langford and Tong
Zhang. The epoch-greedy algorithm for multi-armed
bandits with side information. In Advances in neural
information processing systems, pages 817–824, 2008.

[Loftin et al., 2014] Robert Loftin, James MacGlashan, Bei
Peng, Matthew E Taylor, Michael L Littman, Jeff Huang,
and David L Roberts. A strategy-aware technique for
learning behaviors from discrete human feedback. In Proc.
of AAAI, 2014.

[Mingers, 1989] John Mingers. An empirical comparison
of pruning methods for decision tree induction. Machine
learning, 4(2):227–243, 1989.

[Quinlan, 1986] J. Ross Quinlan. Induction of decision trees.
Machine learning, 1(1):81–106, 1986.

[Russell and Norvig, 2003] Stuart J. Russell and Peter
Norvig. Artificial Intelligence: A Modern Approach. Pear-
son Education, 2 edition, 2003.

[Strehl et al., 2006] Alexander L Strehl, Chris Mesterharm,
Michael L Littman, and Haym Hirsh. Experience-efficient
learning in associative bandit problems. In Proceedings
of the 23rd international conference on Machine learning,
pages 889–896. ACM, 2006.

[Sutton and Barto, 1998] Richard S Sutton and Andrew G
Barto. Introduction to reinforcement learning, volume
135. MIT Press Cambridge, 1998.

[Wang et al., 2005] Chih-Chun Wang, Sanjeev R Kulkarni,
and H Vincent Poor. Bandit problems with side ob-
servations. Automatic Control, IEEE Transactions on,
50(3):338–355, 2005.

