
HAL Id: hal-01344445
https://hal.science/hal-01344445

Submitted on 11 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decentralized Markov Decision Processes for Handling
Temporal and Resource constraints in a Multiple Robot

System
Aurélie Beynier, Abdel-Illah Mouaddib

To cite this version:
Aurélie Beynier, Abdel-Illah Mouaddib. Decentralized Markov Decision Processes for Handling Tem-
poral and Resource constraints in a Multiple Robot System. 7th International Symposium on Dis-
tributed Autonomous Robotic System, 2004, Toulouse, France. �10.1007/978-4-431-35873-2_19�. �hal-
01344445�

https://hal.science/hal-01344445
https://hal.archives-ouvertes.fr

1

Decentralized Markov Decision Processes for

Handling Temporal and Resource constraints

in a Multiple Robot System

Aurélie Beynier1, Abdel-Illah Mouaddib1

GREYC-CNRS, Bd Marechal Juin, Campus II, BP5186, 14032 Caen Cedex,
France abeynier,mouaddib@info.unicaen.fr

Summary. We consider in this paper a multi-robot planning system where robots
realize a common mission with the following characteristics : the mission is an acyclic
graph of tasks with dependencies and temporal window validity. Tasks are dis-
tributed among robots which have uncertain durations and resource consumptions to
achieve tasks. This class of problems can be solved by using decision-theoretic plan-
ning techniques that are able to handle local temporal constraints and dependencies
between robots allowing them to synchronize their processing. A specific decision
model and a value function allow robots to coordinate their actions at runtime to
maximize the overall value of the mission realization. For that, we design in this
paper a cooperative multi-robot planning system using distributed Markov Decision
Processes (MDPs) without communicating. Robots take uncertainty on temporal
intervals and dependencies into consideration and use a distributed value function
to coordinate the actions of robots.

1.1 Introduction

Although a substantial progress with formal models for decision process of
individual robots using Markov Decision Process (MDP), extensions of MDP
to multiple robots is lacking. Recent attempts identify different classes of
multi-robot decision process that include Multi-Agent Markov Decision Pro-
cess (MMDP) proposed by Boutilier [Bou99], the Partial Observable Identical
Payoff Stochastic Game (POIPSG) proposed by Peshkin et al. [PKMK00],
the multi-agent decision process by Xuan and Lesser [XLZ00], the Commu-
nicative Multiagent Team Decision Problem (COM-MTDP) proposed by Py-
nadath and Tambe [NPY+03], the Decentralized Markov Decision Process
(DEC-POMDP and DEC-MDP) by Bernstein et al. [BZI00], DEC-MDP with
a central coordination proposed by Hanna and Mouaddib [HM02], the DEC-
POMDP with communication proposed by Goldman and Zilberstein [GZ03]
and Transition Independent DEC-MDP proposed by Becker et al. [BZLG03].
Bererton et al. [BGT03] present an extension of MDPs and apply auction
mechanisms to coordinate multiple robots. Therefore, they reduce communi-
cation. Nevertheless, agents communicate during the executing.

2 Aurélie Beynier and Abdel-Illah Mouaddib

Our approach is a specific structured DEC-MDPs to control multiple
robots realizing a common mission with temporal and dependency constraints.
Indeed, the formal model we use can be seen as an extension of the structured
DEC-MDP, proposed by Becker et al. [BZLG03], to increase the expressiveness
of the model to handle temporal constraints. The formal model we develop is
based on an augmented MDP per robot using an augmented reward function
that represents the reward a robot gains when it achieves a task and the op-
portunity cost of violating temporal constraints. As described in [NPY+03],
our system builds the policy in a centralized way but the execution is decen-
tralized. Nonetheless, in our approach, the robots don’t have to communicate
during their execution. This model is motivated by a more general scenario
than the one introduced in [CMZW01] to control the operations of a rover.
The extended scenario, considered, is a multiple robot scenario in which each
robot has a mission to achieve (a set of tasks) similar to the planetary rovers
[BDM+02] where each one has to visit sites and to take pictures, conduct
experiments and collect data (see the example in [CMZW01]).

These scenarios are mainly characterized by

1. Single rover activities have an associated temporal window : the exam-
ples involve measurements of the environment – a “gravity wave” experi-
ment that needs to be done “preferably in the morning”, and atmospheric
measurements at sunrise, sunset, and noon (look at the sun through the
atmosphere).

2. There is uncertainty on time realization tasks and the temporal interval
activity of rovers.

3. The temporal constraints are, in general, soft.
4. Precedence dependencies among tasks exist.
5. Interacting tasks could not be assigned to the same rover because of its

limited resource : one popular scenario is preparing a site with a set of
robotic bulldozers (pushing dirt and small stones). In this paper, we don’t
take into account tasks achieved by more than one robot.

We present in the next sections the multi-robot decision process system
and how the decision process is distributed and coordinated among rovers.

1.2 A Formal Description of Decentralized MDP

One approach to this problem is to represent the system as a large Markov De-
cision Process (MDP) [SB98] where the “macro-action” is a joint action of all
of the robots and the reward is the total reward of all of the robots. The prob-
lem is the large action space that is for n robots and m actions for each one, we
have mn macro-actions [GDP01]. Some approaches use Factored MDPs while
other approaches are designed in such a way that most of them are based on
distributed robots with partial information. Such approaches are known to be
intractable [BZI00]. In our approach, we view the entire multi-robot system
as distributed Markov Decision Process robots without communication but
some information on the effect of the local robot’s actions, on the plans of
the other robots are assumed to be available. Differently speaking, the system
is composed on robots each of which constructs a local MDP and derives a
local policy, taking into account the temporal dependencies. Indeed, in the

1 DEC-MDPs for Handling Temporal and Resource constraints 3

local MDP we introduce an opportunity cost due to the current activity of
the robot which delays the successor activities of the other robots. It mea-
sures the loss in value when starting the activity with a delay δt. This cost is
the difference between the value when we start at time and the value when
we start with a delay δt. Consequently, each robot develops a local MDP in-
dependently of the local policies of the other robots but, introducing in its
expected value the opportunity cost due to the possible delay of his activity.
The construction of the local MDP is based, first, on the construction of the
state space, second, on the computation of the opportunity cost at each state
and then, the computation of the value of each state to construct the local
optimal policy. To define the state space, we need to define what is the state
for the decision process. To do that, let us recall the characteristics of the
problem.

The mission of the robot, as described previously, is a graph of tasks where
each task is characterized by the execution time window, and the uncertainty
on the execution time and resource consumption. In the rest of the paper,
we assume that the mission graph is given and each task has a set of pos-
sible execution times and their probabilities, and a set of possible amounts
of resource and their probabilities. It means that the representation of execu-
tion time and resource consumption are discrete. Given these information, the
problem is to choose the best decision about which task to execute and when
to execute it. This decision is based on the available resources and the tem-
poral constraints. The respect of the temporal constraints requires to know
the interval of time during which the current task has been executed. From
that, the decision process constructs its decision given the current state of
the last executed task, the remaining resources and the interval during which
this task has been executed. The state of this decision process is then, [li,
r, I] that corresponds to the last executed task li, the remaining resource r

and the interval of time. Given the uncertainty on the execution time, there
exist many possible intervals of time during which a task could be executed.
In order to develop the state space of the decision process, we need to know
for each task in the graph the set of its possible execution intervals of time.
To do that, we develop an algorithm that computes for each task in the graph
all the possible intervals of time by propagating different execution times.

The algorithm of developing a local MDP is divided into 5 major steps :

• Propagating the temporal constraints and computing the set of execution
intervals of time for each task (node in the graph) among the graph (sec-
tion 1.4).

• Computing the probability for each interval of time (section 1.5).
• Constructing the state space of the Markov Decision Process using the

transition model (section 1.6).
• Computing the opportunity cost at each state (section 1.6).
• Using the value iteration algorithm to solve the MDP.

In the rest of the paper, we describe each step of the algorithm and we
give the formal description of the local MDP and their interactions.

4 Aurélie Beynier and Abdel-Illah Mouaddib

1.3 Preliminaries

In the previous section, we describe the overall basis of the model we develop
and give its main lines. For that we consider a distribution probability on
execution time and resource, and probabilities on start and end time of tasks.

1.3.1 Uncertain computation time

The uncertainty on execution time has been considered in several approaches
developed in [CMZW01]. All those approaches ignore the uncertainty on the
start time. We show in this paper how extensions can be considered in those
approaches taking different temporal constraints into account.

Definition 1 A probabilistic execution time distribution, Pr(δc = tc) =
Pc(tc) is the probability that the activity takes tc time units for its execution.

The representation adopted of this distribution is discrete. We use a set of
couples (tc,p) where each couple means that there is a probability p that the
execution will take tc time units.

1.3.2 Uncertain resource consumption

The consumptions of resources (energy, memory, etc ...) are uncertain. We
assume a probability distribution on the resource consumptions of a rover
when performing an activity.

Definition 2 A probabilistic resource consumption is a probability distribu-
tion, Pr(∆r) of resource consumption measuring the probability that an ac-
tivity consumes ∆r units of resources.

The representation adopted of this distribution is discrete. We use a set of
couples (r,p) where each couple means that there is a probability p that the
execution will consume r units.

1.3.3 Temporal window of Tasks

Each task is assigned a temporal window [EST,LET] during which is should
be executed. EST is the earliest start time and LET is the latest end time.
The temporal execution interval of the activity (start time and the end time)
should be included in this interval.

1.3.4 Rewards

Each robot, i, receives a reward R presumably based on the quality of the so-
lution and the remaining resources. For all states [li, r, I], the reward function
is assumed given R([[li, r, I]). However, we assume that all failure states have
a zero reward.

1.4 Temporal interval propagation

1.4.1 A simple temporal interval propagation algorithm

Given the possible transition times of different tasks, we determine the set of
temporal intervals during which a task can be realized. Firstly, the possible
start times is a one of instants EST, EST + 1, . . . , LET − min δi (Last start
time that we node LST). However, a robot needs to know when its predecessor
terminates its processing to validate some of those start times. For that, we

1 DEC-MDPs for Handling Temporal and Resource constraints 5

compute off-line all the possible end times of all its predecessors and com-
pute its possible start times consequently. The possible intervals I of a robot
are determined with a simple temporal propagation constraints in the graph.
This propagation organizes the graph into levels such that : l0 is the root of
the graph, l1 contains all the successors of the root (successors(root)), . . ., li
contains the successors of all nodes at level li−1. For each node in given level
l, we compute all its possible intervals of time from its predecessors.

• level0 : the start time and the end times of the root node (the first
task of the mission) are computed as follows : st(root) = EST (root) and
ET (root) = {st(root) + δroot

c , ∀δroot
c } where δroot

c is the execution time of the
first activity (task) of the mission.

• leveli : for each node in level i, it starts its execution when all its
predecessors end their own activities. The set of the possible end times of
the node is then given thanks to the start times and the task’s durations :
ET (node) =

⋃

∀δnode
c ,st{st + δnode

c } where δnode
c is the execution time of the

activity (task) at node node and st ∈ ST (node). We recall also here that there
is a probability that some end times can violate the deadline LETnode.

1.5 A Probability propagation algorithm

After computing off-line all the possible execution intervals of each activity (or
node), we describe, in this section, how we can weight each of those intervals
with a probability. This probabilistic weight allows us to know the probabil-
ity that an activity can be executed during an interval of time. For that, a
probability propagation algorithm among the graph of activities is described
using the execution time probability and the temporal constraints EST, LST,
and LET. This algorithm has to take the precedence-constraint that affects
the start time of each node, and the uncertainty of execution time that affects
the end time of the node. In the following, we describe how the conditional
start time probability (DP) is computed and the probability of an execution
interval Pw using DP and the probability of execution time Pc.

Conditional probability on start time

The computation of conditional start time has to consider the precedence-

constraint that expresses the fact that an activity cannot start before its
predecessors finish. The start time probability of an activity should express
the uncertainty on the precedence-constraint dependency. This constraint ex-
presses the fact that the activity starts its execution when all activities of its
predecessors have been finished. Consequently, the probability DP (t) that a
robot starts an activity at t is the product of the probability that all prede-
cessor robots terminate their activities before time t and there is, at least, one
of them that finish at time t. More formally speaking :

•for the root : DPs(i) = 1, i ∈ [ESTroot, LETroot]
•for the other nodes : DPs(δs = t) = Πa∈predecessors(c)Pra(δe ≤ t) −

∑

t′<t DP (t′)
Where a is an activity of a predecessor robot of the robot performing the

considered activity c and Pra(δe ≤ t) is the probability that predecessor a

finishes before time t. This probability is the sum of probabilities that the
predecessor a executes its task in an interval I with an end time et(I) less
than t. More formally speaking, Pra(δe < t) =

∑

ti+tj=t DPs(ti).Pc(tj) such

6 Aurélie Beynier and Abdel-Illah Mouaddib

that [ti, t] is one of intervals interval(a) computed for the activity of robot a.
This probability can be rewritten as follows :

Pra(δe < t) =
∑

I∈intervals(a),et(I)<t Pr(I)
In the following, we show how we compute the probability that an execu-

tion occurs in an interval I .

Probability on a temporal interval of an activity

Given the probability on start time and end time, we can compute the prob-
ability that the execution of an activity occurs during the interval I where
st(I) is the start time and et(I) is the end time.

Definition 3 A probabilistic execution interval I is the probability Pw(I) of
the interval during which an activity can be executed. This probability measures
the probability that an activity starts at st(I) and it ends at et(I) .

Pw(I) = DPs(st(I)).Pc(et(I) − st(I))

An activity li+1 of an agent is executed during an interval I ′ when the agent
finishes its activity li and that all predecessor agents finish their activities.
To compute the probability of the interval I ′, we need to add the fact that
we know the end time of activity li. For that, we compute the probability
Pw(I ′|etli(I)) such that :

Pw(I ′|etli(I)) = DPs(st(I
′)|etli(I)).Pc(et(I

′)li+1
− st(I)li+1

)

And the probability DPs(st(I
′)|etli(I)) is computed as follows :

DPs(st(I
′)|etli(I)) =

∏

a∈predecessors(li+1)−li

P a
r (δe ≤ st(I ′)|etli(I))−

∑

t1<st(I′)

DPs(t1|etli(I))

P a
r (δe ≤ t|et(I)li) =

∑

I1∈,et(I1)=et(I)li
,et(I1)≤t

Pw(I1)

This equation expresses the fact that we know activity li has finished at et(I),
and allows us to consider only the probability that the other predecessor
activities finish.

1.6 A Decision Model for Multi-robot Planning system

with temporal dependencies

As mentioned above, we formalize this problem with Markov Decision Pro-
cesses. To do that, we need to define what is the state space, the transition
model and the value function for each robot.

Each rover develops its local policy using the off-line temporal interval
propagation. Robots don’t need to communicate since all information needed
for each to make a decision are available. The consequence of representing all
the intervals and all the remaining resources, is that the state space becomes
fully observable and the decision process can start its maximization action
selection using the modified Bellman equation defined bellow. However, the
maximization action selection uses an uncertain start time that is computed
from an uncertain end time of the predecessors.

1 DEC-MDPs for Handling Temporal and Resource constraints 7

The start time selected by the policy can be earlier or later than the end
time of the predecessors. When the start time is later than the end time of
the predecessors, we need to handle the situation where the start time is later
than LET − min δi. The other case is when the policy selects a start time
earlier than the end time of the predecessors, in such case, the action selected
won’t succeed since the precedence constraint is not respected. In such case,
we assume that the new state is a partial failure and a penalty should be paid.
For example, rover A assumes that at time t1, rover B (bulldozer) finishes its
processing and it can moves toward its destination. When rover B finishes
later than t1, the moving action of rover A fails. In the rest of this section we
formalize this decision process.

State Representation, Transition model and Values

Each robot, i, observes its resource levels and the progress made in achieving
its tasks which represent the state of the robot. The state is then a triplet
[l, r, I] where l is the last task, r is the available resource and I is the interval
during which the task has been executed.

We assume that the actions of one robot is enough to achieve a task. The
robot should make a decision on which task to execute and when to start its
execution. However, the actions to perform consist of Execute the next task li
at time st (E(st)) that is the action to achieve task i at time st when the task
i−1 has been executed . This action is probabilistic since the processing time
of the task is uncertain. This action allows the Decision process to move from
state [li, r, I] to state [li+1, r

′, I ′]. When a robot starts before its predecessors
terminate, this transition leads to a failure state that we recover by a state
[li, r −∆r, [st, unknown]] where ∆r is the consumed resources. This recovery
allows us to represent the situation where the robot acts with no results, except
the fact that further resource has been consumed. Finally, the execution can
lead to a failure state that we represent with [failure, 0, [st, +∞]] when the
remaining resources are not enough to realize a task. It can also lead to another
failure state when the execution starts too late (st > LET − min δi). We use
∞ or unknown in order to indicate to the policy that those states needs a
special consideration by considering a special value that we explain in the
next section. Let us just give a meaning to +∞ : +∞ means that the robot
is never be able to achieve the task while unknown means that the robot tries
and fails but there is a chance to succeed another time by starting later. The
transitions are formalized as follows :

• Successful transition : The action allows the policy to transition to a state
[li+1, r

′, I ′] where task li+1 has been achieved during the interval I ′ respect-
ing the EST and LET time of this task and that r′ is the remaining resource
for the rest of the plan. The expected value to move to the state [li+1, r

′, I ′]
is : V 1 =

∑

∆r≤r

∑

et(I′)≤LET Pr(∆r).Pw(I ′|et(I)).V ([li+1, r
′, I ′]

• Too late start time Transition : The action starts too late and the execution
meets the deadline LET. In such case, the action allows the policy to move
to a [failure, r, [st, +∞]]. The expected value to move to this state is :
V 2 = Pr(st > LET − minδi).V ([failure, r, [st, +∞]]) =
∏

a∈pred(li+1)−{li}

∑

Ia

Pw(Ia)−
∏

a∈pred(li+1)−li

∑

Ia:et(Ia)≤LET−minδi

Pw(Ia).V ([failure, r, [st, +∞]])

8 Aurélie Beynier and Abdel-Illah Mouaddib

• Deadline met Transition : The action starts an execution at time st but
the duration δ is so long that the deadline is met. This transition moves to
the state [failure, r, [st, +∞]]. The expected value to move to this state is :
V 3 =

∑

∆r≤r

∑

st+tc>LET Pr(∆r).DP (st|et(I)li).Pc(tc).V ([failure, r, [st, +∞]])
• Insufficient resource Transition : The execution action requires more re-

sources than available. This transition moves to the state [failure, 0, [st, +∞]].
The expected value to move to this state is :
V 4 =

∑

∆r>r Pr(∆r).V ([failure, 0, [st, +∞]])
• Too early start time Transition : The action starts too early before one of

the predecessor robots has finished its tasks. In such case, the action allows
the policy to move to [failure, r, [st, st + 1]]. Conceptually, we proposed
that the end time should be unknown, but in our model we formalize it
by the fact that when a robot starts before its predecessor robots finish, it
realizes it immediately. This means that the robot, at st + 1, realizes that
it fails. This state is a non-permanent failure because the robot can retry
later. The robot should pay a penalty k visiting such states. The expected
value to move to this state is :

V 5 =
∑

∆r≤r

((∏

a∈predecessors(li+1)−{li}

∑

Ia:et(Ia)>LET−minδi

Pw(Ia)
)

−
∑

s≤st

DP (s|et(I)li)
)

.Pr(∆r).V ([failure, r, [st, st + 1]])

Given these different transitions, we adapt our former to Bellman equation
as follows :

V [li, r, I] =

immediat gain
︷ ︸︸ ︷

R([li, r, I]) −

Opportunity Cost
︷ ︸︸ ︷

∑

k∈sucessors

OCk(et(I) − et(Ifirst))

+

Expected value
︷ ︸︸ ︷

maxE(li+1,st),st>current time(V 1 + V 2 + V 3 + V 4 + V 5)

This equation means that robot rewards R([li, r, I]) are reduced by an
opportunity cost due to the delay caused in the successor robots.

Opportunity cost is the lost in value when a robot starts with a delay. This
means it is a difference between V 0 when we start with no delay and V ∆t when
we start with a delay ∆t : OCk(∆t) = V 0 − V ∆t with : i) ∀t ≤ 0, OC(t) = 0,
ii) OC(unknown) = 0, iii) ∀t > LET − mini δi

OC([failure(li), r, [+∞, +∞]]) = R(li) +
∑

a∈AllSucc(li)

R(a)

The opportunity cost has to be computed off-line for all the delays from
0 to latest start time (LET - min δi) and for each task. We store all these
costs in library that allows to each robot to know the opportunity cost of its
delay in the values of its successors. Each robot has, for each successor i, the
corresponding opportunity cost OCi function for each task.

1.7 Implementation

This multi-robot decision system has been implemented and run on a scenario
involving two robots : R1 and R2. Each one must exit a warehouse, move to an

1 DEC-MDPs for Handling Temporal and Resource constraints 9

object, and catch it. Then, it must bring back the object to another warehouse.
This problem implies constraints :

• Temporal constraints : warehouses have opening and closing hours. They
open from 1 to 4 and from 25 to 32.

• Precedence constraints : the object O1 must be moved in order R2 to bring
O2 back to warehouse 1.

The robots’ mission can be represented by the graph shown in the fig-
ure 1.1. A fictitious task is added at the begin of the mission in order to
have only one root. The intervals stand for the temporal constraints. For each
task, the graph specifies the robot that must complete it. We have tested our
decision system on this scenario. The results are promising. The robots per-
form the whole mission and act in an optimal way : for each step, each robot
chooses the action that leads to the highest expected value.

Rotate
90°

Fictive

Exit H1

Exit H2

Move
(2,3)

R1

R2 R2 R2 R2 R2

R1 R1 R1 R1 R1 R1

[1 , 4]

[1 , 4]

Move

Move

− 90°

(3,3)

(3,1)

Catch

O1

Move
Catch

(3,3)

Enter H2

O2 (3,9)
Enter H1

[25 , 32]

[25 , 32]

R1 R1

R2 R2

(6,3)

Move Move

(9,3)

Move
Rotate

Fig. 1.1. Graph of the mission

More complex scenarios, involving 3 or 4 robots, are under development.
They deal with planetary rovers or crisis scenario. For instance, a set of rovers
must operate on the surface of Mars, they must complete different observa-
tions or experiments : take pictures, complete atmospheric measurements,...
Another scenario deal with crisis control : an earth-quake arises and the fire-
men, the policemen and the ambulance men have several tasks to complete in
order to rescue the inhabitants.

Currently, we are developing different experiments by modifying three pa-
rameters : number of tasks, number of constraints and number of robots. The
first results show the robustness of our approach and its ability to support a
large problem (200 tasks, 3 robots and 50 constraints) where the state space
is almost 300000 states. Furthermore, given a mission, it can be shown that
when we increase the number of agents, the state space size of each local MDP
decreases. Indeed, each agent has less tasks to complete and the number of
triplet [li, r, I] decreases. If we increase the number of tasks, the state space
size increases. When we increase the number of precedence constraints or we
tighten the temporal constraints (smaller temporal windows [EST, LET]), the
number of possible execution intervals goes down. Thus, the state space size
diminishes. Also, the initial resource rate has effects on the space state size.
Formalization of these fluctuations is under development.

10 Aurélie Beynier and Abdel-Illah Mouaddib

1.8 Conclusion

In this paper we have deal with a multi-robot system under temporal and
complex constraints. In this multi-robot system, robots are with limited and
uncertain resources. This problem can be seen as a multi-robot planning under
uncertainty with temporal and complex dependencies and limited resources.
To address this problem, we proposed a decentralized MDPs framework. In
this framework, MDPs are with no communication and they don’t have a
complete observation about the states of the other robots. This framework
is based on the notion of opportunity cost to derive an optimal joint policy.
Each robot constructs its optimal policy to achieve all its tasks taking for
each one the dependency with the other tasks of the other robots. This policy
respects the local temporal constraints (EST, LST and LET) and the temporal
dependency between robots (precedence constraint).

Future work will concerns many techniques for computing exact or ap-
proximate opportunity cost.

References

[BDM+02] J. Bresina, R. Dearden, N. Meuleau, S. Ramakrishnan, D. Smith, and
R. Washington. Planning under continuous time and resource uncer-
tainty : A challenge for ai. In UAI, 2002.

[BGT03] C. Bererton, G. Gordon, and S. Thrun. Auction mechanism design for
multi-robot coordination. In S. Thrun, L. Saul, and B. Schölkopf, editors,
Proceedings of Conference on Neural Information Processing Systems
(NIPS). MIT Press, 2003.

[Bou99] Graig Boutilier. Sequential optimality and coordination in multiagents
systems. In IJCAI, 1999.

[BZI00] D. Bernstein, S. Zilberstein, and N. Immerman. The complexity of de-
centralized control of mdps. In UAI, 2000.

[BZLG03] R. Becker, S. Zilberstein, V. Lesser, and C. Goldman. Transition-
independent decentralized markov decision processes. In AAMAS, 2003.

[CMZW01] S. Cardon, AI. Mouaddib, S. Zilberstein, and R. Washington. Adaptive
control of acyclic progressive processing task structures. In IJCAI, pages
701–706, 2001.

[GDP01] C. Guestrin, D.Koller, and R. Parr. Multiagent planning with factored
mdps. In NIPS, 2001.

[GZ03] C. Goldman and S. Zilberstein. Optimizing information exchange in
cooperative multiagent systems. In AAMAS, 2003.

[HM02] H. Hanna and AI Mouaddib. Task selection as decision making in mul-
tiagent system. In AAMAS, pages 616–623, 2002.

[NPY+03] R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and S. Marsella. Taming de-
centralized pomdps: Towards efficient policy computation for multiagent
settings. In Proceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, 2003.

[PKMK00] L. Peshkin, K.E. Kim, N. Meuleu, and L.P. Kaelbling. Learning to
cooperate via policy search. In UAI, pages 489–496, 2000.

[SB98] R.S. Sutton and A.G. Barto. Reinforcement learning : An introduction.
MIT press, Cambrige, MA, 1998.

[XLZ00] P. Xuan, V. Lesser, and S. Zilberstein. Communication decisions in
multiagent cooperation. In Autonomous Agents, pages 616–623, 2000.

