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Abstract Optimizing the operation of cooperative multi-agent systems that can deal with
large and realistic problems has become an important focal area of research in the multi-
agent community. In this paper we first present a new model, the OC-DEC-MDP (Oppor-
tunity Cost Decentralized Markov Decision Processes), that allows for representing large
multi-agent decision problems with temporal and precedence constraints. Then, we propose
polynomial algorithms to efficiently solve problems formalized by OC-DEC-MDPs. The
problems we deal with consist of a set of agents that have to execute a set of tasks in a coop-
erative way. The agents cannot communicate during execution and they have to respect some
resource and temporal constraints. Our approach is based on Decentralized Markov Deci-
sion Processes (DEC-MDPs) and uses a concept of opportunity cost borrowed from eco-
nomics to obtain approximate control policies. Currently, the best existing techniques can
only solve optimally small problems. Experimental results show that our approach produces
good quality solutions for complex problems which are out of reach of existing approaches.

Keywords Decentralized Markov Decision Processes, Multiagent Systems, Decision-
theoretic Planning, Uncertainty

1 Introduction

There has been significant progress recently with the development of extensions of Markov
Decision Processes (MDP) for planning and control of teams of cooperative agents (Boutilier,
Dean, and Hanks, 1999). Decentralized Partially Observable Markov Decision Processes
(DEC-POMDPs) and Decentralized Markov Decision Processes (DEC-MDPs) have been
proposed to solve problems of multi-agent decentralized control. Nonetheless, they suffer
from high complexity. Indeed, it has been shown that solving optimally a DEC-POMDP is
NEXP-hard (Bernstein, Zilberstein, and Immerman, 2002). Thus, optimal algorithms can
only solve very small problems in practice (Hansen, Bernstein, and Zilberstein, 2004; Szer,
Charpillet, and Zilberstein, 2005). This has created a growing interest in developing good
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approximate solution techniques. Some of these approximations reach local optima, for ex-
ample, the Joint Equilibrium based Search for Policies (JESP) by Nair et al. (2003). Other
models use heuristic methods to approximate the optimal policy Goldman and Zilberstein
(2003). Another approximation approach is to use on-line learning as in the Partial Observ-
able Identical Payoff Stochastic Game (POIPSG) proposed by Peshkin et al. (2000). On the
other hand, Goldman and Zilberstein (2004) have identified properties of DEC-MDPs and
DEC-POMDPs that can reduce complexity such as transition and observation independence.
Becker et al. have identified two classes of DEC-MDPs that are no harder than exponential
in the number of states: the Decentralized MDPs with Event Driven Interaction (ED-DEC-
MDP) (Becker, Lesser, and Zilberstein, 2004a) and the Transition-Independent Decentral-
ized MDPs (TI-DEC-MDP) (Becker, Zilberstein, Lesser, and Goldman, 2003). These classes
take into account dependencies between tasks and can be solved optimally by the Coverage
Set Algorithm (Becker, Zilberstein, Lesser, and Goldman, 2004b).

Techniques developed so far have been used to solve relatively small problems. The
issue of scalability remains a serious challenge even for approximation methods. Moreover,
these approaches propose limited time and action representations (for instance, all actions
are supposed to have the same duration). In this paper, we introduce a new model, the OC-
DEC-MDP (Opportunity Cost Decentralized Markov Decision Processes) that can deal with
large problems where temporal, precedence and resource constraints must be respected.
Furthermore, we present polynomial algorithms that can compute coordinated policies of
agents with a good quality using a value function augmented with an opportunity cost. We
consider problems where communication during the execution is impossible and the agents
must be able to coordinate without communicating. Our algorithms allows each agent to
build its own local policy for executing its own tasks. In order to coordinate the agents’
policies, we introduce an opportunity cost value function which allows each agent to value
the consequences of his decisions on the other agents.

The paper is structured as follows. First, we detail existing works for solving DEC-
MDPs and we provide a formal definition of the problem we deal with. Next, we define the
OC-DEC-MDP model and we detail its components. We introduce the notion of opportunity
cost and a modified Bellman equation to make coordinated decision. This decision principle
is then use to develop polynomial algorithms to solve OC-DEC-MDPs. Finally, experimental
results describe the performance of our approach. To conclude, we discuss the contributions
of this work and we give some future research directions.

2 Decentralized control in multiagent systems

Decentralized control of a cooperative multiagent system consists of a set of agents where
each agent must decide of its own actions so as to maximize a common performance mea-
sure. As the agents often have a partial view of the system, the states of the system and
the other agents’ states may be partially observable. Moreover, there may exist uncertainty
about the other agents’ actions and the evolution of the system.

2.1 Applicative domain

We motivate the class of problems that we consider by two multirobot domains: multi-
rover exploration of Mars and rescue robots. These applications involve a set of robots that
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must autonomously execute a set of tasks. While executing the tasks, each robot must au-
tonomously decide how to act in order to maximize the team’s performance. Moreover,
communication between the robots are often impossible during task execution.

This class of problems can be met in NASA scenarios dealing with rovers operating on
Mars. In order to increase scientific feedback, researchers plan to send fleets of robots that
could operate autonomously and cooperatively. Since the environment is unknown, robots
must deal with uncertainty regarding the duration of actions and consumption of resources.
Once a day, a mission of a hundred tasks is sent to the robots via satellite. Due to orbital
rotation of the satellite, the agents can communicate during a fixed amount of time. For
the rest of the day, the rovers must complete their tasks and cannot communicate via the
satellite which is unavailable. In addition, because of bandwidth limitations, distance be-
tween the robots and obstacles, the robots are unable to communicate directly. To guarantee
scientific feedback, temporal constraints must be respected. For example, pictures must be
taken at sunset or sunrise because of illumination constraints. Moreover, each robot may
have specific skills imposing precedence constraints. For instance, as digging a hole modi-
fies the ground topology of a site, a photograph-robot must have taken a picture of the site
before a digger-robot can start to dig the ground. Finally, executing a task requires power,
storage (storing pictures or measurements) or bandwidth (data communication). Resource
constraints must therefore be respected: each agent must have enough of the required re-
sources to complete a task. Military domains describe similar problems: UAV exploration
of enemy territories share many characteristics (uncertainty, partial observability,...) with
Mars exploration. Here, the agent cannot communicate because of the high cost of revealing
information to the enemy.

Our second motivating example is the problem of controlling large teams of rescue
robots (Morimoto, 2000; The RoboCup Rescue Technical Committee, 2000). These involve
different kinds of robots that must act in disaster environments, for instance, after an earth-
quake occurs. Each kind of robots has special skills: fire-agents can extinguish fires, police-
agents can unblock roads and ambulance-agents can give first aid to injured persons and
drive them to hospital. The agents’ objective is to maximize the number of rescued persons
and to minimize the area of burned buildings. This objective can be defined as a common
value function to maximize. As communications often breakdown in such disaster envi-
ronments, it is assumed that the agents cannot communicate. Moreover, the environment is
unknown and partially observable so, the agents must deal with uncertainty in action out-
come and with uncertainty about the state of the system. Because resources are limited, the
agents must consider resource constraints (for instance, fire-agents have a limited amount of
water). Dependencies between the agents arise from their skills and precedence constraints
can be identified. For example, fire-agents must have unblocked roads in order ambulance-
agents to drive injured person to hospital. Moreover, temporal constraints must be respected:
a fire must be extinguished before the building is completely burnt.

2.2 Problem statement

Based on the previous study of multi-robot decision problems, we define a mission X as a
set of agents that must complete a set of tasks.

Definition 1 A mission X is defined as a couple < Ag, T > where:

– Ag = {Ag1, · · · ,Agn} is a set of n agents Agi ∈ Ag.
– T = {t1, · · · , tp} is a set of tasks the agents Agi ∈ Ag have to execute.
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Each time an agent finishes executing a task with respect to constraints, it obtains a
reward which depends on the executed task. The essence of the problem is to find a joint
policy that maximizes the sum of the rewards of the agents.

The execution of a task is uncertain and must respect temporal, precedence and resource
constraints. Thus, each task is assigned a probabilistic set of durations, a probabilistic set of
resource consumptions, a set of predecessors and a temporal window.

Definition 2 Each task ti ∈ T is defined by:

– An agent Agi that must execute the task.
– Different possible durations associated with probabilities. Pc(δ

i
c) is the probability the

execution of the task ti takes δi
c time units.

– Different possible resource consumptions associated with probabilities. Pr(∆
i
r) is the

probability the execution of the task ti consumes ∆i
r resources.

– A temporal window TCi = [ESTi, LETi] during which the tasks must be executed.
ESTi stands for the Earliest Start Time of the task and LETi is its Latest End Time.

– A set of predecessor tasks Predi: the tasks that must be finished before ti can start.

∀ti ∈ T , ti 6∈ root ⇔ ∃tj ∈ T : tj ∈ Pred(ti)

where root are the first tasks to be executed (tasks without predecessors).
– A reward Ri obtained by the agent when the task ti has been executed respecting tem-

poral, precedence and resource constraints. The agents aim at maximizing the sum of
their obtained rewards.

Each agent have to execute at least one task and each task is assigned an agent. Task
allocation must take into account each agent’s skills and must result in a feasible mission.
For instance, given a temporal window TCi = [ESTi, LETi], there must be at least one
possible interval of execution for the task ti which respects precedence constraints. Due
to temporal constraints, precedence constraints and properties of the problem (such as the
topology of the environment, distance between the sites to visit, etc.), tasks can often be
easily ordered. Hanna and Mouaddib (2002), and more recently Abdallah and Lesser (2005),
have developed MDP based algorithms that can perform such an allocation. Allocation of
tasks among physical robots have also been studied by Gerkey and Matarić (2002) and Esben
et al. (2002) using auction principles.

A missionX can be represented as an acyclic graph of tasks where edges stand for prece-
dence constraints. Figure 1 presents the graph of a mission derived from RoboCup Rescue
scenarios. A similar problem has been described by Marecki and Tambe (2007). Although
we can represent large mission graphs involving hundreds of tasks, we describe a small mis-
sion for clarity reason. This scenario involves three agents (a fire-agent, an ambulance-agent
and a police-agent) that have to rescue civilians from a burning building, after an earthquake
occurs. Dependencies between the tasks can be identified. So as to evacuate civilians, the
fire-agent must have put out the flames. Civilians have to be evacuated and roads must be
unblocked in order the ambulance-agent to drive injured people to hospital. Moreover, tem-
poral constraints have to be respected: it can be estimated that the fire-agent has 10 minutes
to evacuate civilians and 30 minutes before the building is entirely burned. Finally, each
agent has a limited amount of resources.

A similar representation language - multi-agent influence diagrams (MAIDs) - is de-
scribed by Koller and Milch (2003) and applied to multi-agent games. One could view our
graph representation as a MAID where decision variables are tasks and without chance vari-
ables. Utility variables would be the rewards of the tasks. Precedence constraints between
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Fig. 1 A mission graph involving rescue agents

the tasks can be formalized in a MAID by probabilistic dependencies between decision vari-
ables. Thus, MAID edges would represent precedence constraints. By extending MAID to
account for uncertainty on task execution (captured by conditional probabilities and random
variables) and temporal constraints (encoded with the utility function), we obtain a similar
representation to our mission graphs.

Precedence constraints that associate different kinds of agents, stand for coordination re-
lationships. Such relationships are encountered in other frameworks such as TAEMS - Task
Analysis, Environment Modeling and Simulation - (Decker and Lesser, 1993) which allows
to describe task structures of multiagent systems. TAEMS “enable” relationship stands for
our precedence constraints. Nonetheless, TAEMS framework assumes that resource are not
consumed when the execution of a task partially fails. Moreover, TAEMS framework allows
precedence constraints not to be met.

Given a mission X , our purpose is to plan the execution of the mission so as to al-
low each agent to decide which task to execute and when, without communicating (during
task execution) and with respect to constraints. We aim at developing an off-line planning
approach based on DEC-MDPs.

2.3 Related work

In order to limit on-line computation and to deal with uncertainty, we are interested in off-
line stochastic planning. Some classical planning approaches, such as STRIPS or GPS, have
been adapted for planning under uncertainty (Blythe, 1999a; Bresina et al., 2002). Most
of these approaches search for a plan that meets a threshold probability of success or that
exceeds a minimum expected utility. During task execution, if the agent deviates from the
computed plan, a new plan has to be re-computed. To limit re-planning, some approaches
compute a contingent plan that encodes a tree of possible courses of actions. Nonetheless,
a contingent plan may not consider all possible courses of actions so, re-planning remains
and optimality is not guaranteed.

Markov Decision Processes (MDP) provide a stochastic planning approach that allows
for computing optimal policies. As a policy maps each possible state of the agent to an
action, there is no need for on-line re-planning. The agent’s objectives are expressed as a
utility function and efficient algorithms have been developed to efficiently compute a policy
that maximizes the utility (Puterman, 2005; Howard, 1960). MDPs have been successfully
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applied to many domains such as mobile robots (Bernstein et al., 2001), spoken dialog man-
agers (Roy et al., 2000) or inventory management (Puterman, 2005). Then, MDPs have been
extended to deal with multiagent settings and Decentralized Partially Observable Markov
Decision Processes (DEC-POMDP) (Bernstein et al., 2002) have been defined.

2.3.1 Decentralized Markov Decision Processes

So as to modelize partial observability and uncertainty, the DEC-POMDP model is com-
posed of a set of observations, a probabilistic observation function and a probabilistic tran-
sition function. A reward function to maximize formalizes the objectives of the system.

Definition 3 A Decentralized Partially Observable Markov Decision Process (DEC-POMDP)
for n agents is defined by a tuple < S,A,P, Ω,O,R > where :

– S is a finite set of system states.
– A = 〈A1, · · · ,An〉 is a set of joint actions, Ai is the set of actions ai that can be

executed by the agent Agi.
– P = S × A × S → [0, 1] is a transition function. P(s, a, s′) is the probability of the

outcome state s′ when the agents execute the joint action a in s.
– Ω = Ω1 ×Ω2 × · · · ×Ωn is a finite state of observations where Ωi is agent Agi’s set of

observations.
– O = S×A×S×Ω → [0, 1] is the observation function.O(s, a, s′, o = 〈o1, · · · , on〉) is

the probability that each agent Agi observes oi when the agents execute the joint action
a from state s and the system moves to state s′.

– R is a reward function. R(s, a, s′) is the reward the system obtains when the agents
execute joint action a from state s and the system moves to state s′.

Definition 4 A Decentralized Markov Decision Process (DEC-MDP) is a special kind of
DEC-POMDPs where the system state is jointly observable. This property can be formalized
as:

If O(s, a, s′, o = 〈o1, · · · , on〉) > 0 then Prob(s′|〈o1, · · · , on〉) = 1

Note that this property does not imply that the agents can observe their states. Thus, a
DEC-MDP has the same components as a DEC-POMDP.

2.3.2 DEC-POMDP resolution

Solving a DEC-MDP consists in computing a set of individual policies. Each individual
policy of an agent Agi takes into account every possible state of the agent while meth-
ods based on classical planners find a sequence of actions based on a set of possible initial
states (Blythe, 1999b). Recent works have focused on developing off-line planning algo-
rithms to solve problems formalized by DEC-POMDPs and DEC-MDPs. They consist in
computing a set of individual policies, one per agent, describing the agents’ behaviors. Each
individual policy maps the agent’s information (its state, its observations or its belief state)
to an action. Since solving optimally a DEC-POMDP (or a DEC-MDP) is a very hard prob-
lem (NEXP-hard) (Bernstein et al., 2002), most approaches search for methods that reduce
the complexity of the problem. Two kinds of approaches can be identified. The first set of
approaches aims at identifying properties of DEC-POMDPs that reduce their complexity.
Thus, Goldman and Zilberstein (2004) have introduced transition independence and obser-
vation independence.
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Definition 5 A transition independent DEC-MDP is such that the probability an agent Agi

moves from a state si to a state s′i only depends of the action ai the agent has executed.
Formally, a DEC-MDP is transition independent if the set of states S can be decomposed
into n components S1, · · · ,Sn and the transition function can be decomposed as a product
of probabilities such as: P =

Qn
i=1 Pi where Pi = Pr(s′i|si, ai).

Definition 6 A DEC-MDP is observation independent if the set of states S can be decom-
posed into n components S1, · · · ,Sn and there exists, for each agent Agi, an observation
function Oi such as:

Pr(oi|〈s1, · · · , sn〉, 〈a1, · · · , an〉, 〈s′1, · · · , s′n〉, 〈o1, · · · , oi−1, oi+1, · · · , on〉) = Oi(oi|si, ai, s
′
i)

Properties such as transition or observation independence allows for identifying classes
of problems that are easier to solve (Goldman and Zilberstein, 2004). For instance, it has
been proved that a DEC-MDP with independent transitions and observations is NP-complete.
Based on this study, an optimal algorithm, the Coverage Set Algorithm (CSA), has been de-
veloped to solve DEC-MDPs with independent observations and transitions (Becker et al.,
2003).

Other attempts to solve DEC-POMDPs have focused on finding approximate solutions
instead of computing the optimum. Thus, alternatives to Hansen’s exact dynamic program-
ming algorithm (Hansen et al., 2004) have been proposed by Bernstein et al. (2005) and
Amato et al. (2007b). They use memory bounded controllers to limit the required amount of
space to solve the problem. Nair et al. (2003) describe an approach, the Joint Equilibrium
Based Search for Policies (JESP), to solve transition and observation independent DEC-
MDPs. JESP relies on co-alternative evolution: the policies of a set of agents are fixed and
the policies of the remaining agents are improved. Policy improvement is executed in a cen-
tralized way and only a part of the agents’ policies is improved at each step. Finally, the
algorithm converges to a Nash equilibrium. Chadès et al. describe a similar approach based
on the definition of subjective MDPs and the use of empathy (Chadès et al., 2002). Im-
provements of JESP have also been proposed: DP-JESP (Nair et al., 2003) speeds up JESP
algorithm using dynamic programming and LID-JESP (Nair et al., 2005) combines JESP
and distributed constraints optimization algorithms. Thus, LID-JESP exploits the locality of
interactions to improve the efficiency of JESP. SPIDER (Varakantham et al., 2007) also ex-
ploits the locality of interactions to compute and approximate solution. Moreover, SPIDER
uses branch and bound search and abstraction to speed up policy computation. Peshkin
et al. (2000) propose a distributed learning approach based on gradient descent method that
also allows finding a Nash equilibrium. Emery-Montemerlo et al. (2004) approximate DEC-
POMDP solutions by decomposing the initial problem into local MDPs which are solved
separately. The problem is transformed into a set of one-step Bayesian games that are solved
using a heuristic.

Finally, some approaches introduce direct communication so as to increase each agent
observability (Goldman and Zilberstein, 2003; Xuan et al., 2001; Pynadath and Tambe,
2002). The agents can communicate to inform the other agents of their local state or ob-
servation. If communication is free and instantaneous, the problem is reduced to a Multia-
gent Markov Decision Process (MMDP) (Boutilier, Dean, and Hanks, 1999) that is easier
to solve. Otherwise, the problem complexity remains unchanged and heuristic methods are
described to find near optimal policies.
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2.3.3 Existing Work limitations

Despite recent advances in DEC-POMDP domain, solving multi-robot decision problems
using DEC-POMDPs (or DEC-MDPs) remains a serious challenge. Indeed, recent works
have focused on problems, like the multiagent tiger problem (Nair et al., 2003), that do not
take into account properties of real-world problems. Thus, DEC-POMPs fail to modelize
precedence and temporal constraints. Moreover, each action is assumed to have the same
duration of one time unit and uncertainty on action duration cannot be formalized. Such
difficulties to formalize real-world problem using Markovian models have been identified in
the single agent case by Bresina et al. (2002). In order to increase the expressiveness of DEC-
MDPs, Becker et al. (2004a) have introduced Event-Driven Decentralized Markov Decision
Processes (ED-DEC-MDPs) that allow for modeling precedence and temporal constraints.
But this model remains limited to small problems.

Other difficulties arise while solving DEC-POMDPs (and DEC-MDPs). Due to the com-
plexity of optimally solving DEC-POMDPs (Bernstein et al., 2002), there is no existing op-
timal approaches that can solve problems involving more than 2 agent and 5 actions. For
instance, Hansen et al. (2004) optimally solve a two-agent and two-action decision problem
up to horizon 4. Szer et al. (2005) optimally solve the same problem up to horizon 5. Ap-
proximate approaches are able to solve larger problems but remains limited to 2 agents and
less than 10 actions. Nair et al. (2003) solves the multi-agent tiger problem (2 agents and
3 actions) up to horizon 7. More recently, Seuken and Zilberstein (2007) and Amato et al.
(2007a) have proposed approaches that can solve this problem up to horizon 100. Nonethe-
less, their approaches consider the classical DEC-POMDP model thus, limiting time and
action representation. It is therefore difficult to solve large problems like the ones encoun-
tered in real-world domains. Indeed, existing Mars rover missions are composed of 2 agents
but researchers plan to send more rovers. Thus, planning approach must be able to con-
sider missions that are composed of 3 or more robots which have to execute a hundred of
tasks with complex contraints and dependencies. Rescue missions may involve more than
ten robots and hundreds of tasks.

In order to increase the applicability of DEC-POMDP approaches, there is a need to
improve the problem modelization and to develop efficient tools to solve large problems. In
this paper, we first present a model that improves time and action modelizations in DEC-
MDPs. Then, we turn to problem resolution and we tackle the high complexity of DEC-
MDPs. We propose an efficient planning approach that computes each agent’s policy even
for large missions.

3 Formal model for constraints representation

In this section, we focus on improving time and action representations in DEC-MDPs. We
therefore define a class of DEC-MDPs, Opportunity Cost Decentralized Markov Decision
Processes (OC-DEC-MDPs), that allows us to consider several possible durations for each
task taking into account temporal, resource and precedence constraints.

3.1 The OC-DEC-MDP model

As we consider problems where each action has several possible durations, we cannot define
a joint action as the set of the agents’ individual actions. Indeed, at each time step t, some
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agents try to execute new actions and the others continue executing their previously started
actions. The transition probability therefore relies on the time each agent has already spent
to execute its current action. In order to fulfill Markov property (Puterman, 2005), joint
actions can be defined as a set of couples (ai, ∆

i
c) where ai is the current action of Agi and

∆i
c the time Agi has already spent executing ai. Nonetheless, defining such joint actions

leads to large state and action spaces which are exponential in the number of agents and in
the number of time steps. This limits the size of problems that can be considered.

In order to allow for representing large problems, we suggest splitting the initial multia-
gent decision problem into a set of MDPs that are easier to solve. Each MDP stands for one
agent’s decision problem. Thus, individual states and actions are considered and exponential
growth of joint action set and state set is avoided. Decomposition of planning problems into
smaller problems has been widely studied in the single agent case. Techniques have been
proposed to decompose large Markov decision processes into local MDPs that are easier to
solve (Dean and Lin, 1995; Boutilier et al., 1997). These local MDPs are then solved and
exploited to find good approximate global solutions (Meuleau et al., 1998; Singh and Cohn,
1998; Poupart et al., 2002). Nonetheless, decomposition of decentralized Markov decision
problems into local MDPs are lacking. We introduce the OC-DEC-MDP framework that
performs such a decomposition and proposes a richer model of time and action formalizing
previously enumerated constraints. Moreover, this framework allows for limiting the state
and actions spaces of the agents.

Definition 7 An n-agent OC-DEC-MDP is a set of n MDPs, one for each agent. The MDP
of an agent Agi is defined as a tuple < Si, Ti,Pi,Ri > where:

– Si is the finite set of states of the agent Agi,
– Ti is the finite set of tasks of the agent Agi,
– Pi is the transition function of the agent Agi,
– Ri is the reward function of the agent Agi.

The components of each MDP are defined in order to model constraints on task execu-
tion. We now review each of these components.

3.1.1 Tasks - Actions

At each of his decision steps, the agent Agi must decide when to start his next task. The
actions to perform consist of “Executing task ti at time st : E(ti, st)”, that is the action to
start executing task ti at time st. We assume that each agent’s tasks are completely ordered.
So the next task to execute is easily decided. The question is therefore to decide when the
agent must start its next task and the set A of actions to execute from a state si is equal to
the set of start times for the next task.

Nonetheless, this assumption can be relaxed to consider situations where the agent must
choose between several possible next tasks. Then, the number of actions that can be executed
from a state si increases. In fact, it is exponential in the numbers of possible next tasks and
start times.

Start times and end times of each task can be deduced by propagating temporal con-
straints through the mission graph from the roots to the leaves. The graph is organized into
levels such that : L0 contains the roots of the graph, L1 contains all the successors of the
roots (successors(root)), . . ., Li contains the successors of all nodes in level Li−1. For each
node (task) ti in a given level Li, if all ti’s predecessors have already been considered, we
compute its possible start times and end times. The start times of ti are in [ESTi, LSTi]
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where LSTi is ti’s Latest Start Time which is defined by LSTi = LETi − δi,min
c (δi,min

c

is the shortest duration of ti). However, Agi can start the execution of ti if all the predeces-
sors of ti have finished their execution. Thanks to the end times of the predecessors, we can
validate the possible start times in [ESTi, LSTi]. In the following, LBi stands for the first
valid start time of ti (Lower Bound), and UBi is the last valid start time (Upper Bound). For
each node, its start times and end times are computed by:

• level L0: The start times and the end times of each root node ti are computed as
follows:

ST (ti) = max({ESTi, start time}) = LBi = UBi

ET (ti) = {st(ti) + δi
c ≤ LETi}

where δi
c is the computation time of ti and start time is the system “wake up” time. Con-

sequently, intervals of activities of ti are given by I = [st, et], where st ∈ ST (ti) and
et = st + δi

c, et ≤ LETi.
• level Li: Each node ti in level Li can start its execution if, and only if, all its prede-

cessors have finished their own activities. Since each predecessor has different possible end
times, the possible start times for nodes in level Li are also numerous. Firstly, we compute
the first possible start time of the considered node. To do that, we compute the set of first
end times (FET) of the predecessors:

FETi = min(ET (pred))

Then, the maximum of these first end times represents the first possible start time for the
node ti:

LBi = max({ESTi, max(FETi)})

Secondly, we compute the other possible start times of the node. To do that we consider
all the other possible end times of the predecessors. Let pred be a predecessor of ti. Any end
time et of pred such as et > LBi is a possible start time of the node because it represents
a situation where all the other predecessors have finished before LBi and pred has finished
after LBi at et. Consequently, the other possible start times are defined as follows:

OSTi = {et ∈ ET (pred), et > LBi}

The set of the possible start times of the node are:

ST (ti) = {LBi

[
OSTi}

and

UBi = max(ST (ti))

The set of the possible end times of the node is then given by:

ET (ti) = {et|et = st + δi
c, et < LETi and ,∀st ∈ ST (ti)}

Finally, the intervals of execution I of the node are such as:

I = [st ∈ ST (ti), st + δi
c ≤ LETi]
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3.1.2 States

When an agent tries to execute a task ti+1 at st, it succeeds if temporal, precedence and
resource constraints are respected. If precedence constraints are violated (the agent tries to
execute ti+1 before its predecessors have finished their execution), the agent fails and can
retry to execute the task later. Then, if precedence constraints are respected while retrying
to execute ti+1, the agent may succeed. Failures due to precedence constraints are therefore
called partial failures. On the other hand, if temporal or resource constraints are violated
while executing ti+1, the execution of ti+1 fails permanently and the agent moves to a
failure state. Three kinds of states can therefore be identified: success states, partial failure
states and failure states.

When an agent Agi has just finished executing task ti+1 during an interval I and it has
rti+1 remaining resources, it moves to the success state [ti+1, I, rti+1 ].

When the agent has just tried to execute task ti+1 at st but failed because of precedence
constraints, it moves to the partial failure state [ti, [st, st + 1], et(I ′)ti , rti ] where ti is the
agent’s last successfully executed task, et(I ′)ti is the end time of ti (I ′ is ti’s execution
interval), and rti is the agent’s remaining resources after it partially fails. As the end times
et(I ′) of ti influences the agent’s transition, it is registered in failure states. We consider
that when an agent starts before its predecessor agents finish, it realizes it immediately. This
means that the agent, at st + 1 realizes that it fails.

When the execution of ti+1 fails permanently, the agent moves to the failure state asso-
ciated with ti+1.

As each agent knows his last executed task ti+1, the interval of execution of ti+1 and
how many resources he still has, states are locally fully observable. Nonetheless, each agent
does not know the other agents’ states nor actions. The problem is therefore for the agents
to coordinate despite this lack of knowledge about the system’s state. Note that the system’s
states can be deduced from combining the agents’ partial views and an OC-DEC-MDP is
jointly fully observable. We therefore consider DEC-MDPs instead of DEC-POMDPs.

3.1.3 Transitions

The action of an agent allows him to move from one state to another. Given a state si of
an agent Agi, the agent can move to three different kinds of states. Thus, we identify three
kinds of transitions: success transitions (from si to a success state), partial failure transitions
(from si to a partial failure state) and failure transitions (from si to a failure state). Figure 2
represents the different kinds of possible transitions when an agent starts to execute a task
ti+1 at st from a state si.

Due to precedence constraints between the agents, the problems we consider are transi-
tion dependent. Indeed, the probability of an agent’s success in executing a task ti+1 depends
on the end times of ti+1’s predecessors which may be executed by other agents. Thus, the
transition of an agent relies on the other agents’ actions and states. Because our problems are
not transition independent, the transition function of the system cannot be directly decom-
posed into local independent functions. Next section will detail our approach for computing
one individual transition function per agent.

3.1.4 Rewards

When agent Agi successfully executes a task ti+1, it moves to a success state and receives
the reward associated with ti+1. When an agent fails executing a task (partial failure or
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Fig. 2 Transition model of an agent from state si

permanent failure), no reward is obtained. Thus, the agents’ goal consists in maximizing the
sum of their obtained rewards.

3.2 Transition Decomposition

In this section, we describe a method for decomposing the transition function of the system
(P : S × S × A) into a set of individual transition functions. Each individual transition
function is associated with an agent and dictates the probability that the agent moves from
one state to another when he executes an individual action (Pi : Si × Si × Ai). Actions
are probabilistic since the processing time and the resource consumption of each task are
uncertain. Moreover, as precedence constraints must be respected, the probability an agent
Agi moves from a state si to a state s′i when it starts executing ti+1 at st relies on: the
executed task ti+1, the start time of ti+1, the end times of ti+1’s predecessors, the resource
consumption of ti+1, the available resources before the agent Agi starts executing ti+1, and
the duration of ti+1. Moreover the start times of each task ti+1 relies on ti+1’s execution
policy.

Probabilities on start times, end times and available resources have to be known in order
to compute transition probabilities. As these probabilities relies on the agents’ policies, we
assume an initial set of policies for the agents (one policy per agent) and we propagate
temporal and resource probabilities through the mission graph. For each node ti, temporal
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and resource probabilities are computed based on probabilities on ti’s predecessors, the
execution policy of ti and probabilities on execution time and resource consumption of ti.

3.2.1 Temporal probabilities

The probability that agent Agi starts executing a task ti+1 at st depends on the end times of
ti+1’s predecessors, on the state ofAgi and onAgi’s policy. Task ti+1, can be executed from
a partial failure state or from a success state. Let ti be the last successfully executed task of
Agi. Agi can start executing ti+1 from a partial failure state si = [ti, [∗, ∗], et(I ′)ti , rti ], or
from a success state si = [ti, [, ∗, et(I ′)ti ], rti ]. The start time of ti+1 therefore depends on
the agent’s policy from si. Agi starts executing ti+1 at st if:

– his policy dictates him to start ti+1 at st and the predecessors of ti+1 have finished their
execution or,

– his policy dictates him to start ti+1 at st′ (st′ < st),Agi partially fails ( ti+1’s predeces-
sors have not finished their execution) and after 0 to N partial failures he starts executing
ti+1 at st.

Thus, the probability P
ti+1
ST (st|et(I ′)ti , rti) that the agent starts executing ti+1 at st,

when it has rti resources and ti ends at et(I ′)ti is defined as follows:

P
ti+1
ST (st|et(I ′)ti , rti) =P r

enough(Pred(ti+1)).
Y

tj∈Pred(ti+1)

X
t ≤ st(I)P

tj

ET (t|et(I ′)ti)

·
“
Pπi(st|ti, et(I

′)ti , rti) +

stX
st′∈[et(I′),st[

Pπi(st
′, taski+1|ti, et(I ′)ti , rti)

· Pnot end(st′) · P si

ST (st, si = [ti, [st, st + 1], et(I ′)ti , rti −∆r′])
”

(1)

where Pnot end(st′) stands for the probability that the predecessors of ti+1 have not fin-
ished their execution at st′. As described later, P

tj

ET (t|et(I ′)ti) is the probability tj ends at
t. Pπi(st

′, taski+1|ti, et(I ′)ti , rti) is the probability the agent Agi decides to execute ti+1

at st′ when ti finishes at et(I ′)ti and the agent has rti . Since we consider deterministic poli-
cies, this probability is 0 or 1. ∆r′ stands for the resource consumption of a partial failure.
For purpose of good understanding, we consider only deterministic resource consumptions
of partial failures. Nonetheless, equations can be extended to deal with uncertainty on partial
failures’ resource consumptions.

The probability that ti+1’s predecessors have finished their execution at st is:

P r
enough(Pred(ti+1)) ·

Y
tj∈Pred(ti+1)

X
t ≤ st(I)P

tj

ET (t|et(I ′)ti)

where P r
enough(Pred(ti+1)) stands for the probability that the predecessors had enough

resources.
As described by Equation 1, we first consider cases where the agent’s policy dictates

to start ti+1 at st (Pπi(st|ti, et(I ′), rti)). Then, we consider cases where the agent’s policy



14

dictates to start the task before st, the agent partially fails and then starts executing the task
at st.

P si

ST (st, si) is the probability that the agent will start the execution of ti+1 at st when
the agent is in state si = [ti, [st, st + 1], et(I ′)ti , rti −∆r′]. Before the agent starts at st, it
may try to execute the task and partially fail. Thus, we obtain:

P si

ST (st(I), si) = Pπi(st|ti, st + 1, et(I ′)ti , rti −∆r′)+X
st′∈[st+1,st]

Pπi(st
′, taski+1|ti, [st, st + 1], et(I ′)ti , rti −∆r′) · Pnot end(st′)

· P si

ST (st, si = [ti, [st
′, st′ + 1], et(I ′)ti , rti −∆r′ −∆r′])

where Pπi(st
′, taski+1|ti, [st, st + 1], et(I ′)ti , rti − ∆r′) is the probability the agent

Agi decides to execute ti+1 at st′ when ti finishes at et(I ′)ti and the agent partially fails
the execution of ti+1 at st. Then, the agent realizes that it fails at st + 1 and it has rti −∆r′

resources.
Finally, P r

enough(Pred(ti+1)) is defined as:

P r
enough(Pred(ti+1)) =

Y
tk∈Pred(ti+1)\ti

P r
enough(tk)

where P r
enough(tk) stands for the probability agent Agk had enough resources to execute

tk. This probability is computed as follows:

– If tk is the last task that agent Agk has to execute:

P r
enough(tk) =

X
rtk

≥0

X
∆k

r |rtk
−∆r≥0

P tk
ra(rtk ) · Pr(∆

k
r )

where P tk
ra(rtk ) is the probability Agk has rtk resources when it starts to execute tk. We

detail computation of this probability in the next section.
– Otherwise:

P r
enough(tk) =

X
rtk+1≥0

P
tk+1
ra (rtk+1)

where tk+1 is the next task of agent Agk.

From conditional probabilities P
ti+1
ST (st|et(I ′)ti , r), we can deduce conditional probabilities

P
ti+1
ST (st|et(I ′)ti) and probabilities P

ti+1
ST (st). Thus,

P
ti+1
ST (st|et(I ′)ti) =

X
rti

P ti
ra(rti).P

ti+1
ST (st|et(I ′)ti , rti) (2)

We deduce:

P
ti+1
ST (st) =

X
et(I′)ti

∈ET (ti)

P ti

ET (et(I ′)ti)
X
rti

P ti
ra(rti).P

ti+1
ST (st|et(I ′)ti , rti) (3)

Once start time probabilities of ti+1 are known, end time probabilities P
ti+1
ET can be

deduced. The probability the execution of ti+1 ends at et is the probability that it starts at st

and its execution takes δi+1
c = et− st time units:

P
ti+1
ET (et) =

X
st∈ST (ti)

X
δi+1

c |st+δi+1
c =et

P
ti+1
ST (st) · Pc(δ

i+1
c ) (4)
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Moreover:

P
ti+1
ET (et|et(I ′)ti , rti) =

X
st∈ST (ti)

X
δi+1

c |st+δi+1
c =et

P
ti+1
ST (st|et(I ′)ti , rti) · Pc(δ

i+1
c ) (5)

And,

P
ti+1
ET (et|et(I ′)ti) =

X
st∈ST (ti)

X
δi+1

c |st+δi+1
c =et

P
ti+1
ST (st|et(I ′)ti) · Pc(δ

i+1
c ) (6)

3.2.2 Resource probabilities

Let P
ti+1
ra (rti+1) be the probability that agent Agi has rti+1 resources before it tries to exe-

cute ti+1. As agents do not share resources, this stands for the probability that Agi has rti+1

resources after executing ti+1’s previous task (let ti be this previous task). Probabilities Pra

on available resources are therefore defined as follows:

1. If ti+1 is the first task of the agent (ti = ∅) :

P
ti+1
ra (rti+1) =


0 If rti+1 6= Rini

1 Otherwise

where Rini is Agi’s initial rate of resources.
2. If ti+1 is the second task of the agent (ti−1 = ∅ and ti 6= ∅) (ti−1 is the task that Agi

has executed before ti) :

P
ti+1
ra (rti+1) =

available resources before ti’s executionz }| {X
rti

P ti
ra(rti) ·

nr. of partial failuresz }| {X
nbEP

PEP (nbEP, rti)

·

resource consumptionsz }| {X
∆i

r|rti
−nbEP ·∆r′−∆i

r=rti+1

Pr(∆
i
r)

Probabilities on available resources before trying to execute ti+1 are deduced from prob-
abilities on available resources after the execution of ti. These are based on available
resources before trying to execute ti, the number of partial failures of ti, partial fail-
ure resource consumption ∆r′, and ti’s resource consumption ∆i

r . For each available
resource rate before trying to execute ti, we consider every possible number of partial
failures. Let PEP (nbEP, rti) be the probability that nbEP partial failures of ti occur
before successful execution of ti, when the agent has rti resources before trying to exe-
cute ti.
PEP (nbEP |rti) is computed by considering each possible start time sti of ti and the
number of partial failures that may have occurred when the task successfully starts ti at
sti. EP (sti) is the set of the numbers of partial failures nbEP that may have occurred
when the task is successfully executed at sti. Then,

PEP (nbEP, rti
) =

P
st∈ST (ti)|nbEP∈EP (st) P

ti
ST (st|rti

) ·
P

δi
c|st+δi

c≤LETi
Pc(δ

i+1
c )

(1 −
P

st∈ST (ti)
·P ti
ST (st)) · (1 −

P
δi
c|st+δi

c≤LET Pc(δi
c))

where ST (ti) is the set of possible start times st of ti. For each of these start times sti,
we compute the probability that the task is successfully executed when it starts at sti.
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This is the probability that the task ends before the deadline (
P

δi+1
c |sti+δi+1

c ≤LETi+1
Pc(δ

i+1
c )).

As we consider successful execution of ti, the sum of probabilities is normalized by the
probability that ti is successfully executed.

3. Otherwise:

P
ti+1
ra (rti+1) =

available resources before ti’s executionz }| {X
rti

P ti
ra(rti) ·

nr. of partial failuresz }| {X
eti−1

P
ti−1
ET (eti−1)

X
nbEP

PEP (nbEP |eti−1, rti)

·

resource consumptionsz }| {X
∆rti

|rti
−nbEP ·∆r′−∆i

r=rti+1

Pr(∆
i
r)

This equation is nearly the same as the one introduced in the previous case. Nonetheless,
Agi has executed a task ti−1 before ti. As the end time eti−1 of ti−1 influences the start
time of ti−1’s following tasks, it is taken into account while considering probabilities on ti’s
start times. PEP (nbEP |eti−1, rti) is then defined as follows:

PEP (nbEP |eti−1, rti) =

P
sti∈ST (ti)|nbEP∈EP (sti|eti−1)

P ti

ST (sti|eti−1, rti)

β

·
P

δi+1
c |sti+δi+1

c ≤LETi+1
Pc(δ

i+1
c )

β

And

β =(1−
X

sti∈ST (ti)

P ti

ST (sti|eti−1)) · (1−
X

δi+1
c |sti+δi+1

c ≤LETi+1

Pc(δ
i+1
c ))

where EP (sti|eti−1) is the set of numbers of partial failures that may occur before the
execution of ti successfully starts at sti, when ti−1 ends at eti−1.

3.2.3 Transition probabilities

Once temporal and resource probabilities are known, individual transition functions can be
deduced. As mentioned previously, each individual transition function can be decomposed
into three components that stand for each kind of transitions. Let Agi be in a state si where
it tries to execute ti+1 at sti+1. We assume that his previous executed task ti finished at
et(I ′)ti and Agi has rti remaining resources. We now detail how to compute individual
transition probabilities for each kind of transitions.

Success transitions When agent Agi starts to execute ti+1 at sti+1, it succeeds if:

– precedence constraints are respected (ti+1’s predecessors have finished their execution),
– Agi has enough resources to execute the task ( ∆i+1

r ≤ rti ),
– temporal constraints are respected: sti+1 + δi+1

c ≤ LETi+1.
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The probability that the agent successfully executes ti+1 is then defined as:

Psuc(sti+1|et(I ′)ti , rti) = P r
enough(Pred(ti+1)) ·

Y
tk∈Pred(ti+1)

X
t|t≤sti+1

P tk

ET (t|et(I)ti)

·
X

∆i+1
r |rti

≥∆i+1
r

X
δi+1

c |sti+1+δi+1
c ≤LETi+1

Pr(∆
i+1
r ).Pc(δ

i+1
c )

where Pr(∆
i+1
r ) is the probability that the execution of ti+1 consumes ∆i+1

r resources
and Pc(δ

i+1
c ) stands for the probability that the execution takes δi+1

c time units.

Partial failure transitions The probability the agent partially fails executing the task is equal
to the probability that the predecessors have not finished their execution and the agent Agi

has enough resources to realize that it partially fails. Indeed, if the agent lacks resources, the
execution of the task permanently fails. Note that if sti+1 = UBi+1 and the predecessors
have not finished their execution, the agent permanently fails because it could not retry to
execute the task later (there is no other possible start time for the task).

The probability Pnot end(sti+1) that the agent’s predecessors have not finished at sti+1

is the probability that the predecessors will finish later or will never finish. The predecessors
may never finish because they violated temporal constraints or they lacked resources. The
probability that such events occur is given by:

1− P r
enough(Pred(ti+1)) ·

Y
tk∈Pred(ti+1)\ti

X
et∈ET (tk)|et≤UBi+1

P tk

ET (et|et(I ′)ti)

The probability that the predecessors finish after sti+1 is:

P r
enough(Pred(ti+1)) ·

Y
tk∈Pred(ti+1)\ti

X
et∈ET (tk)

P tk

ET (et|et(I ′)ti)

−P r
enough(Pred(ti+1)).

Y
tj∈Pred(ti+1)\ti

X
et′∈ET (tj)|et′≤sti+1

P
tj

ET (et′|et(I ′)ti)

Thus, Pnot end(sti+1) is defined as follows:

Pnot end(sti+1) =P r
enough(Pred(ti+1)) ·

Y
tk∈Pred(ti+1)\ti

X
et∈ET (tk)|et≤UBi+1

P tk

ET (et|et(I ′)ti)

− P r
enough(Pred(ti+1)).

Y
tk∈Pred(ti+1)\ti

X
et′∈ET (tk)|et′≤sti+1

P tk

ET (et′|et(I ′)ti)

+ 1− P r
enough(Pred(ti+1)) ·

Y
tk∈Pred(ti+1)\ti

X
end∈ET (tk)|et≤UBi+1

P tk

ET (end|et(I ′)ti)

Given Pnot end, partial failure probabilities PPCV (Precedence Constraints Violated) is
deduced:

– If sti+1 < UBi+1:

PPCV =
X

∆′
r|rti

≥∆′
r

Pr(∆
′
r) · Pnot end(sti+1)

– Otherwise:
PPCV = 0
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Failure transition The execution of ti+1 permanently fails if the agent lacks resources or he
violates temporal constraints.

• Lack of Resources (LR):
Agent Agi may lack resources during the execution of ti+1 or when he partially fails.

The probability Agi lacks resources while executing a task ti+1 is the probability that the
predecessors have finished their execution (so the agent can start to execute the task) and the
execution requires more resources than available (rti < ∆i+1

r ). The probability the agent
lacks resources when it partially fails is the probability the predecessors have not finished
their execution and the necessary resources to be aware of it are not sufficient (rti < ∆′

r).
Recall that ∆r′ is the resource consumption of a partial failure. Thus, the probability PLR

the agent fails because of insufficient resources, is computed as follows:

– If sti+1 < UBi+1:

PLR = P r
enough(Pred(ti+1))·

Y
tk∈Pred(ti+1)\ti

X
t∈ET (tk)|t≤sti+1

P tk

ET (t|et(I)ti)·
X

∆i+1
r |rti

<∆i+1
r

Pr(∆
i+1
r )

+Pnot end(sti+1).
X

∆′
r|rti

<∆′
r

Pr(∆
′
r)

– Otherwise (sti+1 = UBi+1):

PLR = P r
enough(Pred(ti+1))·

Y
tk∈Pred(ti+1)\ti

X
t∈ET (tk)|t≤sti+1

P tk

ET (t|et(I)ti)·
X

∆i+1
r |rti

<∆i+1
r

Pr(∆
i+1
r )

Because sti+1 = UBi+1, there is no partial failure. If the agent fails, he moves to a
permanent failure state.

• Violation of temporal constraints TC(ti+1):
Temporal constraints restrict the start times and end times of each task. They are violated

if the agent starts the execution of a task ti+1 too late (after the Latest Start Time of the task
- LSTi+1) or it finishes the execution after the task’s deadline (Latest End Time - LETi+1).

Possible start times sti+1 of ti+1 belong to the interval [LBi+1, UBi+1] and respect
temporal constraints. Too late start time failure arises when the agent starts to execute a task
ti+1 at UBi+1 and he partially fails. Then, there is no other possible start time that respects
temporal constraints and the agent cannot respect LSTi+1 deadline. The probability of such
a failure is computed as follows:

– If sti+1 < UBi+1: PTL = 0

– Otherwise: PTL = Pnot end(sti+1)

The agent can also violate temporal constraints if the execution of the task is so long
that it finishes after its Latest End Time. In this cas, task duration is such as: sti+1 + δi+1

c >

LETi+1. The probability PDM that the deadline is met while executing ti+1 is:

PDM = P r
enough(Pred(ti+1)).

Y
tj∈Pred(ti+1)−ti

X
t∈ET (tj)|t≤sti+1

P
tj

ET (t|et(I)ti).
X

∆i+1
r |rti

≥∆i+1
r

Pr(∆
i+1
r )

.
X

δi+1
c |sti+1+δi+1

c >LETi+1

Pc(δ
i+1
c )i+1
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Finally, the probability Pfail the agent moves to a failure state is:

Pfail = PLR + PTL + PDM

Decomposition of the system’s transition function allows us to modelize the initial mul-
tiagent decision problem as a set of individual MDPs that represent each agent’s decision
problem. Each MDP of the OC-DEC-MDP model formalizes temporal, precedence and re-
source constraints on task execution. The model also allows for modeling several possible
durations for each task. It thus provides a richer model of time and action than the one
proposed by standard DEC-MDP framework. As we consider individual actions and states,
large problems, that are out of range of other approaches, can be modelized by OC-DEC-
MDPs. We detail the scalability of our approach in section 5.1.

3.3 Complexity Analysis

Theorem 1 Optimally solving an OC-DEC-MDP has a complexity exponential in the num-
ber of states.

Proof: Each agent’s state is locally fully observable. Thus, a joint policy is a mapping from
world states S = 〈S1, · · · , Sn〉 to joint actions A = 〈A1, · · · , An〉. The number of joint
policies is exponential in the number of states |S|. Evaluating a joint policy can be done in
polynomial time through the use of dynamic programming, the OC-DEC-MDP is therefore
exponential in the number of states |S|. 2

Figure 3, classifies some existing models based on DEC-POMDPs. Unlike Transition
Independent Decentralized Markov Decision Processes (TI-DEC-MDPs) and Observation
Independent Decentralized Markov Decision Processes (OI-DEC-MDPs), we do not as-
sume some independence properties about the transition or observation functions. The Event
Driven Decentralized Markov Decision Processes (ED-DEC-MDPs) (Becker et al., 2004a)
model is OC-DEC-MDP’s nearest framework. Indeed, ED-DEC-MDPs and OC-DEC-MDPs
both deal with constraints on task execution and both consider several possible durations for
each task. These properties are not taken into account by other models. ED-DEC-MDPs
formalize a problem as a factored DEC-MDP where each agent’s state keeps track of infor-
mation about dependencies. This leads to larger set of states than the ones defined in OC-
DEC-MDP. Such a definition of states allows for representing a wider range of dependencies
but it limits the size of problems that can be solved. On the other hand, OC-DEC-MDP’s def-
inition exploits constraints and dependencies to restrict the action and state spaces allowing
for representing large size of problems (see section 5.1).

4 OC-DEC-MDP resolution

Given the decomposition of the problem, we aim at solving each local MDP and deducing
each agent’s policy. Nevertheless, we consider cooperative multiagent systems where inter-
actions between the agents arise from precedence and temporal constraints. Thus, maximiz-
ing a common reward requires the agents to coordinate and MDPs cannot be independently
solved.

Temporal constraints restrict the possible intervals of execution and precedence con-
straints partially order the tasks. If the execution of a task ti+1 starts before its predecessors
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Fig. 3 Relationships between DEC-POMDP based models

finish, it partially fails. Partial failures consume restricted resources and can lead to insuffi-
cient resources. If an agent lacks resources it will be unable to execute its remaining tasks.
Consequently, the agents tend to avoid partial failures. One way to restrict partial failures
consists in delaying the execution of the tasks. As a result, the likelihood that the prede-
cessors have finished when an agent starts to execute a task increases and less resources
are consumed by partial failures. Nonetheless, the more the execution of a task is delayed,
the more the successors are delayed and the higher the probability of violating temporal
constraints. In fact, the probability the deadline is met increases. If temporal constraints are
violated during task execution, the agent fails permanently executing the task and does not
obtain the reward associated with the task. Note that this assumption can be easily relaxed
without modifications of our approach.

The problem is to find a local policy for each agent that maximizes the sum of the re-
wards of all the agents. The agents must trade off the probability of partially failing and
consuming resources against the consequences of delaying the execution of a task. To maxi-
mize the sum of the expected rewards, each agent must consider the consequences of a delay
on itself and on its successors. For purpose of coordinating the agents, we introduce the no-
tion of Opportunity Cost (OC) and we propose valuation measures that lead to cooperative
behaviors. We then introduce algorithms that use these measures to evaluate each agent’s
policy and solve the decision problem.

4.1 Opportunity cost and policy evaluation

Opportunity cost is borrowed from economics and refers to hidden indirect costs associated
with a decision (Wieser, 1889). In our approach, we use opportunity cost to measure the
effect of an agent’s decision on the other agents. More specifically, the opportunity cost is
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the loss of expected value of the other agents resulting from delaying the execution of their
tasks. Taking this cost into account leads to better coordination among the agents: it allows
each agent to consider how its decisions influence the other agents.

When an agent Agi decides when to start the execution of a task ti+1, its decision
influences all the tasks that can be reached from ti+1 in the mission graph (direct or indi-
rect successors of ti+1). In order to obtain coordinated behaviors, each agent must therefore
consider the influence of its actions on the other agents. This is measured by expected oppor-
tunity cost (EOC) and policies are valued using two equations: a standard Bellman equation
and a modified Bellman equation. The modified Bellman equation allows the agent to se-
lect the best action to execute in a state si, considering its expected utility and the expected
opportunity cost induced on the other agents. The best action to execute from a given state
results from a trade-off between the agent’s expected utility and the EOC provoked on the
other agents.

The first equation is a standard Bellman equation that computes for each state si of each
agent Agi, the agent’s utility. It is based on Bellman optimality principle:

V (si) =

Immediat Gainz }| {
R(si) +

Expected Utilityz }| {
maxE(ti+1,st),st≥t(V

′) (7)

where si = [ti, [st(I
′)ti , et(I

′)ti ], rti ] (and et(I ′)ti = t) or si = [ti, [t−1, t], et(I ′)ti , rti ].
If si = [ti, [st(I

′)ti , et(I
′)ti ], rti ] (success state), t = et(I ′)ti . Moreover, R(si) = R(ti).

Otherwise, R(si) = 0.
Different kinds of transitions must be considered to compute the expected value, thus

V ′ is such that: V ′ = Vsuc +VPCV +Vfail. Each part of V ′ stands for a kind of transitions:
• Success transition:

Vsuc = Psuc(st|et(I ′)ti , r) · V ([ti+1, I, rti −∆r])

• Pred(ti+1) violated:

VPCV = PPCV · V ([ti, [st, st + 1], et(I ′)ti , rti −∆r′])

• Failure transition:

Vfail = Pfail · V ([failureti+1 , ∗, ∗])

where V ([failureti+1 , ∗, ∗]) is the value of the failure state associated with ti+1:

V ([failureti+1 , ∗, ∗]) = −R(ti+1)−
X

tsuiv∈Tsuiv(ti+1)

R(tsuiv)

where−R(ti+1) is the immediate penalty due to the failure of ti+1 and
P

tsuiv∈Tsuiv(ti+1)
R(tsuiv)

is the loss in value due to the failure of all the remaining tasks executed by theAgi (the tasks
that can be reached from ti+1 in the mission graph). This is deduced from the mission graph.

The second equation computes the policies of the agents. We use an augmented Bellman
equation in which an expected opportunity cost is introduced:

πi(si) = argmaxE(ti+1,st),st≥et(I′)ti

“Expected valuez}|{
V ′ −

Expected Opportunity Costz }| {
EOC(ti+1, st)

”
(8)

where argmax denotes an operator which returns the action of E(ti+1, st), st ≥ et(I ′)ti

which maximizes V ′. As mentioned previously, E(ti+1, st) is the action which consists in
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executing ti+1 at st. si = [ti, [st(I
′)ti , et(I

′)ti ], rti ] (and et(I ′)ti = t) or si = [ti, [t −
1, t], et(I ′)ti , rti ]. EOC(ti+1, st) is the EOC the execution of ti+1 will induce if the agent
starts at st and V ′ = Vsuc + VPCV + Vfail.

Thus, the most valuable foregone action is selected by considering:

– The expected value, computed using a standard Bellman equation (Equation 7). It takes
into account the expected value of executing the agent’s remaining task.

– The expected opportunity cost provoked on the other agents.

The following of the section will deal with the definition and computation of the ex-
pected opportunity cost.

Let two tasks ti+1 and tj be respectively executed by two agents Agi and Agj , and such
that tj is a successor of ti+1. Moreover, let suppose that Agj has rtj available resources
when it starts to execute tj . Two possible executions of ti+1 are presented in Figure 4. The
first one starts at st1 and ends at et1 = LBj . Thus, the execution of tj can start in the interval
[LBj , UBj ], Agj will choose the best start time stj in this interval. The second execution
of ti+1 starts at st2 and ends at et2. Then, tj could not start before et2. If we consider that
et2−LBj = ∆t, the execution of tj will start in the interval [LBj +∆t, UBj ]. The interval
of the possible start times is reduced by ∆t and Agj will choose the best start time st′j in the
interval [LBj + ∆t, UBj ]. If stj = st′j , the fact that ti+1 ends later does not affect the best

possible start time of tj . Otherwise (stj 6= st′j), the expected utility V
0,rtj

tj
the agent can

obtain when it starts tj at stj (best start time in [LBj , UBj ]) with rtj resources, is greater

than V
∆t,rtj

tj
the expected utility when it starts the execution of tj at st′j (best start time in

[LBj + ∆t, UBj ]) with rtj resources. Then, the fact that ti+1 ends at et2 leads to a loss in
Agj’s expected value.

LBj UBjLBj +      t

t

st1 st2

et1

et2

ti+1

ti+1

Fig. 4 Delay example
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V
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t

r
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V
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t

0, r’

Delay

Expected Utility

OC(   t, r)

OC(   t, r’)

, r

, r’t

Fig. 5 Influence of resources and delay on Ex-
pected Value

The OC induced by Agi on Agj is the loss in value when Agj has rtj resources and
its first possible start time is delayed by ∆t. The OC is measured by the difference between

V
0,rtj

tj
, the expected value if tj can start in [LBj , UBj ] with rtj resources , and V

∆t,rtj

tj

the expected value if tj can start in the interval [LBj + ∆t, UBj ] with rtj resources. The
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opportunity cost is then given by:

OCtj (∆t, rtj ) = V
0,rtj

tj
− V

∆t,rtj

tj
(9)

As the rate of resource rtj influences the expected value, an opportunity cost is com-
puted for each resource rate and each delay ∆t (see Figure 5). For instance, if the resource is
very tight, the probability the agent will fail because of lack of resources, is very high. Then,
delaying a task has a low cost because whatever its start time, the likelihood its execution
fails is very high.

Claim: OC is always positive or equal to zero.

Proof: Let assume that V
0,rtj

tj
< V

∆t,rtj

tj
. stj is the best possible start time in the

interval [LBj , UBj ] and allows to obtain V
0,rtj

tj
. st′j is the best possible start time in the

interval [LBj + ∆t, UBj ] and allows to obtain V ∆t,r
tj

. If stj belongs to [LBj + ∆t, UBj ]

then, it is the best possible start time in [LBj +∆t, UBj ]. Therefore stj = st′j and V
0,rtj

tj
=

V
∆t,rtj

tj
. We cannot have V

0,rtj

tj
< V

∆t,rtj

tj
.

If stj does not belong to [LBj + ∆t, UBj ] then, there is another best possible start time

st′j in [LBj + ∆t, UBj ] and V
0,rtj

tj
> V

∆t,rtj

tj
, otherwise st′j would be the best start time

in [LBj , UBj ]. 2

Expected Opportunity Cost
Let suppose that a task ti+1 starts at st. Since actions are not deterministic, we do not

know exactly when the task ti+1 will end and the opportunity cost it will induce. Different
kinds of transitions must be taken into account so as to consider the possible end times of the
task. That’s why we define expected opportunity cost and Equation 8 considers the expected
opportunity cost provoked by a task ti+1 on the other agents when it starts at st. Given a
start time st, the exepcted opportunity cost consider, for each possible end time etti+1 of
ti+1, the probability ti+1 ends at etti+1 and the OC provoked on the other agent in such a
case. The expected opportunity cost induced on the other agents when ti+1 starts at st is
defined as follows:

EOC(ti+1, st) =Psuc ×
X

Agj∈Ag,j 6=i

EOCAgj ,ti+1 (eti+1) (10)

+ Pfail

X
Agj∈Ag,j 6=i

EOCAgj ,ti+1 (fail) + PPCV × EOC(ti+1, t = next start)

=P r
enough(Pred(ti+1)) ·

Y
tk∈Pred(ti+1)

X
t|t≤sti+1

P
tk
ET (t|et(I)ti )

·
X

∆i+1
r |rti

≥∆i+1
r

X
δi+1

c |sti+1+δi+1
c ≤LETi+1

Pr(∆i+1
r ).Pc(δ

i+1
c ).EOCAgj ,ti+1 (eti+1)

+ (PLR + PTL + PDM )
X

Agj∈Ag,j 6=i

EOCAgj ,ti+1 (fail)

+ PPCV × EOC(ti+1, t = next start)

where eti+1 is a possible end time of ti+1, EOCAgj ,ti
(eti+1) is the EOC induced on the

agent Agj when it could not start before eti+1 (the end time of ti+1), and EOC(ti+1, t =

next start) is the opportunity cost when the execution of ti+1 partially fails and the agents
re-try to execute the task at t (the next start time given for ti+1). The execution of ti+1

can lead to different transitions, therefore all these transitions must be considered while
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computing EOC(ti+1, st). For instance, if the execution of the task succeeds, the EOC will
be different from the EOC induced on the other agents if the execution fails.

When an agent Agi finishes to execute a task ti+1 at etti+1 , we consider the expected
opportunity cost provoked on each other agentAgj . We thus compute the delay provoked on
the nearest task tj that will be executed by Agj . This is the nearest task in the mission graph
that will be influence by the delay of ti+1. Distance between two tasks ti and tj is given by
the number of nodes that belong to the shortest path between ti and tj in the mission graph.
Let consider the task “Put out from flames” described on Figure 1. The ambulance agent’s
nearest task from the task “Put out from flames” is “Give first aid to injured people”.

This expected opportunity cost provoked byAgi onAgj is denoted EOCAgj ,ti+1(etti+1).
If there is no intermediate task between ti+1 and tk (tk is a direct successor of ti+1), the
delay of ti+1 is the delay provoked on tk. Thus,

EOCAgj ,ti+1(etti+1) =
X
rtj

P
tj
ra(rtj )×OCj(etti+1 − LBj , rtj ) (11)

Otherwise, the tasks between ti+1 and tk may increase or decrease the delay provoked
on tk. The expected provoked on tk when ti+1 ends at etti+1 is then recursively computed.
Let tl be the successor task of ti+1 on the path from ti+1 to tk. We obtain :

EOCAgj ,ti+1(etti+1) =
X
rtl

P tl
ra(rtl)

X
δl

c

Pc(δ
l
c)EOCAgj ,tl

(st∗ + δl
c) (12)

where st∗ is tl’s start time when the Agl who executes tl has rtl resources before exe-
cuting tl and it cannot start executing tl before etti+1 .

Given a start time st of ti+1, Equation 10 computes the probabilities on ti+1 end times.
For all ti+1’s end times and each agent Agi, Equations 11 and 12 computes the delay pro-
voked on Agj’s nearest task tj , assuming ti+1 ends at etti+1 . Given this delay, Equation 9
computes the OC on tj . These equations allow us to deduce the expected opportunity cost
introduced in the augmented Bellman equation (Equation 8). Note that the OC is always
positive, then the EOC is always positive. While deciding the best action to execute in a
state si, the expected value is reduced by −EOC(ti+1, st) which always stands for a cost.

4.2 Revision algorithm

Optimally solving a general DEC-MDP is a double exponential problem (Bernstein et al.,
2002). It is therefore intractable to find an optimal solution for large size of problems (Becker
et al., 2004a). In order to solve large realistic problems that may be composed of hundreds
tasks and more than ten agents, we aim at finding an approximate solution. In this section, we
present a revision algorithm that uses the coordination mechanism described in the previous
section to evaluate each agent’s policy and solve the problem.

The revision algorithm consists in improving the initial set of policies which has been
previously used to compute transitions probabilities. Two versions of the algorithm have
been developed. A centralized one (Algorithm 1) allows a central entity to revise all the
agents policies and improves the policy of each task using Equation 8. Decentralized version
of the algorithm has also been proposed: each agent improves its own policy, thus allowing
for considering several tasks at the same time.
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4.2.1 Centralized revision algorithm

Because of dependencies between the agents, the centralized revision algorithm (Algo-
rithm 1) evaluates the local MDPs at the same time. The algorithm passes through the mis-
sion graph from the leaves to the roots. The tasks of the mission are organized into levels.
The first level contains the leaves of the graph. The second level contains the predecessors of
the leaves whose successors have already been evaluated. Level Ln contains the predeces-
sors of the tasks belonging to level Ln−1 whose successors have already been evaluated. For
each task ti+1 of a level Ln, the execution policy of ti+1 is revised. In fact, we consider the
states from which ti+1 can be executed. Let ti+1 be executed by Agi and let ti be the task
that Agi executes just before ti+1. While revising the execution policy of ti+1, we consider
the partial failures and the success state associated with ti. Then, Equation 8 is applied to
select the best action to execute from these states.

Once the policy of a task ti+1 has been revised, opportunity cost values associated with
ti+1 are computed. These values will be used while revising the predecessors of ti+1. Notice
that leaves have no successor so delaying their execution do not provoke any loss in value
on the other agents (opportunity cost on the other agents is zero). Nonetheless, delaying a
leaf ti may provoke a loss in value on the agent which executes ti (because of temporal
constraints). While considering a level Ln, we only consider the tasks whose successors
have already been evaluated, we therefore guarantee that we know the opportunity cost the
execution of ti+1 will provoke on the other agents.

In order to measure, the EOC provoked by the execution of ti+1 (Equation 10), we need
to know the delay provoked on the nearest tasks tk of each agent Agk such as k 6= i. This
delay depends on the policies of the tasks between ti+1 and tk. As the algorithm passes
through the graph from the leaves to the node, the policies of the tasks between ti+1 and
tk have been revised when ti+1 is considered. If the initial policy is used to estimate the
delay provoked on tk, it may lead to inaccurate results because of policy changes. We have
therefore developed an update method that guarantees the accuracy of expected opportunity
cost values. Each time the algorithm finishes revising the policy of a task tj executed by
Agj , opportunity cost values are computed using Equation 9. Then, for each nearest tasks
tk of each agent Agk, expected opportunity cost values EOCtj (∆ttj , tk) are updated using
Equations 11 and 12 and tj’s new policy. These values will then be used to revise the policies
of tj’s predecessors. Let ti+1 be a predecessor of tj . While revising the policy of task
ti+1, we know that all the successors of ti+1 have already been evaluated, EOC values
of the successors EOCti+1(∆tti+1 , tk) that are used to compute EOCti+1(∆tti+1 , tk) are
therefore guaranteed to be computed using the revised policy.

Theorem 2 The time complexity of the centralized revision algorithm is polynomial in |SU|×
|A| where |A| is the maximum number of actions that can be executed from a state si.
|A| = |ST | where |ST | is the maximum number of possible start times for a task. SU is the
union of the agents’s states: |SU| =

P
Agi∈Ag |Si| < |S|.

Proof: Let |S(ti)| be the number of states associated with a task ti. The centralized
revision algorithm passes through the state space of each agent. For each state si, a value
V (si) and a policy πi(si) are computed. Their complexity is O(|ST |). Indeed, each action
has to be considered and in the worst case, there are |ST | actions for each state. Moreover,
for each task ti there are |S(ti)| states to consider.

Let |ST (ti)| be the number of possible start times for a task ti and let #ri the maxi-
mum of possible resource rates per task. Lines 10 to 15 of the algorithm compute the OC
values associated with a task ti. The complexity of computing V ∆t,rti and OC(∆t, rti) is
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Algorithm 1 Centralized Revision Algorithm
Require: the OC-DEC-MDP, an initial set of policies π =< π1, · · ·πn >
Ensure: a new set of policies π
1: for all level Ln from the leaves to the roots of the mission graph do
2: for all task ti+1 in level Ln do
3: Compute V for the failure state: [failure(ti+1), ∗, ∗]
4: for all partial failure states [ti, [st, st + 1], et(I′)ti , rti ] associated with ti do
5: Compute V and π for [ti, [st, st + 1], et(I′)ti , rti ]
6: end for
7: for all success state [ti, [st, st + δi

c], rti ] associated with ti do
8: Compute V and π for [ti, [st, st + δi

c], rti ]
9: end for

10: for all start time st of ti+1 from UBti+1 to LBti+1 do
11: for all resource rate rti available after a successful execution of ti do
12: Compute V

∆t,rti
ti

where ∆t = st− LBti

13: Compute OC(∆t, rti ) = V
0,rti
ti

− V
∆t,rti
ti

and deduce EOC values
14: end for
15: end for
16: for all agentAgj that does not execute ti+1 do
17: Update the EOC values ofAgj ’s nearest task from ti+1

18: end for
19: end for
20: end for

O(1) since they consist in summation over possible transitions. In the worst case, there are
|STi| ×#ri values to compute for each task. Thus, the complexity of computing OC values
is O(|ST (ti)| ×#ri) and

|ST (ti)| ×#ri < |S(ti)|

Moreover, EOC values must be updated. In the worst case there are |ST | × |Ag| values
to update and |ST | × |Ag| < |S(ti)| × |ST |

Thus, the complexity of revising a task ti is O(|S(ti)|×|ST |). Lines 3 to 18 are executed
for each task and X

ti∈T
|S(ti)| = |SU|

The time complexity of the algorithm is therefore O(|ST | × |SU|). 2

Note that if there are several possible next tasks from a state si (the agent must choose
between several tasks), the algorithm remains polynomial. Nonetheless, the number of ac-
tions that can be executed from a state si is |ST | × |Next| where |Next| is the number
of possible next tasks to consider. Note that non-selected actions are delayed. The conse-
quences of delaying this task are taken into account by the expected utility V ′ of the agent
and the expected opportunity cost provoked on the other agent (EOC computation is similar
to the computation described in this paper).

4.2.2 Decentralized revision algorithm

Decentralized revision algorithm (Algorithm 2) allows the agents to simultaneously evaluate
their own local MDPs. Thus, each agent derives a new local policy from its initial policy
by applying the decision mechanism described in Equation 8. Unlike centralized revision
algorithm which considers only one task at the same time, decentralized algorithm allows
for several agents to simultaneously revise the execution policies of their tasks.
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While revising his policy, each agent only considers the tasks he has to execute. Given
a mission graph, a graph of tasks can be defined for each agent Agi. This graph of tasks
orders the task the agent Agi has to execute. Then, the agent passes through his graph of
tasks from the leaves to the roots and revises the policy of each task.

Because of decentralization of the decision process, the agents have to communicate
expected opportunity cost values. When an agent evaluates the policy of a task ti+1, he needs
to know the expected opportunity cost he will provoke on the other agents. He must therefore
have received EOC values from its successors. If these values have not been received, the
agent waits until delivery. We assume that there is no loss of messages. As soon as EOC
values are known, the agent can compute its expected value and the policy of ti+1. Notice
that even if decentralized execution of the algorithm requires off-line communication, the
agents never communicate during the execution of the mission.

As soon as an agent finishes revising the policy of a task ti+1, he computes the OC
values associated with ti+1 using Equation 9 and EOC values of ti+1 are deduced. Given
the EOC values he has received and the OC values of ti+1, he then updates the expected
opportunity cost provoked on the other agents by ti+1. For each agent Agj and each delay
∆tti+1 , he therefore computes EOCti+1(∆tti+1 , tj) using Equations 11 and 12 and ti+1’s
new policy (tj is the nearest task that will be executed by Agj). Finally, he sends these
updated EOC values to the predecessors of ti+1 which will use them while computing the
EOC defined by Equation ??. Communicating updated expected opportunity cost values
instead of opportunity cost values guarantees the accuracy of opportunity cost regarding
revised policies.

Algorithm 2 Decentralized Revision Algorithm
Require: Agi’s local MDP and the initial policy πi oAgi

Ensure: A new policy πi of the agentAgi

1: for all level Ln from the leaves to the roots of the agentAgi’s graph of tasks do
2: for all task ti+1 in level Ln do
3: while the agent does not have received the EOC values he needs do
4: wait
5: end while
6: Compute V for the failure state: [failure(ti+1), ∗, ∗]
7: for all partial failure states [ti, [st, st + 1], et(I′)ti , rti ] associated with ti do
8: Compute V and π for [ti, [st, st + 1], et(I′)ti , rti ]
9: end for

10: for all success state [ti, [st, st + δi
c], rti ] associated with ti do

11: Compute V and π for [ti, [st, st + δi
c], rti ]

12: end for
13: for all start time st of ti+1 from UBti+1 to LBti+1 do
14: for all resource rate rti available after a successful execution of ti do
15: Compute V

∆t,rti
ti

where ∆t = st− LBti

16: Compute OC(∆t, rti ) = V
0,rti
ti

− V
∆t,rti
ti

and deduce EOC values
17: Send EOC to ti+1’s predecessors
18: end for
19: end for
20: for all task tj executed by another agent and for which EOC values has been received do
21: Update the EOC values and send them to ti+1’s predecessors
22: end for
23: end for
24: end for
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Theorem 3 The complexity of the decentralized revision algorithm is polynomial time in
|A|× |SU|+#OC ×K×TM where K is the size of a message and TM is the time needed
to communicate one unit of information. |A| is the maximum number of actions that can be
executed from a state si. |A| = |ST | where |ST | is the maximum number of possible start
times for a task.

Proof: In the worst case, none of the states can be evaluated at the same time and the
algorithm has the same time complexity as the centralized algorithm which evaluates all the
agents’ states one by one. Only one state is therefore evaluated at a time. The time needed
to pass trough the state space of each local MDP and to value each state is |ST | × |SU|.

The complexity of sending an OC value relies on the size of the message (a message
consists in communicating a “double” value) and the time needed to send one unit of the
message. In the worst case there are #OC values of opportunity cost to communicate where:

#OC =
X
ti∈T

|Ag| × |ST |

Indeed, each time an agent revises the policy of a task ti+1, it must broadcast the updated
expected opportunity cost values. While updating the expected opportunity cost values, the
nearest task of each agent is considered and there are |ST | values to update for each agent.

Thus, the time complexity of the algorithm is O(|ST | × |SU|+ #OC ×K × TM). 2

Complexity analysis of both versions of the revision algorithm suggests that large prob-
lems could be solved. Indeed, we propose a polynomial algorithm whereas other existing
approaches are in best case exponential (Nair et al., 2003; Becker et al., 2004b). As de-
tailed in section 5.1, our approach allows for scaling up to problems with hundreds of tasks
whereas existing approaches are limited to small problems involving at best about ten tasks.

PerformanceThe revision algorithm consists in improving an initial set of policies and re-
sults in an approximate solution. However, under some identified assumptions, the algorithm
returns an optimal solution. Let EST-policy be the policy which consists in executing each
task as soon as possible (Earliest possible Start Time). Let LST-policy be the policy which
consists in executing each task as late as possible (Latest possible Start Time). For purpose
of good understanding, we do not detail the proofs of the following claims. Although, the
authors are willing to provide mathematical details of these proofs.

Claim 1 Under unlimited resources, EST-policy is an optimal policy.

Proof: Under unlimited resources, decisions are not influenced by available resources.
Thus, the agents do not tend to avoid partial failures and do not have to delay the execution of
their tasks. The agents do not have to care about resource failure consumption. Nevertheless,
they have to to respect temporal constraints. In order to limit failures due to violation of
temporal constraints, the agents must start their task as soon as possible. Under unlimited
resources, the agents therefore select the earliest possible start time of each task and EST-
policy is an optimal policy.2

Claim 2 If there is no constraint on tasks’ end times (LET ' +∞), LST-policy is an opti-
mal policy.

Proof: If there is no constraint on tasks’ end times (LET ' +∞), an agent cannot
fail because he finishes the execution of his task after the deadline. Delaying the execution
of a task does not increase the probability of deadline met. Moreover, this decreases the
probability of partially failing. So as to maximize their utility, the agents have to start the
execution of their task as late as possible. LST-policy is therefore an optimal policy.2
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Claim 3 If there is no constraint on tasks’ end times (LET ' +∞) and resources are
unlimited, all policies are optimal policies.

Proof: If there is no constraint on tasks’ end times (LET ' +∞) and resources are
unlimited, resources and deadlines do not influence the agents’ expected utility. Whenever
the agents start the execution of their task, their expected utility remains unchanged. Thus,
the agents can start the execution of their task whenever they want.2

Claim 4 Under unlimited resources, the revision algorithm computes an optimal policy.

Proof: See Appendix A

Claim 5 If there is no constraint on tasks’ end times (LET ' +∞), the revision algorithm
computes an optimal policy.

Proof: See Appendix B

Claim 6 If there is no constraint on tasks’ end times (LET ' +∞) and resources are
unlimited, the revision algorithm computes an optimal policy.

Proof: If there is no constraint on tasks’ end times (LET ' +∞) and resources are
unlimited, all policies are optimal policies. We deduce that computed policies are always
optimal. 2

Claim 7 Let X be a mission involving two agents Agi and Agj . If the initial policy of
Agi is EST-policy and all precedence constraints come from Agi to Agj then, the revision
algorithm computes an optimal policy.

Proof: See Appendix C

4.3 Iterative algorithm

Both versions of the revision algorithm presented in the previous section consist in improv-
ing an initial policy set. When the algorithm stops, each task has been considered once and
a new policy is available for each agent. In order to obtain better solutions, we suggest re-
executing the revision algorithm considering that the initial policy set is the set of policies
we have just computed. By iterating the revision algorithm, each task is therefore consid-
ered several times. Let ti be a task executed by Agi and let tj be a predecessor of ti. At first
iteration step, an initial policy is assumed for the execution of ti and tj . ti’s policy is revised
first, assuming tj’s initial policy. Once the policy of ti has been revised, tj is considered and
its policy is also revised. Thanks to updated expected opportunity cost, tj’s new policy is
computed assuming the new policy of ti. Nonetheless, given the new policy of tj , a better
policy may be found for ti. The iteration process allows for revising ti’s policy given tj’s
new policy.

The outcome policies of iteration N-1 are the initial policies of iteration N. Obviously,
the transition function depends upon the initial policy of the current iteration and must be
updated at each iteration step by propagating temporal and resource constraints through the
mission graph (see section 3.2). Once the new transition function is known, each agent re-
executes the revision algorithm to obtain new local policies. This process is repeated until
no changes are made. Note that states, actions and reward functions remain unchanged at
each iteration.
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Algorithm 3 Centralized Iterative Algorithm
Require: the OC-DEC-MDP, an initial set of policies π =< π1, · · ·πn >
Ensure: a new set of policies π
1: repeat
2: nbChanges = 0
3: Compute new transition functions from π
4: π′ ← Revise local policies πi ∈ π using the centralized revision algorithm
5: for all Agk ∈ Ag do
6: nbChanges += number of changes in π′

7: end for
8: π ← π′

9: until nbChanges == 0

Two versions of the iterative algorithm have been developed. They are based on the two
versions (centralized and decentralized) of the revision algorithm. The centralized iterative
algorithm (Algorithm 3) consists in iteratively executing the centralized revision algorithm
until no policy changes are made.

Theorem 4 The complexity of the centralized iterative algorithm is polynomial time in
IN × |SU| × |A| where IN is the number of iterations. |A| is the maximum number of
actions that can be executed from a state si. |A| = |ST | where |ST | is the maximum num-
ber of possible start times for a task.

Proof: At each iteration step, the transition function is computed and the revision al-
gorithm is executed. The complexity of the centralized revision algorithm is polynomial
time in |SU| × |ST |. The transition function is updated before each iteration step (line
4) by propagating temporal constraints through the mission graph whose complexity is
less than O(|SU|). Then, the overall complexity of the centralized iterative algorithm is
O(IN × |SU| × |ST |). 2

While decentralizing the revision process (Algorithm 4), each agent iteratively improves
its own policy until no policy changes are made by any agents. In order to update its tran-
sition function, each agent has to know all the policy changes the other agents have made.
Policy changes must therefore be broadcasted at the end of each iteration. Nonetheless,
little information exchange is required compared to other approaches such as Subjective
MDPs developed by Chadès et al. (2002) or the Joint Equilibrium based Search for Policies
(JESP) (Nair et al., 2003). Indeed, these approaches only revise a part of the agents’ policies
at each iteration step thus leading to more frequent policy exchange.

Theorem 5 The complexity of the centralized iterative algorithm is polynomial time in
IN × (|A|× |SU|+ (#OC + |SU|)×K ×TM) where IN is the number of iterations. |A|
is the maximum number of actions that can be executed from a state si. |A| = |ST | where
|ST | is the maximum number of possible start times for a task.

Proof: At each iteration step, the transition function is computed and the revision algorithm
is executed. The complexity of the centralized revision algorithm is O(|ST |×|SU|+#OC×
K × TM). At the end of each iteration step, each agent must send his policy changes to
the other agents. There are in the worst case |SU| values to communicate. The transition
function is then updated by propagating temporal constraints through the mission graph
whose complexity is less than O(|SU|). Then, the overall complexity of one iteration is
O(|ST |× |SU|+(#OC + |SU|)×K×TM) and the complexity of the centralized iterative
algorithm is O(IN × (|ST | × |SU|+ (#OC + |SU|)×K × TM)). 2
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Algorithm 4 Decentralized Iterative Algorithm
Require: the agentAgi’s MDP, an initial set of policies π =< π1, · · ·πn >
Ensure: a new policy πi forAgi

1: repeat
2: Compute the transition function ofAgi from π
3: π′i ← Revise the local policy using the decentralized revision algorithm
4: for all Agj ∈ Ag, j 6= i do
5: Send π′i toAgj

6: end for
7: nbChanges = 0
8: for all Agk ∈ Ag do
9: nbChanges += number of changes in πk

10: πk ← π′k
11: end for
12: until nbChanges == 0

ConvergenceTemporal complexity analysis proves that it is mainly influenced by the num-
ber of iterations. We end this section discussing convergence of the iterative process. We
describe the influence of centralization, decentralization and opportunity cost computation
on convergence guarantee.

First, it is proved that Equation 8 allows for choosing the action that maximizes the
agents’ joint utility.

Claim 8 If expected opportunity cost accurately measures the influence of an action on
the other agents’ expected utility then, selecting the action to execute from a state si using
Equation 8 maximizes the system’ utility.

Proof: See Appendix D
This claim assumes that an accurate measure of expected opportunity cost is used to re-

vise policies. Indeed, the expected opportunity cost must correctly and accurately measure
the influence of an action on the other agents’ expected utility. While executing the central-
ized iterative algorithm, the execution policy of only one task is revised at the same time.
Moreover, each time a task is revised, expected opportunity cost values are updated consid-
ering the new policy of the task. We thus guarantee that the expected opportunity cost used
in Equation 8 always remains accurate and correct and it can be deduced that centralized
iterative algorithm converges.

Claim 9 If expected opportunity cost accurately measures the influence of an action on the
other agents’ expected utility then, the centralized iterative algorithm converges.

Proof: Let task ti be executed by agent Agi and let π be the joint policy of the agents.
While revising the execution policy of ti (in a centralized way), the execution policy of all
the other tasks remains unchanged. Let π−i be the policy of the agentsAgj where j 6= i. For
each state si from which ti can be executed, Claim 8 proves that the revised policy of these
states maximizes the joint expected utility given the policy π−i of the other agents. Let πold

i

be the policy of the agent Agi before revising the execution of ti and let πnew
i be the policy

of the agent Agi after revising the execution of ti. From Claim 8, we deduce:

If πold 6= πnew then, V π−i×πold

(si) < V π−i×πnew

(si) ∀si

where V π−i×πold

is the expected gain of the agents while executing the joint policy
π−i × πold.
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Thus, each time the execution policy of a task ti is modified, the agent’s joint utility
increases. As the agents’ utility is upper bounded (the upper bound is the sum of the rewards
of the tasks), we deduce that the algorithm converges.2

Fig. 6 A mission graph involving rescue agents

While executing the decentralized iterative algorithm, the execution policies of several
tasks are revised at the same time. We cannot therefore guarantee the accuracy of expected
opportunity cost. Figure 6 simplifies the mission graph presented on Figure 1. While exe-
cuting the decentralized algorithm on this mission, tasks F and I are revised at the same
time. The expected opportunity cost provoked by agent Ag3 on Ag2 is influenced by Ag2’s
available resources before the execution of G. These rely on the resources consumed to ex-
ecute F and on the execution policy of F . As tasks F and I are revised at the same time,
the accurate amount of resources available before the execution of G is not known by agent
Ag3. Thus, while revising the execution of I, the expected opportunity cost used in Equa-
tion 8 is not accurately known and we cannot guarantee that Equation 8 selects the action
that maximizes the agents’ joint utility. That’s why convergence is not guaranteed.

PerformanceIn order to remedy the high complexity of optimally solving DEC-MDPs, we
have developed approximate algorithms that improve an initial set of policies. Experiments
dealing with the quality of the resulting policies are presented in the next section. Nonethe-
less, properties of the computed solutions can be identified. We first introduce Bayesian
games to define the kind of equilibrium achieved by the centralized iterative algorithm.

Our work deals with partially observable domains. Indeed, we consider multiagent sys-
tems where each agent does not exactly know the other agents’ states nor actions. Bayesian
games modelize decision problems in which information about the other players is incom-
plete. Each agent (or player) has private information that is relevant to the decision making
process and that influences the expected utility of the system (Emery-Montemerlo et al.,
2004). The private information held by each agent is called “type”. In our approach, the
type of an agent Agi stands for his state. Each agent knows his state (or type) but he does
not know the other agents’s states. Computing the strategy for an agent then consists in
finding a strategy that maximizes the agent’s expected utility conditioned by the probability
distribution over the other agents’ states. Let uπ

i be the expected utility of the agent Agi

when strategy (policy) π is applied by the agents. A Bayesian Nash equilibrium is then such
as:

∀i uπ
i (si) ≥ u

π−i×π′i
i (si) ∀si ∈ Si ∀π′i
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where π−i is the policy if the agents Agj such as j 6= i and:

uπ
i (si) =

X
s∈S|s=〈··· ,si,··· 〉

p(s|si)u
π
i (s)

where p(s|si) is the probability that the system is in state s when Agi is in si.

Claim 10 Let X be a mission involving two agents Agi and Agj . If all precedence con-
straints come from Agi to Agj then, the iterative algorithm computes an optimal policy.

Proof: If Agi’s initial policy is EST-policy, it has been previously proved that the revi-
sion algorithm computes an optimal policy. While executing the iterative process, any initial
policy leads to an optimal solution. Whatever Agi’s policy is initially considered, Agi’s
policy resulting from the first iteration is EST-policy. Then, second iteration consists in exe-
cuting the revision algorithm assumingAgi’s policy is EST-policy. This results in an optimal
policy (see Claim 7).2

Like our iterative revision algorithm, co-alternative algorithms for solving DEC-POMDP
iteratively improve the agents’ policies until no more improvement is possible. Nonetheless,
these algorithms, such as the Joint Equilibrium based Search for Policies (JESP) and the
Dynamic Programming Joint Equilibrium based Search for Policies (DP-JESP) ?, improve
only one local policy at a time while our algorithm allows the agents’ policies to be im-
proved at the same time. Moreover, they do not take into account temporal and precedence
contraints. Finally, improvement is centralized and the algorithms can solve only small sizes
of problems: DP-JESP Nair et al. (2003), cannot be run for problems over horizon of 7. In
order to increase the efficiency of these algorithms, a decentralized version of JESP, that ex-
ploits the locality of interactions has also been described Nair et al. (2005). This algorithm,
called LID-JESP, allows for solving larger problems bu still remains limited to small results
(4-agent problems that can be solved up to horizon 5 by JESP are solve up to horizon 6 by
LID-JESP).

Our revision algorithms take advantage of precedence constraints to order policy revi-
sion. The policy of a task ti is revised once the successor task of ti has been considered.
Similarly, the Global Optimal Algorithm (GOA) Nair et al. (2005) exploits the structure of
the agents’interactions to order policy revision. GOA solve problems where interactions can
be formalized by a tree structure. This algorithm allows each agent to compute his optimal
policy given the policies of hiss children in the tree-structure. Although exploiting the struc-
ture of interactions speeds up the problem resolution, the optimal resolution limit the size of
problems (4-agent problems that can be solved up to horizon 6 by LID-JESP are solve up
to horizon 3 by GOA). As mentioned previously, SPIDER is an approximate algorithm that
solves problems where interactions are formalized as a tree structure. Unlike our approach,
SPIDER Varakantham et al. (2007) improves the policy of only one agent at a time. Al-
though SPIDER can provide bounds on quality solutions and allows for considering larger
set of agents (5 agents), experimental results are limited to problems up to horizon 4.

5 Experimental results and analysis

In order our approach to be used to solve realistic problems, it must be able to consider large
problems and to find good approximate solutions. The following experiments first test the
scalability and efficiency of our approach and then, describe its performance.



34

5.1 Scalability

Previous complexity analysis show that the efficiency of our algorithms depends on the
state space and action space sizes of the local MDPs. Thus, first experiments deal with the
influence of problems’ parameters on the number of states and actions.

5.1.1 State space size

An upper bound on each agent’s state space size can be computed considering the number
of tasks to execute, the number of durations and resource consumptions per task, temporal
and resource constraints.

Let #succ(Agi) be the worst case number of success states of an agent Agi:

#succ(Agi) =
X

ti∈Ti

#I(ti)×#ri

where #I(ti) is the number of possible execution intervals of task ti. Most of the time, the
number of states of Agi is less than #succ(Agi) since not all resource rates are possible for
each execution interval.

Similarly, the worst case number of partial failure states of an agent Agi is:

#EP (Agi) =
X

ti∈Ti

|ET (ti−1)| ×#ri × |ST (ti)|

where |ET (ti−1)| is the number of possible end times for the task ti−1 which is executed
by Agi before it starts ti.

As there is one failure state associated with each task, the state space size Si of agent
Agi is:

|Si| = #succ(Agi) + #EP (Agi) + |Ti|

=
X

ti∈Ti

“
#I(ti)×#ri + |ET (ti−1)| ×#ri × |ST (ti)|+ 1

”
The state space size of each agent Agi therefore relies on: the number of tasks |Ti|

executed byAgi, the number of execution intervals per task, the number of possible resource
rates per task, the number of start times and end times per task. Moreover, the number of
intervals per task is strongly related to the number of start times and end times per task; and
in the worst case #I(ti) = |ST (ti)| × |ET (ti)|

Number of tasks The number of tasks each agent has to execute mainly influences the
agents’ state spaces. The more tasks an agent has to execute, the larger his state space is.

The number of tasks per agent relies on the number of agents involved in the mission.
Given a set of tasks, the state space changes as the number of agents changes. Figures 7 and 8
describe the agents’ state space sizes considering several missions where we increase the
number of agents. We consider missions involving 20, 50, 100, 150 and 200 tasks. A peak in
the number of states can be observed when starting to increase the number of agents. While
increasing the number of agents that have to execute a set of tasks, the number of precedence
constraints between two different agents increases. Thus, there are more dependencies be-
tween the agents and more partial failure states have to be considered. Figure 9 illustrates
changes in the number of each kind of states while increasing the number of agents involved
in a mission composed of 50 tasks. On the other hand, the number of success states decreases
as there are less tuple [ti, I, rti ] to consider for each task ti.
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Fig. 10 Influence of temporal windows on the state
space size

Number of intervals per task The number of execution intervals associated with a task ti re-
lies on the number of possible start times and end times of ti which depends on: precedence
constraints associated with ti, temporal constraints associated with ti, possible durations
associated with ti.

When we increase the size of the temporal windows [EST, LET], the state space size
grows. Indeed, temporal constraints are less tight, and new execution plans (involving new
states) can be considered. Figure 10 gives an example of this evolution considering a graph
of one hundred tasks. Size“1” is the initial size of the temporal windows. Size “2” stands for
sizes of windows twice as large as the initial size. On Figure 10, the state space size rises and
then, levels off at 4. Indeed, temporal windows become more and more large, and temporal
constraints get more and more relaxed. While the size of temporal windows is multiply by
4, temporal windows do not constrain the execution of the agent any more. All the possible
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execution plans (and possible states) are considered and the maximum of the state space size
is reached. Keeping on relaxing the constraints does not increase the state space.

Precedence constraints also influence the number of intervals per task. In fact, they re-
strict or increase the number of possible start times and intervals of each task. Adding prece-
dence constraints to a task ti increase the number of ti’s predecessors. According to the end
times of ti’s new predecessors, temporal propagation may result in new start times for ti or
it may remove some possible start times of ti. Figure 11 illustrates changes in the number
of states per agent while increasing the number of precedence constraints. One can observe
that the number of states finally levels off. In fact, for each task ti, all the possible start times
have been considered and restricted at most. Thus, adding a precedence constraint does not
add or remove any start time. The number of intervals therefore remains unchanged.
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space size

Finally, execution durations influence the number of intervals per task. The more du-
rations we consider for each task, the more intervals we obtain. Nonetheless, the number
of intervals is restricted by temporal constraints which define lower and upper bounds on
intervals bounds.

Number of resource rates per task The peak we have previously observed while increasing
the number of agents also relies on resources. Let Rini be the amount of resources which
is initially available to each agent. When we increase the number of agents, each agent Agi

has less tasks to execute and initial resources become wider given the set of tasks Agi must
execute. Lacks of resources become scarce and the number of possible resource rates which
are greater than zero and that have to be considered, increases. Thus, when we increase initial
resources, agents do not lack of them and there are more possible resource consumptions to
consider for each task. That’s why we observe a peak. As shown on Figure 12, under tight
initial resource rates (Rini ∈ [165, 300[), we observe a peak in the number of states. Let Rini

be 165. If the number of agents that must execute the mission increases, the agents have the
same initial resource rate (Rini = 165) to execute less tasks. Then, resources become wider
and more positive resource rates have to be considered. Therefore, the number of states
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increases and there is a peak. When resources are enough large, increasing the number of
agents (i.e. decreasing the number of tasks per agents) does not add new possible resource
rates and there is no peak. Indeed, all the possible resource rates are computed even for small
numbers of agents. If we increase the number of agents no other resource rate is computed
and there is no peak in the number of states. Moreover, each agent has less tasks to execute
and the state space size diminishes.

5.1.2 Action space size

The action set of each agent Agi relies on the number of tasks which are executed by Agi

and the number of possible start times for each task. Temporal and precedence constraints
influence the number of possible start times per task. In fact, temporal constraints restrict
the number of possible start times of each task. Moreover, precedence constraints increase
or decrease the number of possible start times. Note that adding new agents to a mission
increases dependencies between the agents. This increases the number of precedence con-
straints between different agents thus, influencing the number of possible start times of each
task. On the other hand, adding new agents to a mission decreases the number of tasks per
agent. Table 1 describes the influence of the number of agents on the number of actions the
agents have to consider.

Scalability experiments show that many parameters influence the state and action spaces
of each agent. It is therefore difficult to a priori evaluate the number of states and actions
that have to be considered by the revision algorithm. Despite the wide range of parameters
to consider, a rough estimate of state space sizes can be given. Considering a mission of
200 tasks and 3 agents, MDPs composed of about 250 000 states are obtained. Increasing
initial resources leads to MDPs composed of 700 000 states. Nonetheless, adding temporal
constraints and agents to the mission allows for limiting the MDPs’ state spaces. Thus,
problems involving 800 tasks, 20 agents and 700 constraints have led to MDPs composed
of about 57 200 states.

5.2 Efficiency

Based on scalability experiments, we have tested our algorithms on different problems. We
considered a benchmark composed of several sizes of missions (20, 50, 10, 150 and 200
tasks, from 2 to 50 agents) where we varied the number of precedence constraints, temporal
windows and initial resources. Running time of the centralized revision algorithm has then
been studied. Tables 1 and 2 describe the influence of the numbers of actions and states on
the running time of the centralized revision algorithm1. Solving a problem involving 30 000
states usually takes less than 15 seconds. Revising about 150 000 states takes less than 5
minutes and revising a million of states takes between one and two hours.

Experiments have also be run using the decentralized revision algorithm. The time
gained using decentralization is mainly influenced by the number of tasks that can be revised
at the same time and by the time needed to communicate opportunity cost values. On small
problems, running times of centralized and decentralized algorithms are quite the same. In
fact, since there are few agents, few tasks can be revised at the same time. If communication
takes a long time, the decentralized algorithm runs slower than the centralized algorithm
since communication is very time consuming. When large problems are considered (more

1 Algorithms have been executed on a computer equipped with Pentium III, 700 MHz.
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Number Number State space Number Running
of tasks of agents size actions time (s.)

50 2 73 202 222 696 138
50 3 142 477 153 336 95
50 4 123 189 208 301 154
50 5 95 172 326 907 292
50 10 56 873 702 553 312
50 15 48 697 548 435 350

Table 1 Running time of centralized revision algorithm

Number of tasks Number of agents Running time
20 2 8s.
20 10 8s.
50 2 138s.
50 10 312 s.

100 2 15 min
100 10 20 min
200 2 1h30

Table 2 Running time of centralized revision algorithm

than 50 tasks), the decentralized algorithm allows for gaining time if the problem involves
many agents and they can revise their tasks at the same time. Gain of several minutes (from
2 to 3 minutes on our experiments) have been recorded for problems involving a hundred
tasks and ten agents.

These experiments prove that large missions can be solved using the revision algorithm.
We have then studied the efficiency of the iterative algorithm. We have therefore been inter-
ested in the number of iterations needed to converge. One iteration of the iterative algorithm
consists in executing the revision algorithm and updating the transition function. Nonethe-
less, the time needed to update transition functions is negligible compared to the running
time of the revision process. For instance, updating the transition functions of a problem
composed of 20 tasks and 3 agents takes about 5 milliseconds whereas the revision algo-
rithm takes about 4 seconds. The running time of one iteration is therefore mainly influenced
by the revision algorithm’s running time.

Experiments dealing with the number of iterations have highlighted the influence of
initial resources on the number of iterations. Figure 13 relates the number of iteration steps
to the initial resource rate considering that EST-policy is the initial policy. With large or
unlimited resources, only one iteration step is needed to converge. As the initial resource
rate decreases, the number of iteration steps increases since it reaches a maximum which
corresponds to a critical resource rate. If the agents initially have less resources than this
critical rate, they will not be able to execute all the tasks. Whatever their policy, the latest
tasks cannot be executed because of a lack of resources. Then, all the possible policies of
these tasks are equivalent and there is no strictly better policy than the initial EST-policy.
Figure 14 describes the relationship between the initial resource rate and the number of
policy changes of each iteration. If resources are large or unlimited, there is no change.
Indeed, we proved that the initial policy is an optimal policy. As the initial resource rate
decreases, more and more changes are needed to obtain the solution. If initial resources
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are low, the policy of the latest task remains unchanged and few changes are necessary. The
number of policy changes per iteration has also been studied. Most changes are made during
the earliest iterations. Then, the number of policy changes per iteration diminishes until it
becomes null and convergence is reached.

While experimenting the number of iterations to converge, the iterative algorithm have
been run for planning each mission of our benchmark. Most of the time, it takes less than
four iterations for the centralized and decentralized algorithms to converge. Although con-
vergence of the decentralized algorithm is not guaranteed, it never diverges while consider-
ing our benchmark. Divergence seems therefore to be unusual.

5.3 Performance

Finally, the performances of our solutions have been studied by running mission executions.
We have compared the performances obtained at each iteration step. The performances of
our approach have also been compared with other existing works. The following experi-
ments have been developed using the previously described benchmark.

We have studied how the quality of the solutions evolves at each iteration step. We have
thus run the policies that are computed ate each iteration and we have studied the gain of
the agents (sum of the rewards obtained by the agents). Experiments demonstrate that the
performances of the agents increase with the number of iterations. Moreover, it can be shown
that first iteration achieves largest improvements. Subsequent iterations reduce the number
of partial failures and often lead to maximum gain. By iterating the process, the likelihood
the agents fail because of lack of resources decreases. The resulting policy is safer than
policies of previous iteration steps. Figure 15 plots the number of partial failures of the
agents over 1000 executions. Note that experiments described on Figure 15 are developed
assuming that first iteration’s initial policy is EST-policy. At the first iteration, revision of
policies always consists in delaying the execution of the tasks. That’s why the number of
partial failures at “iteration 1” is greater than the number of partial failures at “iteration
0”. A near optimal policy is obtained at the end of the first iteration. Then, the second
iteration leads to small improvements but it diminishes the number of partial failures. When
resources are tight, more iterations are needed to converge. Now, more benefits are gained
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from re-iterating. As soon as the solution produces the maximum gain, re-iterating reduces
the number of partial failures.

Because of the high complexity of the problems that we consider, only small problems
can be optimally solved in practice. While considering problems involving more than two
agents and ten tasks, the optimal solution cannot be computed and our solutions cannot be
compared with the optimum. Let OC-policy be the solution computed by the revision algo-
rithm. In order to test the performance of our approach, OC-policies have been compared
with the performances of three heuristic policies which have been proved to be optimal un-
der some assumptions. The first one is EST-policy, the second policy is LST-policy and the
third policy (P-policy) selects the most likely start time of each task. In fact, for each start
time st of a task ti, it computes the probability that the predecessors of ti end at ti and it
selects the start time with the highest probability. Performances of these policies have been
compared considering the number of partial failures of the agents and the gain they obtain
(the sum of the rewards obtained by the agents) over 1000 executions.

Experiments show that OC-policy outperforms heuristic policies. Figure 16 exemplifies
the agents’ performance considering a scenario involving 2 agents and 20 tasks. The number
of partial failures of the agents is quiet small while executing OC-policy. Indeed, over 1000
executions, the agents move 113 times to a partial failure and they obtain the maximum gain.
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failures

Gain 8274 9600 9888 10059

Fig. 16 Heuristic methods vs OC-DEC-MDP

Partial failures arise from miscoordination between the agents: an agent starts to execute
a task ti before the predecessors of ti have finished their execution. Since partial failures are
time and resource consuming, the agent must avoid such failures. If we consider the number
of partial failures, the worst case arises for EST-policy. Indeed, each agent chooses to start
the execution of its next task as soon as possible, even if the probability to fail is high. In
the worst case, the agent will try to execute its task at each possible start time. On the other
hand, LST-policy never leads to a partial failure: the agent only tries once to execute its task,
if he fails he could not retry later because there is no more possible start time (permanent
failure).

The more initial resources the agents have, the closer EST-policy is to OC-policy. If
initial resources are high, the cost of a partial failure is negligible and the OC-policy tries
to execute the task at each possible start time (like EST-policy). Then, these policies are the
same. Under unlimited resources, these policies are optimal.
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The difference between the gain of OC-policy and the gain of P-policy, relies on tem-
poral constraints and on the probability distributions on durations. If P-policy is safe (the
probability to move to a permanent failure is low) and the expected opportunity cost of such
a policy is low, P-policy is close to OC-policy.

The performance of our approach have also been compared with the optimum on small
size of problems. The Coverage Set Algorithm (CSA) developed by Becker et al. (2004b)
is the only algorithm that is able to solve DEC-MDPs with complex constraints and several
durations for each task. Despite the wide range of problems solved by CSA (Becker et al.,
2003, 2004a), only small problems can be solved in practice. While considering the kind
of missions we deal with, CSA can only solve problems involving two agents and one way
precedence constraints, (precedence constraints between the agents always come from the
first agent to the second one). Such problems have been proved to be optimally solved by our
approach (Claims 7 and 10). Thus, our approach performs as well as CSA on the problem
CSA and our algorithms both can solve.

It is difficult to compare the performance of our approach on larger sizes of problems.
We have in fact developed the first approach that can deal with large problems and several
kinds of constraints. Even approximate approaches only solve small problems. Moreover
these methods do not deal with constraints and several durations so, we were not able to
compare our results even on small size of problems. Despite the lack of comparison, exper-
iments show that most of the time, the iterative algorithm allows the agents to obtain the
maximum reward and the Bayesian Nash equilibrium achieved by the centralized iterative
algorithm seems often to be very closed to optimal.

6 Conclusion

The framework of DEC-MDPs has been proposed to solve decision problems in cooperative
multiagent systems. Nonetheless, DEC-MDPs assume a simple model of time and actions
and they suffer from a high complexity. It is therefore difficult to formalize and solve large
multiagent decision problems with complex constraints, like multi-robot decision problems.
The framework of ED-DEC-MDPs (Becker et al., 2004a) has been the only attempt to in-
crease the expressiveness of DEC-MDPs considering contraints on task execution. Never-
theless, ED-DEC-MDPs suffer from large state spaces that are exponential in the number
of dependencies and make them intractable for large problems. Due to the high complexity
of optimally solving DEC-MDPs, recent works have focused on developing approximate
approaches. Nonetheless, effective methods to solve large DEC-MDPs are still lacking. In-
deed, approximate approaches are able to solve larger problems than optimal approaches
but they remain limited to small sizes of problems (about 2 agents and 10 tasks). In order to
increase the applicability of DEC-MDP based approaches, our purpose has been to propose
a model that can deal with more complex time and action representations; and to develop
algorithms that efficiently solve large problems with respect to constraints on task execution.

We proposed a new model, OC-DEC-MDP, that allows for representation of temporal,
precedence and resource constraints. In order to deal with large missions, the multiagent
decision problem has been broken into a set of MDPs which represent the agent’s decision
problems. Full definition of MDPs requires the system’s transition function to be decom-
posed. Because of dependencies between the agents such decomposition is not easy. We
have therefore considered an initial set of policies and individual transitions have been com-
puted assuming that each agent follows its initial policy.
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Once the problem was formalized, we tackled policy computation. Given the high com-
plexity of finding an optimal solution, we turned to an approximate approach. We then tried
to improve the initial policy set which has been used to define individual transition functions.
Opportunity cost has been introduced in order to coordinate the agents. We have defined ex-
pected opportunity cost to better estimate the influence of an action on the other agents.
Thus, each decision of an agent Agi results from a trade-off between the expected utility of
Agi and the opportunity cost provoked on the other agents. It has been proved that, if the
expected opportunity cost accurately measures the influence of an action on the other agents
then, each agent chooses the action that maximizes the expected gain of the system.

We then developed a revision algorithm that applies this decision trade-off to improve
the initial policy set. This revision process has been iterated to obtain higher quality so-
lutions and to allow a Bayesian Nash equilibrium to be reached. Finally, we analysed the
complexity of our approach and the quality of solutions. Thus, we have pointed out some
properties that guarantee optimal policy computation. Complexity analysis proved that our
approach is polynomial time in the number of states and actions whereas other approaches
are exponential. Moreover, experiments have shown that constraints on task execution limit
the state and action spaces. Our algorithms are therefore able to solve large problems com-
posed of hundreds of tasks and more than ten agents.

Experimental results, complexity and quality analysis have shown that our approach ful-
fils initial ambitions. Indeed, we have developed efficient algorithms that can deal with large
missions and compute good quality solutions respecting several kinds of constraints. Future
work will first aim at increasing the expressiveness of OC-DEC-MDPs. Thus, we plan to
consider a wide variety of problems. The agents would therefore be able to choose between
several possible tasks. We also plan to relax the assumption about the order of the tasks of
each agent to allow the agents to choose whether execute ti or t′i first. We could also extend
the range of constraints formalized by our approach and the expressiveness of the mission.
We also plan to improve the performance of the system. Marecki and Tambe (2007) have
proposed an heuristic solution to speed up OC-DEC-MDP resolution and to achieve better
solution qualities. Nevertheless, they do not take into account resource consumptions nor
partial failures. In order to increase the quality of the policies computed by approach, we
plan to allow the agents to communicate during task execution. Indeed, sometimes com-
munication during task execution is possible. In fact, it is restricted by temporal windows.
Then, on-line information exchange could improve decision making and could lead to higher
performance (Nair et al., 2004). The agents should therefore trade-off communication cost
and relevance of communicated information (Becker et al., 2005; Goldman and Zilberstein,
2004).
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A Proof of Claim 4

Under unlimited resources, the revision algorithm computes an optimal policy.
Proof: Under unlimited resources, decisions are not influenced by available resources. Thus, expected

utility and opportunity cost values do not depend on resources. Moreover, partial failures do not penalize
the agents. Indeed, as resources are unlimited, partial failures’ resource consumptions do not increase the
probability of failing because of insufficient resources.

When an agentAgi delays the execution of its task ti+1, he increases the probability of failing because
of deadline met. Although the agents reduces the probability of partially failing, the probability of failing
because of insufficient ressources remains unchanged. It can therefore be deduced that the agent’s expected
utility decreases when he delays the execution of his tasks. Moreover the opportunity cost increases as the
delay of a task increases. Let st and st′ be two possible start times (st < st′) for a task ti+1 executed by
agentAgi and let V ′

st beAgi’s expected utility when he starts to execute ti+1 at st. Then,

V ′
st ≥ V ′

st′ and OC(ti+1, st) ≤ OC(ti+1, st′)

As the policy of each task ti+1 is computed using Equation 8, it can be deduced that the policy computed
by the revision algorithm consists in starting each task as soon as possible (EST-policy). In fact, for each state
from which a task ti+1 can be executed, the start time which maximizes Equation 8 is the earliest start time
of ti+1.Under unlimited resources, it has been proved that EST-policy is an optimal policy (see Claim 1).
Then, it can be deduced that, under unlimited resources, the revision algorithm computes an optimal policy.
2

B Proof of Claim 5

If there is no constraint on tasks’ end times (LET ' +∞), the revision algorithm computes an optimal
policy.

Proof: If there is no constraint on tasks’ end times, the agents do not fail because of deadline met. When
an agent Agi delays the execution of its task ti+1, the probability of partially failing decreases. Moreover,
the probability of failing because of insufficient resources decreases. On the other hand, the probability of
failing because of deadline met does not increase. It can therefore be deduced that the agent’s expected value
increases when the agent delays the execution of his tasks. As the highest expected value is obtained for the
largest delay, opportunity cost is equal to zero whatever the delay. Let st and st′ be two possible start times
(st < st′) for a task ti+1 executed by agent Agi and let V ′

st be Agi’s expected utility when he starts to
execute ti+1 at st. Then,

V ′
st ≤ V ′

st′ and OC(ti+1, st) = OC(ti+1, st′) = 0

As the policy of each task ti+1 is computed using Equation 8, we can deduce that the policy computed
by the revision algorithm consists in starting each task as late as possible (LST-policy). In fact, for each state
from which a task ti+1 can be executed, the start time which maximizes Equation 8 is the latest start time
of ti+1. If there is no constraint on tasks’ end times, it has been proved that LST-policy is an optimal policy
(see Claim 2). Then, it can be deduced that the revision algorithm computes an optimal policy when there is
no constraint on tasks’ end times. 2
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C Proof of Claim 7

Let X be a mission involving two agents Agi and Agj . If the initial policy of Agi is EST-policy and all
precedence constraints come fromAgi toAgj then, the revision algorithm computes an optimal policy.

Proof: If there is no precedence constraints from Agj to Agi, agent Agi never partially fails. Because
Agi does not have to wait for other agents, he can start to execute his tasks as soon as possible. Thus, he
minimizes the probability of meeting the deadline and the delay provoked on the other agent Agj . Agi’s
optimal policy is therefore EST-policy.

Let st and st′ be two possible start times (st < st′) for a task ti+1 executed by agent Agi and let V ′
st

be Agi’s expected utility when he starts to execute ti+1 at st. When Agi delays the execution of its task
ti+1, his expected utility decreases and the opportunity cost provoked onAgj increases. Thus,

V ′
st ≥ V ′

st′ and OC(ti+1, st) ≤ OC(ti+1, st′)

ComputingAgi’s policy using Equation 8 leads to EST-policy. If the initial policy ofAgi is EST-policy,
this remains unchanged while executing the revision algorithm.Agj ’s policy is therefore computed assuming
Agi’s optimal policy. As there is no precedence constraints from Agj to another agent, modifying Agj ’s
policy does not influence any agent and the opportunity cost provoked by Agj is equal to zero. If the initial
policy of Agi is EST-policy the OC-DEC-MDP resolution consists in computing the policy that maximizes
Agj ’s expected value givenAgi’s optimal policy. As the opportunity cost provoked byAgj is equal to zero,
Equation 8 maximizes Agj ’s expected utility and allows for computing Agj ’s optimal policy. Because Agj

does not influence any agent, his optimal policy is individually optimal and jointly optimal. The revision
algorithm therefore computes the optimal policy of each agent. 2

D Proof of Claim 8

The opportunity cost provoked onAgj whenAgi fails executing ti+1 is defined by:

EOCAgj,ti+1 (fail) = OCtj
(fail) =

X
rtj

P
tj
ra(rtj

)V
0

tj ,rtj
− V ([failuretj

, ∗, ∗])

Given transition probabilities’ computation and the definition of the expected opportunity cost provoked
by a partial failure, Equation 10 can be re-written as follows:

OC(ti+1, st) =

Probability of successz }| {
P

r
enough(Pred(ti+1)).

Y
a∈Pred(ti+1)−ti
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X
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′
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where PPPC−fail is the probability that the execution of ti+1 fails after one partial failure or more.
PPPC−suc(et

′(ti+1)) is the probability that the execution of ti+1 succeeds after one partial failure or more
and the task ends at et′(ti+1). Thus,

PP P C =
X

et′(ti+1)>et(ti+1)

PP P C−suc(et
′
(ti+1)) + PP P C−fail



47

Moreover,

EOCAgj,ti+1 (etti+1 ) = maxtk∈Suc(ti+1)

X
rtj

P
tj
ra(rtj

)OCj(etti+1 − LBk, rtj
)

For purpose of good understanding, it is assumed that tj = tk . If tj 6= tk , a similar proof can be done
by recursively applying Equations 11 and 12.

We deduce that:

EOCAgj,ti+1 (etti+1 ) =
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We thus obtain:

EOCAgj,ti+1 (etti+1 ) =
X
rtj

P
tj
ra(rtj

)V
0,rtj
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−

X
rtj

P
tj
ra(rtj
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where ∆t = etti+1 − LBj
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Then,
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As the transition system is complete:
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EOC(ti+1, st) can therefore be simplified as:
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Whatever st, probabilities on resource rates rtj remain unchanged. So,
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unchanged whatever ti+1’s start time.
If the expected opportunity cost is accurately and correctly computed, it can be re-written as the differ-

ence between a constant (C) and the expected utility of the other agents:

OC(ti+1, st) = C −
X

Agj∈Ag,j 6=i

V
′
Agj

where V ′
Agj

is the expected utility ofAgj .
Indeed, if the expected opportunity cost is accurately and correctly computed:

X
Agj∈Ag,j 6=i

V
′
Agj

=

Probability of successz }| {
P

r
enough(Pred(ti+1)).

Y
a∈Pred(ti+1)−ti

X
s≤st

P
a
ET (s|et(I

′
)ti

)

Probability of successz }| {
.

X
∆r|r≥∆

i+1
r

X
δ

i+1
c |st+δ

i+1
c ≤LET

Pr(∆
i+1
r ).Pc(δ

i+1
c ) ·

X
Agj∈Ag,j 6=i

X
rtj

P
tj
ra(rtj

)V
∆t,rtj

tj
)

+

Failure probabilityz }| {
(PLR + PT T + PDM )

X
Agj∈Ag,j 6=i

V ([failuretj
, ∗, ∗])

+ PP P C−fail

X
Agj∈Ag,j 6=i

V ([failuretj
, ∗, ∗])

+
X

et′(ti+1)>et(ti+1)

PP P C−suc(et
′
(ti+1))

X
Agj∈Ag,j 6=i

X
rtj

P
tj
ra(rtj

)V
∆t,rtj

tj
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Equation 8 therefore consists in maximizing the following terms:

πi(si) = arg maxE(ti+1,st),st≥et(I′)ti
(

Exepcted Utility ofAgiz }| {
V
′
Agi

−

Constantz}|{
C +

Expected Utility of the other agentsz }| {X
Agj∈Ag,j 6=i

V
′
Agj

)

The selected action from si therefore maximizes the joint expected utility. Indeed, if the expected oppor-
tunity cost is correctly and accurately estimated when an agent revises its policy, the revised policy maximizes
the system’s expected utility.2


