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LIPSCHITZ REGULARITY RESULTS FOR NONLINEAR STRICTLY

ELLIPTIC EQUATIONS AND APPLICATIONS

OLIVIER LEY AND VINH DUC NGUYEN

Abstract. Most of lipschitz regularity results for nonlinear strictly elliptic equations
are obtained for a suitable growth power of the nonlinearity with respect to the gradient
variable (subquadratic for instance). For equations with superquadratic growth power
in gradient, one usually uses weak Bernstein-type arguments which require regularity
and/or convex-type assumptions on the gradient nonlinearity. In this article, we obtain
new Lipschitz regularity results for a large class of nonlinear strictly elliptic equations
with possibly arbitrary growth power of the Hamiltonian with respect to the gradient
variable using some ideas coming from Ishii-Lions’ method. We use these bounds to solve
an ergodic problem and to study the regularity and the large time behavior of the solution
of the evolution equation.

1. Introduction

The main goal of this work is to obtain gradient bounds, which are uniform in ǫ > 0
and t respectively, for the viscosity solutions of a large class of nonlinear strictly elliptic
equations

ǫvǫ − trace(A(x)D2vǫ) +H(x,Dvǫ) = 0, x ∈ T
N ,(1.1)

and






∂u

∂t
− trace(A(x)D2u) +H(x,Du) = 0, (x, t) ∈ T

N × (0,+∞),

u(x, 0) = u0(x), x ∈ T
N .

(1.2)

We work in the periodic setting (TN denotes the flat torus RN/ZN ) and assume for simplic-
ity that A(x) = σ(x)σ(x)T with σ ∈ W 1,∞(TN ;MN). Let us mention that all the results
of this paper hold true if σ ∈ C0,1/2(TN ;MN).

We recall that a diffusion matrix A is called strictly elliptic if

there exists ν > 0 such that A(x) ≥ νI, x ∈ T
N .(1.3)
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Most of Lipschitz regularity results for elliptic equations are obtained for a suitable
growth power with respect to the gradient variable (subquadratic for instance, see Frehse [14],
Gilbarg-Trudinger [15]). In this article, we establish some gradient bounds

|Dvǫ|∞ ≤ K, where K is independent of ǫ,(1.4)

|Du(·, t)|∞ ≤ K, where K is independent of t,(1.5)

for strictly elliptic equations whose Hamiltonians H have arbitrary growth power in the
gradient variable, which is unsual.

An important feature of our work is that we look for uniform gradient bounds in ǫ or t.
In many results, the bounds depend crucially on the L∞ norm of the solution (which looks
like O(ǫ−1) or O(t)), something we want to avoid in order to be able to solve some ergodic
problems by sending ǫ → 0 or to study the large time behavior of u(x, t) when t → +∞.
These applications are discussed more in details below and are done in Section 4. We focus
now on the more delicate part, i.e., the Lipschitz bounds for (1.1).

Let us start by recalling the existing results when H is superquadratic and coercive.
Hölder regularity of the solution is proved under the very general assumption

H(x, p) ≥ 1

C
|p|k − C, with k > 2,

see Capuzzo Dolcetta et al. [10], Barles [7], Cardaliaguet-Silvestre [11], Armstrong-Tran [3].
But there are only few results as far as Lipschitz regularity is concerned. In general they
are established using Bernstein method [15, 19] or the adaptation of this method in the
context of viscosity solutions, see Barles [5], Barles-Souganidis [8], Lions-Souganidis [21],
Capuzzo Dolcetta et al. [10]. This approach requires some structural assumptions on
H which are often close to “convexity-type assumptions”. They appear naturally when
differentiating the equation, a drawback of the original Bernstein method. Even if the weak
Bernstein method [5] is less restrictive as far as the regularity of the datas is concerned
(Lipschitz continuity is enough), we do not consider this approach here to be able to deal
with Hamiltonians having few regularity like Hölder continuous Hamiltonians for instance.
Actually most of our assumptions do not even require the Hamiltonian to be continuous
as soon as a continuous solution to the equation exists. However, let us mention that
the weak Bernstein method has also several advantages: the method may be used for
degenerate equations in some cases and the Hamiltonian may have arbitrary growth, see
for instance [8, 10].

Instead, in this work, we use the Ishii-Lions’ method introduced in [16], see also [12, 6].
This method allows to takes profit of the strict ellipticity of the equation to control the
strong nonlinearities of the Hamiltonian. In Ishii-Lions [16] and Barles [4], weak regularity
assumptions are assumed over H, merely a kind of balance between some Hölder continuity
in x and the growth size of H with respect to the gradient, namely

|H(x, p)−H(y, p)| ≤ ω(|x− y|)|x− y|τ |p|2+τ + C in [16, Assumption (3.2)],(1.6)

or

|H(x, p)−H(y, p)| ≤ C|x− y||p|3 + C(1 + |p|2) in [4, Assumption (3.4)],(1.7)
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where x, y ∈ T
N , p ∈ R

N , τ ∈ [0, 1], ω is a modulus of continuity and C > 0. These
assumptions are designed for subquadratic (or growing at most like |p|3) Hamiltonians.
This is not surprising since it is known that, in general, the ellipticity is not powerful enough
to control nonlinearities which are more than quadratic [10]. Under these assumptions, the
authors prove a Lipschitz bound, which depends however of the L∞ norm of the solution.

Our results consists in improving the previous ones in the periodic setting. We give two
new results, the first one being a slight generalization of of [16, 4] while the second one
takes profit of the strong coercivity of H and allows arbitrary growth of H with respect to
the gradient.

Theorem 1.1. Assume (1.3) and H satisfies






there exists L > 1 such that for all x, y ∈ T
N ,

if |p|=L, then H(x, p) ≥ |p|
[

H(y,
p

|p|)+|H(·, 0)|∞+N |x− y||σx|2∞
]

.
(1.8)

and
{

There are constants α > 0, C such that

for all x, y ∈ T
N , p ∈ R

N , |H(x, p)−H(y, p)| ≤ C|x− y|α|p|α+2 + C(1 + |p|2).
(1.9)

Then, there exists K > 0 such that for all ǫ > 0, any continuous solution vǫ of (1.1)
satisfies (1.4).

Theorem 1.2. Assume (1.3) and H satisfies

there exist constants k > 2, C > 0 such that H(x, p) ≥ 1

C
|p|k − C(1.10)

and










there exist a modulus of continuity ω and constants α ∈ [0, 1], β < k − 1

such that for all x, y ∈ T
N , p ∈ R

N ,

|H(x, p)−H(y, p)| ≤ ω
(

(1 + |p|β)|x− y|
)

|x− y|α|p|(k−1)α+k + o(|p|k),
(1.11)

where o(|p|k)/|p|k → 0 as |p| → +∞, uniformly with respect to x ∈ T
N . Then, there exists

K > 0 such that for all ǫ > 0, any continuous solution vǫ of (1.1) satisfies (1.4).

Before giving some comments about these results, let us explain in a formal way the
strategy to establish them. The proof follows roughly the same lines as the one in [4]. We
aim at proving that the maximum

max
x,y∈TN

{vǫ(x)− vǫ(y)− ψ(|x− y|)}

is nonnegative, choosing in a first step ψ(r) = Lrα, α ∈ (0, 1), to obtain a Hölder bound,
and, in a second step, ψ(r) = L(r − r1+α), to improve the Hölder bound into a Lipschitz
one. To do this, we use in a crucial way the strict concave behavior of ψ near 0 to take
profit of the strict ellipticity of the equation as usual in Ishii-Lions’ method.
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The first notable difference with the previous works is that we are able to force the
maximum to be achieved at (x, y) with r := |x − y| enough close to 0 without increasing
L in terms of the L∞ norm of vǫ. This is a consequence of an a priori oscillation bound

osc(vǫ) := sup
TN

vǫ − inf
TN

vǫ ≤ K, where K is independent of ǫ,(1.12)

obtained by the authors [18] for any continuous solution of (1.1) when merely (1.8) holds.
Let us underline that this oscillation bound is a crucial tool in our work and that the
assumption (1.8) is very general; it is satisfied as soon as

lim sup
|p|→+∞

H(x, p)

|p| = +∞ uniformly with respect to x.(1.13)

We extend the oscillation bound in the parabolic setting, see Lemma 4.5, and give an
application.

The second step starts by noticing that, once we have on hands a Hölder bound, then
the strength of the nonlinearity is weakened. We can apply again Ishii-Lions’ method
in a context where the ellipticity is reinforced compared to the nonlinearity, even when
the Hamiltonian has a large growth with respect to the gradient. It allows to improve the
regularity up to Lipschitz continuity. This is one of the main novelty to obtain the gradient
bounds. Then, a careful study of the balance between both terms finally gives the best
exponents.

Let us comment our results. Theorem 1.1 reduces to [4, III.1] when α = 1. But notice
that our Lipschitz bound does not depend on the L∞ bound of the solution and we are
able to deal with Hamiltonians having less regularity with respect to x. For instance, our
result applies when

H(x, p) = |Σ(x)p|m +G(x, p), m ≤ α + 2, Σ ∈ C0,α(TN ;MN),(1.14)

and G satisfies (1.13) (superlinearity) and |G(x, p)| ≤ C(1 + |p|2) (subquadratic) without
any regularity condition on G.

In Theorem 1.2, the coercivity assumption (1.10) is the one needed to obtain the Hölder
regularity with exponent k−2

k−1
in [10]. Notice that, this estimate being independent of ǫ,

we get for free the oscillation bound (1.12). The first step in this case consists in showing
that the solution is γ-Hölder continuous for any γ ∈ (k−2

k−1
, 1). It then allows us to improve

the regularity up to Lipschitz continuity. In (1.11), the growth power with respect to the
gradient variable can be much greater than k > 2, which enlarges the class of Hamiltonians
under which our result applies. Let us emphasize that the situation is very different
comparing to Theorem 1.1 where we can start with any Hölder exponent to get the Lipschitz
regularity. Here, starting with a Hölder exponent equal to k−2

k−1
seems crucial to be able to

improve the regularity when H has a strong growth with respect to the gradient.

As examples of applications of Theorem 1.2, we can deal with some new classes of
Hamiltonians for which the existing regularity theory does not apply. We can first consider
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again (1.14), where now there exists k > 2 such that

k ≤ m ≤ (k − 1)α + k, Σ > 0 and
G(x, p)

|p|k →
|p|→+∞

0.

Notice that even if Σ is now assumed to be nondegenerate, this Hamiltonian is not neces-
sarily convex.

The Hamiltonian

H(x, p) = a(x)h(p) +G(x, p), k > 2,
|p|k
C

≤ h(p) ≤ C|p|k, G(x, p)

|p|k →
|p|→+∞

0,

where a is merely continuous and positive, satisfies all the assumptions of Theorem 1.2 and
is not convex in general.

Let us give another example which will be used in Section 4.2 to extend the results to
the parabolic case (1.2) and in Section 4.4 to prove an existence result in a quite surprising
situation. Let K be any continuous function satisfying K(x, p) ≤ C(|p|M + 1), for any
x ∈ T

N , p ∈ R
N ,M > 2. Then, the function

H(x, p) = K(x, p) + α|p|M+δ, α > 0, δ > 0

satisfies all the assumptions of Theorem 1.2. These examples also illustrate the few regu-
larity assumptions on the datas which are needed.

Our work takes place in the periodic setting to take profit of the compactness and the
absence of boundary of TN . The issue of extending our results in a bounded set is very
interesting and not obvious. In the case of Neumann boundary conditions, it should be
true but the case of Dirichlet boundary conditions faces the problem of loss of boundary
conditions when H is superquadratic [9]. Notice that we cannot expect such general results
to be true in a general bounded set since it is known [10] that k−2

k−1
-Hölder continuity is

optimal in general. Our results can be extended for A = σσT with σ ∈ C0,1/2(TN ;MN), for
quasilinear equations when A = A(x, p) and for fully nonlinear equations of Bellman-Isaacs
type, see Section 2.5 for a discussion.

To study the well-posedness of (1.1) under the assumptions of Theorems 1.1 and 1.2,
we have first to prove a comparison principle (Theorem 3.2) whose proof is not classical
since the Hamiltonian is not Lipschitz continuous with respect to the gradient. Instead,
we use the same ideas as for the proof of the Lipschitz bounds. As a consequence, we
obtain the existence and uniqueness of a continuous viscosity solution to (1.1). Moreover
this solution is Lipschitz continuous and, if the datas are C∞, then the solution is C∞

thanks to the classical elliptic regularity theory. Let us mention that our approach also
allows to construct Hölder continuous solutions to (1.1) (Theorem 4.9) under the general
assumption (4.20) which is not sufficient to provide a comparison principle.

We then give several applications of our results. A straightforward consequence to the
bound (1.4) is the solvability of the ergodic problem associated with (1.1), see [20, 2] and
Theorem 4.1: there exists (c, v0) ∈ R×W 1,∞(TN ) solution to

−trace(A(x)D2v0) +H(x,Dv0) = c, x ∈ T
N .(1.15)
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The next application is the study of the parabolic equation (1.2). The natural idea
to extend the gradient bound for (1.1) to (1.2) is to prove first a bound for the time
derivative |∂u

∂t
|∞ and then to apply the results obtained for the stationary equation. This

approach does not work directly for several reasons. On the one side, the bound for the
time derivative is usually obtained as a consequence of the comparison principle which is
not available here. On the other side, our a priori stationary gradient bounds are valid for
continuous solutions and not for subsolutions. We overcome these difficulties by considering
a tricky approximate equation where H is replaced by

Hnq(x, p) =
1

q
|p|M +Hn(x, p),

with a bounded uniformly continuous approximation Hn of H. A crucial point is that,
since the coercive term 1

q
|p|M does not depend on x, the comparison principle holds for

this new equation allowing us to build a continuous viscosity solution. Moreover, the
approximate Hamiltonian satisfies the key assumptions (1.8)–(1.9) or (1.10)–(1.11) with
the same constants as the original H . So we can build a solution of the ergodic problem in
this case. This solution allows us to control the L∞, oscillation and time derivative bounds
of the solution of the parabolic problem. We therefore can prove a parabolic version of
the Hölder regularity result of [10] using the strong coercivity of Hnq (Lemma 4.3). By
this way, we are in position to mimic the proofs of gradient bounds in the stationary case
and to conclude to the existence of a unique Lipschitz continuous solution to (1.2), see
Theorem 4.2.

We finally apply all the previous results to prove the large time behavior of the solution
of (1.2). Having on hands the gradient bound (1.5), a solution of the ergodic problem (1.15)
and the strong maximum principle, the proof is classical [8].

The paper is organized as follows. In Section 2, we prove the stationary gradient bounds,
Theorems 1.1 and 1.2. Section 3 is devoted to establish the well-posedness of (1.1). Finally,
the applications are presented in Section 4. We start by solving the ergodic problem, then
a study of the parabolic equation (1.2) is provided. We end with the long-time behavior
of the solution of (1.2) and the construction of Hölder continuous solutions to equations
with Hamiltonians of arbitrary growth without the use of comparison principle.

Acknowledgement. This work was partially supported by the ANR (Agence Nationale
de la Recherche) through HJnet project ANR-12-BS01-0008-01 and WKBHJ project ANR-
12-BS01-0020.

2. Gradient bound for the stationary equation (1.1)

2.1. Oscillation bound.

Lemma 2.1. Assume (1.8). Let vǫ be a continuous solution of (1.1) and let vǫ(xǫ) =
min vǫ. Then

vǫ(x)− vǫ(xǫ) ≤ L|x− xǫ| for all x ∈ T
N ,

where L is the constant (independent of ǫ) which appears in (1.8).
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An immediate consequence is

osc(vǫ) := max vǫ −min vǫ ≤
√
NL.

To make the article self-contained, we present the proof of this result in Appendix.

2.2. Preliminary lemma for Ishii-Lions’s method. The following technical lemma is
a key tool in this article.

Lemma 2.2. Supose vǫ is a continuous viscosity solution of (1.1) in some open subset Ω
with A(x) = σ(x)σT (x), σ ∈ W 1,∞(Ω). Let Ψ : R+ → R

+ be an increasing concave function
such that Ψ(0) = 0 and the maximum of

max
x,y∈Ω

{vǫ(x)− vǫ(y)−Ψ(|x− y|)},

is achieved at (x, y). If we can write the viscosity inequalities for vǫ at x and y, then for

every ̺ > 0, there exists (p,X) ∈ J
2,+
vǫ(x), (p, Y ) ∈ J

2,−
vǫ(y) such that

(

X 0
0 −Y

)

≤ A+ ̺A2,(2.1)

with

p = Ψ′(|x− y|)q, q =
x− y

|x− y| , B =
1

|x− y|(I − q ⊗ q),(2.2)

A = Ψ′(|x− y|)
(

B −B
−B B

)

+Ψ′′(|x− y|)
(

q ⊗ q −q ⊗ q
−q ⊗ q q ⊗ q

)

(2.3)

and the following estimate holds

−trace(A(x)X − A(y)Y ) ≥ −N |σx|2∞|x− y|Ψ′(|x− y|) +O(̺).(2.4)

If, in addition, (1.3) holds, then there exists C̃ = C̃(N, ν, |σ|∞, |σx|∞) (given by (5.3)) such
that

−trace(A(x)X − A(y)Y ) ≥ −4νΨ′′(|x− y|)− C̃Ψ′(|x− y|)|x− y|+O(̺)(2.5)

and, if the maximum is positive, then

−4νΨ′′(|x− y|)− C̃Ψ′(|x− y|)|x− y|+H(x,Ψ′(|x− y|)q)−H(y,Ψ′(|x− y|)q) < 0.(2.6)

The first part of the result is a basic application of Ishii’s Lemma in viscosity theory,
see [12]. The trace estimates can be found in [16, 4, 8] and (2.6) takes benefit of the
ellipticity of the equation and allows to apply Ishii-Lion’s method introduced in [16]. For
reader’s convenience, we provide a proof in the Appendix.
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2.3. Proof of Theorem 1.1. The proof relies on some ideas of [4]. The main difference
is that, thanks to the uniform oscillation bound presented in Lemma 2.1, we can obtain a
gradient bound independent of the L∞ norm of the solution.

Step 1. Hölder continuity. We claim that there exist some constants γ ∈ (0, 1], K > 0
independent of ǫ such that

|vǫ|C0,γ ≤ K0.

We skip the ǫ superscript in vǫ hereafter for sake of notations.
Thanks to Lemma 2.1, the oscillation of v is uniformly (in ǫ) bounded by a constant O.
Consider

max
x,y∈TN

{v(x)− v(y)−Ψ(|x− y|)},

where Ψ(s) = K0s
γ . Our goal is to choose γ ∈ (0, 1], K0 > 0, which depend only on C, α

given by the hypothesis (1.9) such that the above maximum is nonegative. To do so, we
assume by contradiction that the maximum is positive and hence, it is achieved at (x, y)
with x 6= y thanks to the continuity of v. We next choose r depending on K0 such that
K0r

γ = O + 1.
With such a choice of r, it is clear that |x−y| < r. Denote s := |x−y|. From Lemma 2.2

and (1.9), we will have a contradiction if we can choose K, γ such that

−4νΨ′′(s)− C̃sΨ′(s) ≥ CsαΨ′(s)α+2 + CΨ′(s)2 + C.

Computing Ψ′(s) = K0γs
γ−1 and Ψ′′(s) = K0γ(γ − 1)sγ−2, we have to prove

4νK0γ(1− γ)sγ−2 − C̃K0γs
γ ≥ Csα(K0γs

γ−1)α+2 + C(K0γs
γ−1)2 + C.

It is clear that νK0γ(1 − γ)sγ−2 ≥ C̃K0γs
γ + C when r is small enough. Hence, the

above inequality holds true if we can choose K0, γ such that the two following inequalities
hold,

νK0γ(1− γ)sγ−2 ≥ Csα(K0γs
γ−1)α+2 ⇔ ν(1 − γ) ≥ C(K0s

γ)α+1γα+1,

and

νK0γ(1− γ)sγ−2 ≥ CΨ′2 ⇔ ν(1− γ) ≥ CK0s
γγ.

Since K0s
γ ≤ K0r

γ ≤ O+1, both inequalities hold true when γ is small enough depending
on the oscillation O (but not on K0). This proves the claim.

Step 2. Improvement of the Hölder regularity to Lispchitz regularity. From the previous
step, v is γ Hölder continuous (γ is possibly small) and the Hölder constant K0 can be
chosen to be independent of ǫ. We fix such a γ. We also recall that, from Lemma 2.1, the
oscillation of v is bounded by a constant O independent of ǫ.

We first construct a concave function Ψ : [0, r] → R+ by

Ψ(s) = A1[A2s− (A2s)
1+γ],(2.7)

where r, A1, A2 > 0, which depend only on C, α, β given by the hypothesis (1.9), will be
precised later. We extend Ψ into R+ by defining Ψ(s) = Ψ(r) for s ≥ r.
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We compute, for 0 ≤ s < r,

Ψ′(s) = A1A2[1− Aγ
2(1 + γ)sγ], Ψ′′(s) = −A1A

1+γ
2 γ(1 + γ)sγ−1 < 0.

We then choose r depending on A2 (A2 may vary in the next arguments) such that

A2r =
1

3
and Ψ(r) = O + 1(2.8)

A consequence of this choice is that A1 is now fixed since A1(3
−1 − 3−1−γ) = O + 1. It is

straightforward to see that Ψ is a smooth concave increasing function on [0, r) satisfying
Ψ(0) = 0 and, for all s ∈ [0, r],

A1A2[1−
1 + γ

3γ
] = Ψ′(r) ≤ Ψ′(s) ≤ Ψ′(0) = A1A2.(2.9)

Consider

M := max
x,y∈TN

{v(x)− v(y)−Ψ(|x− y|)}.

IfM ≤ 0 then the theorem holds with K = A1A2. The rest of the proof consists in proving
that M is indeed nonpositive for A2 big enough. We argue by contradiction assuming that
M > 0. This maximum is achieved at (x, y) with x 6= y. With the choice of r in the
condition (2.8) and the fact that Ψ is non-decreasing, it is clear that |x− y| < r.

Denote s := |x− y|. From (1.9) and Lemma 2.2, we have

−4νΨ′′(s)− C̃sΨ′(s) < CsαΨ′(s)α+2 + C + CΨ′(s)2,

which gives us

4νA1A
1+γ
2 γ(1 + γ)sγ−1 − C̃A1A2s[1− Aγ

2(1 + γ)sγ] < CsαΨ′(s)α+2 + C + CΨ′(s)2.

The goal now is to have a contradicton in the above inequality for large A2.
We first note that it is possible to increase A2 in order that

νA1A
1+γ
2 γ(1 + γ)sγ−1 − C̃A1A2s[1− Aγ

2(1 + γ)sγ ] ≥ 0.(2.10)

Indeed, the inequality is true for all A2 ≥ 1 if s ≥ 1 and, when s ≤ 1, it is sufficient to
take A2 ≥ (νγ)−1C̃.

Therefore, it is enough to show that we may choose A2 such that the following inequalities
hold true,

νA1A
1+γ
2 γ(1 + γ)sγ−1 ≥ CsαΨ′(s)α+2 = C

(

sΨ′(s)
1

1−γ
)α

Ψ′(s)α+2− α
1−γ ,(2.11)

and

2νA1A
1+γ
2 γ(1 + γ)sγ−1 ≥ C + CΨ′(s)2.(2.12)

We first prove that it is possible to choose A2 such that (2.11) holds true. We know that
Ψ is concave and γ-Hölder continuous, so we have

sΨ′(s) ≤ Ψ(s) < v(x)− v(y) ≤ K0s
γ,

Hence

sΨ′(s)
1

1−γ ≤ K
1

1−γ

0(2.13)
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and it follows that (2.11) is true provided

νA1A
1+γ
2 γ(1 + γ)sγ−1 ≥ CK

α
1−γ

0 (A1A2)
α+2− α

1−γ .(2.14)

Recalling that 1/s ≥ 1/r > A2 from (2.8), we have

A1+γ
2 sγ−1 ≥ A2

2(2.15)

and (2.14) is true if

νA1A
2
2γ(1 + γ) ≥ CK

α
1−γ

0 (A1A2)
α+2− α

1−γ .(2.16)

Finally, (2.16) indeed holds for A2 big enough since α+ 2− α
1−γ

< 2.

We now prove that it is possible to choose A2 such that (2.12) holds true. At first,
from (2.15), we have νA1A

1+γ
2 γ(1 + γ)sγ−1 ≥ νA1A

2
2γ(1 + γ) ≥ C when A2 big enough.

So, (2.12) holds if we can choose A2 such that

νA1A
1+γ
2 γ(1 + γ) ≥ Cs1−γΨ′(s)2.(2.17)

From (2.9) and (2.13),

Cs1−γΨ′(s)2 = C(sΨ′(s)
1

1−γ )1−γΨ′(s) ≤ CK0A1A2,

so (2.17) holds provided

νA1A
1+γ
2 γ(1 + γ) ≥ CK0A1A2,

which is obviously true if A2 is big enough.
The proof of the theorem is complete �

2.4. Proof of Theorem 1.2. From [10], we have

v is
k − 2

k − 1
-Hölder continuous and the Hölder constant is equal to K0,(2.18)

where k > 2 is given by the assumption (1.10). In [10], the authors prove that the Hölder
constant depends only on N, k, |ǫvǫ|∞ and, since |ǫvǫ|∞ ≤ |H(x, 0)|∞, K0 can be chosen
independent of ǫ. A by-product of the above result (or of Lemma 2.1) is that the oscillation
of vǫ is bounded by a constant O > 0 independent of ǫ.

Hereafter we write v for vǫ.

Step 1. Improvement of the Hölder exponent. Fix any χ ∈ (k−2
k−1

, 1). We show that v is
χ-Hölder continuous.

We set

Ψ(s) = Ksχ,

where K > 0, which depend only on C, α, β given by the hypothesis (1.11), will be precised
later. We fix a constant r which depends on K as follows

Krχ = O + 1.(2.19)

Consider

max
x,y∈TN

{v(x)− v(y)−K|x− y|χ}.(2.20)
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If the maximum is nonpositive then the theorem holds. From now on, we argue by contra-
diction assuming that the maximum is positive. The maximum is achieved at (x, y) with
x 6= y. With the choice of r in (2.19), it is clear that |x− y| < r.

Denote s := |x− y|. From (1.11) and Lemma 2.2, we have

−4νΨ′′(s)− C̃sΨ′(s) < ω
(

(1 + Ψ′(s)β)s
)

sαΨ′(s)(k−1)α+k + o(|p|k),
with β < k − 1, Ψ′(s) = Kχsχ−1, Ψ′′(s) = Kχ(χ − 1)sχ−2 and p = Ψ′(s) x−y

|x−y|
. We can

rewrite the above inequality as

4νKχ(1− χ)sχ−2 − C̃Kχsχ < ω
(

(1 + Ψ′(s)β)s
)

sαΨ′(s)(k−1)α+k + o(|p|k).
At first, from (2.19), it is possible to increase K such that r is small enough in order to
have

2νKχ(1 − χ)sχ−2 ≥ C̃Kχsχ, for s ≤ r.

Hence, to get a contradiction in the above inequality, we only need to choose K such that
the two following inequalities hold,

νKχ(1 − χ)sχ−2 ≥ ω
(

(1 + Ψ′(s)β)s
)

sαΨ′(s)(k−1)α+k(2.21)

and

νKχ(1 − χ)sχ−2 ≥ o(|p|k).(2.22)

Step 1.1. Choosing K large enough such that we have (2.21). Writing that the maxi-
mum (2.20) is positive and using the concavity of Ψ and (2.18), we have sΨ′(s) ≤ Ksχ =

Ψ(s) < v(x)− v(y) ≤ K0s
k−2
k−1 , hence

sΨ′(s)k−1 ≤ Kk−1
0 and

1

s
≥

(

K

K0

)
1

χ−

k−2
k−1 .(2.23)

It follows

ω
(

(1 + Ψ′(s)β)s
)

sαΨ′(s)(k−1)α+k = ω
(

(1 + Ψ′(s)β)s
) (

sΨ′(s)k−1
)α

Ψ′(s)k

≤ ω
(

(1 + Ψ′(s)β)s
)

K
α(k−1)
0 (Kχsχ−1)k.

Therefore, (2.21) is true provided

νKχ(1 − χ)sχ−2 ≥ ω
(

(1 + Ψ′(s)β)s
)

K
α(k−1)
0 (Kχsχ−1)k.

Setting ν̃ = νχ(1− χ)K
α(1−k)
0 χ−k, which is a constant independent of K, s, we rewrite the

above desired inequality as

ν̃

(

1

s

)k(χ−1)−χ+2

≥ ω
(

(1 + Ψ′(s)β)s
)

Kk−1.(2.24)

From (2.23) and the choice χ > k−2
k−1

, it follows that inequality (2.24) holds true if

ν̃

(

K

K0

)

k(χ−1)−χ+2

χ−

k−2
k−1 ≥ ω

(

(1 + Ψ′(s)β)s
)

Kk−1
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or

ν̃

(

1

K0

)k−1

≥ ω
(

(1 + Ψ′(s)β)s
)

.(2.25)

Using (2.23) and β < k − 1, we have

sΨ′(s)β = s1−
β

k−1

(

sΨ′(s)k−1
)

β
k−1 ≤ s

k−1−β
β Kβ

0 ≤ r
k−1−β

β Kβ
0 →

r→0
0.

Finally (2.25) holds true for largeK since r → 0 asK → +∞ by (2.19). This proves (2.21).

Step 1.2. Choosing K large enough such that we have (2.22). We have

o(|p|k) = o(|p|k)
Ψ′(s)k

(Kχsχ−1)k =
o(|p|k)
Ψ′(s)k

χkΨ(s)k−1,

so (2.22) holds if

ν(1− χ) ≥ o(|p|k)
Ψ′(s)k

χk−1s2−kΨ(s)k−1.

Recalling that Ψ(s) ≤ K0s
k−2
k−1 , it is sufficient to ensure

ν(1− χ) ≥ o(|p|k)
Ψ′(s)k

(χK0)
k−1.

Since

|p| = Ψ′(s) = χKsχ−1 ≥ χKrχ−1 = χ(O + 1)
χ−1
χ K

1
χ

by (2.19), we have that |p| → +∞ as K → +∞. We then obtain that the above inequality
holds true for large K concluding (2.22). This ends Step 1.

Step 2. Improvement of the new Hölder exponent to Lipschitz continuity. We are now
ready to prove the lipschitz continuity.

The beginning of the proof is similar to the one of Theorem 1.1. We consider the increas-
ing concave function Ψ given by (2.7) for any γ ∈ (0, 1) and A1, A2, r > 0 satisfying (2.8)
and set

M = max
x,y∈TN

{v(x)− v(y)−Ψ(|x− y|)}.

We are done if the maximum is nonnegative. Assuming by contradiction that the maximum
is positive, we know it is achieved at (x, y) with s := |x − y| < r. Applying Lemma 2.2
and (1.11), we see that we reach the desired contradiction if the following inequalities hold

νA1A
1+γ
2 γ(1 + γ)sγ−1 ≥ ω

(

(1 + Ψ′(s)β)s
)

sαΨ′(s)(k−1)α+k(2.26)

= ω
(

(1 + Ψ′(s)β)s
)

(sΨ′(s)
1

1−χ )αΨ′(s)(k−1)α+k− α
1−χ

and

νA1A
1+γ
2 γ(1 + γ)sγ−1 ≥ o(|p|k) where |p| = Ψ′(s).(2.27)

Next substeps are devoted to prove that we can fulfill the two above inequalities by choosing
A2 large enough. It then leads to a contradiction which implies that the maximum M is
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nonnegative concluding that v is Lipschitz continuous with constant A1A2 and ending the
proof of Theorem 1.2.

Step 2.1. Choosing A2 such that (2.26) holds true. From Step 1, we know that v is χ-
Hölder continuous for any χ ∈ (k−2

k−1
, 1) with a constant K = Kχ which is independent of ǫ.

We then have sΨ′(s) ≤ Ψ(s) < Kχs
χ, hence

sΨ′(s)
1

1−χ ≤ K
1

1−χ
χ .(2.28)

Moreover

cγA1A2 :=
log 3− 1

3
γA1A2 ≤ A1A2

(

1− 1 + γ

3γ

)

= Ψ′(r) ≤ Ψ′(s) ≤ Ψ′(0) = A1A2.(2.29)

It follows that (2.26) holds provided

νA1A
1+γ
2 γ(1 + γ)sγ−1 ≥ ω

(

(1 + Ψ′(s)β)s
)

K
α

1−χ
χ c

−|(k−1)α+k− α
1−χ

|
γ (A1A2)

(k−1)α+k− α
1−χ .

Recalling that 1/s ≥ 1/r > A2, the above inequality is true if

νA1A
2
2γ(1 + γ) ≥ ω

(

(1 + Ψ′(s)β)s
)

K
α

1−χ
χ c

−|(k−1)α+k− α
1−χ

|
γ (A1A2)

(k−1)α+k− α
1−χ .

First of all, we have β < k − 1 < 1
1−χ

, so, by (2.26), ω
(

(1 + Ψ′(s)β)s
)

is small for small s.

Therefore, to fulfill (2.26), it is enough to fix χ close enough to 1 such that

(k − 1)α + k − α

1− χ
< 2 ⇔ χ > 1− α

(k − 1)α + k − 2
(2.30)

and to take A2 large enough.

Step 2.2. Choosing A2 such that (2.27) holds true. We need to choose A2 such that

νA1A
1+γ
2 γ(1 + γ) ≥ s1−γo(|p|k)

=
o(|p|k)
Ψ′(s)k

s1−γΨ′(s)k =
o(|p|k)
Ψ′(s)k

(sΨ′(s)
1

1−χ )1−γΨ′(s)k−
1−γ
1−χ .

Using (2.28) and (2.29) again, we see that the above inequality is true provided

νA1A
1+γ
2 γ(1 + γ) ≥ o(|p|k)

Ψ′(s)k
K

1−γ
1−χ
χ (A1A2)

k− 1−γ
1−χ .

We fix χ ∈ (k−2
k−1

, 1) close enough to 1 such that (2.30) holds and k− 1−γ
1−χ

< 1+ γ. Noticing

that Ψ′(s) = |p| → +∞ when A2 → +∞, the previous inequality holds when A2 is big
enough. Therefore (2.27) holds. The proof of the theorem is complete. �

2.5. Extensions. As said in the introduction, all proofs still hold true when when σ ∈
C0,θ(TN ;MN), θ ∈ [1

2
, 1], instead of W 1,∞(TN ;MN). Actually, on the one side, (2.4)

and (2.5) in Lemma 2.2 are modified as follows: −N |σx|2∞|x − y|Ψ′(|x − y|) (respectively
−C̃Ψ′(|x−y|)|x−y|) are replaced by −N |σ|2C0,θ |x−y|2θ−1Ψ′(|x−y|) (respectively −C̃Ψ′(|x−
y|)|x − y|2θ−1 with C̃ = C̃(N, ν, |σ|∞, |σ|C0,θ)). On the other side, the oscillation bound,
Lemma 2.1, hold when N |x− y||σx|2∞ is replaced by N |σ|2

C0,1/2 in (1.8). The computations
in the proofs of Theorems 1.1 and 1.2 are adapted accordingly.
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The proofs of Theorems 1.1 and 1.2 can be adapted easily to quasilinear equations with
diffusion matrices of type A(x, p) = σ(x, p)σ(x, p)T under suitable growth structures in x, p
of σ(x, p).

As far as fully nonlinear equations of Bellman-Isaacs-type

ǫvǫ + sup
a∈A

inf
b∈B

{

−trace(Aab(x)D
2vǫ) +Hab(x,Dv

ǫ)
}

= 0,

are concerned, our results apply provided that Assumptions (1.3), (1.8)-(1.9), (1.10)-(1.11)
hold with constants independent of a, b.

3. Comparison principle, existence and uniqueness for the stationary

equation (1.1)

We prove the well-posedness of the stationary equation in a slightly more general frame-
work, namely, we work in an open bounded subset of RN instead of TN , assuming some
Dirichlet boundary conditions hold.

More precisely, we consider
{

ǫvǫ − trace(A(x)D2vǫ) +H(x,Dvǫ) = 0, x ∈ Ω,

vǫ(x) = g(x), x ∈ Ω.
(3.1)

where Ω ⊂ R
N is an open bounded set with ∂Ω ∈ C1,1, g ∈ C(∂Ω), ǫ > 0 and we need to

assume that H ∈ C(Ω× R
N ;R) to prove the comparison principle.

The comparison principle follows easily from the ad-hoc inequality (3.3) which follows.

Proposition 3.1. Assume (1.3) and either (1.8)-(1.9) or (1.10)-(1.11) hold, where the
torus T

N is replaced by Ω. Let u ∈ USC(Ω) be a subsolution and v ∈ LSC(Ω) be a
supersolution of (3.1) such that u ≤ g ≤ v on ∂Ω and

d := sup
x∈Ω

(u− v) > 0.(3.2)

Then, there exists a constant C such that

u(x)− v(y) ≤ d+ C|x− y| for all x, y ∈ Ω.(3.3)

The proof of the proposition follows the same ideas of the proof of Theorem 1.2. We
only sketch the minor changes between two proofs.

Proof. We make the proof under assumptions (1.10)-(1.11), the another case being simpler.
With the assumption ∂Ω ∈ C1,1 and (1.10), the result of [10] gives

u is
k − 2

k − 1
-Hölder continuous in Ω with a constant K0,(3.4)

where k is given by the assumption (1.10).
Since u, v are bounded, we can set

U = ||u||∞ + ||v||∞.(3.5)
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By the upper semi-continuity of u and the compactness of ∂Ω, there exists r > 0 such
that

u(x)− u(y) ≤ d for all y ∈ ∂Ω, x ∈ Ω and |x− y| ≤ r,

v(x)− v(y) ≤ d for all x ∈ ∂Ω, y ∈ Ω and |y − x| ≤ r.

Hence, using u ≤ v on ∂Ω, there exists r > 0 such that

u(x)− v(y) ≤ d if |y − x| ≤ r and either x ∈ ∂Ω or y ∈ ∂Ω.

This implies that for C = U
r
, we have

u(x)− v(y) ≤ d+ C|x− y| if either x ∈ ∂Ω or y ∈ ∂Ω.(3.6)

Step 1. Now, we prove that for any χ ∈ (k−2
k−1

, 1), there exists a constant K such that

max
x,y∈Ω

{u(x)− v(y)− d−K|x− y|χ} ≤ 0,(3.7)

where K > 0 depends only on C, α, β given by the hypothesis (1.11) and will be precised
later.

We argue by contradiction assuming that the maximum is positive for any K > 0. It is
therefore achieved at (x, y) with x 6= y. Denote s := |x− y|. We have

Ksχ < u(x)− v(y)− d.(3.8)

It follows from (3.5) that s tends to zero as K → +∞. Thanks to (3.6), we then infer
that necessarily x, y ∈ Ω for K big enough. Therefore, for K big enough, we can write the
viscosity inequalities for u at x and v at y.

From this point, the next arguments follow exactly the same ones of Part 1 and 2 in
the proof of Theorem 1.2. The only minor difference if the way we get (2.23). From (3.8)
and (3.4), setting Ψ(t) = Ktχ, we obtain

sΨ′(s) ≤ Ksχ < u(x)− u(y) ≤ K0s
k−2
k−1 ,

hence

s(Ψ′(s))k−1 ≤ Kk−1
0 and

1

s
≥ (

K

K0
)

1

χ−

k−2
k−1 .

which is exactly the estimation (2.23) as desired.
Step 2. Proof of (3.3). Consider the function Ψ(s) = A1[A2s−(A2s)

1+γ ] defined as in (2.7)
with r, A1, A2 > 0 satisfying (2.8). Consider

max
x,y∈Ω

{u(x)− v(y)− d−Ψ(|x− y|)}.

If the maximum is negative, (3.3) holds with C = A1A2. From now, we argue by contra-
diction assuming that the maximum is positive and achieved at (x, y). With the choice of
r in (2.8), we have 0 < s := |x− y| < r. Using the same arguments as in the beginning of
Step 1, up to take A2 big enough, we can assume that x, y ∈ Ω and therefore we can write
the viscosity inequalities for u at x and v at y.
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The next arguments follow exactly the same ones of Part 3 in the proof of Theorem 1.2.
The only minor difference is the way we get (2.28). Fix any χ ∈ (k−2

k−1
, 1). From Step 1, we

obtain

d+Ψ(s) < u(x)− v(y) ≤ d+Ksχ.

We then have sΨ′(s) ≤ Ψ(s) < Ksχ, hence

s(Ψ′(s))
1

1−χ ≤ K
1

1−χ .

This is exactly Estimate (2.28) as we want. Having on hands (2.28) we repeat readily the
arguments of Part 3 in the proof of Theorem 1.2 to conclude. �

We now prove the comparison principle

Theorem 3.2. Assume (1.3), H is continuous and either (1.8)-(1.9) or (1.10)-(1.11) hold,
where the torus T

N is replaced by Ω. Let u ∈ USC(Ω) be a subsolution and v ∈ LSC(Ω)
be a supersolution of (3.1) such that u ≤ g ≤ v on ∂Ω. Then

u(x) ≤ v(x) for all x ∈ Ω.

Notice that we assume that the Dirichlet boundary conditions hold in the classical viscos-
ity sense on ∂Ω. This is a little bit restrictive especially when working with superquadratic
Hamiltonians since it is known that loss of boundary conditions may happen, see [9] for in-
stance. But it is enough for our purpose here since we work in the periodic setting without
boundary condition.

Proof. The proof of this result is followed quite easily from the estimate (3.3). Define d as
in (3.2). We assume that d > 0 and try to get a contradiction. Since u ≤ g ≤ v on ∂Ω,
any z ∈ Ω such that d = u(z)− v(z) lies in Ω. The maximum

Mη = max
x,y∈Ω

{u(x)− v(y)− |x− y|2
2η2

− d} ≥ 0

is achieved at (xη, yη) ∈ Ω × Ω. If there is a sequence η → 0 such that xη, yη → x ∈ ∂Ω,
then

Mη = u(xη)− v(yη)−
|xη − yη|2

2η2
− d→ u(x)− v(x)− d < 0,

which is a contradiction.
Therefore, (xη, yη) ∈ Ω × Ω for η small enough. The theory of second order viscosity

solutions yields, for every ̺ > 0, the existence of (pη, X) ∈ J
2,+
u(xη), (pη, Y ) ∈ J

2,−
v(yη)

such that and the following viscosity inequalities hold
{

ǫu(xη)− trace(A(xη)X) +H(xη, pη) ≤ 0,

ǫv(yη)− trace(A(yη)Y ) +H(yη, pη) ≥ 0.

Thanks to Proposition 3.1, we have

|xη − yη|2
2η2

+ d ≤ u(xη)− v(yη) ≤ d+ C|xη − yη|.
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Thus

pη
2

=
|xη − yη|

2η2
≤ K.

This implies that pη is bounded independently of η. Subtracting the viscosity inequali-
ties and using (2.4), we get ǫd ≤ H(yη, pη) − H(xη, pη) + O(η) + O(̺), which leads to a
contradiction when ̺ → 0, η → 0, thanks to the uniform continuity of H on compact
subsets. �

As a consequence of the previous results, we obtain the well-posedness for (1.1) in the
class of Lipschitz continuous functions.

Corollary 3.3. Assume (1.3), H ∈ C(TN ×R
N ;R) and either (1.8)-(1.9) or (1.10)-(1.11)

hold. Then, there exists a unique continuous viscosity solution vǫ of (1.1) which is Lipschitz
continuous with a constant independent of ǫ. Moreover, if A = σσT and H are C∞, then
vǫ is C∞.

Proof. Thanks to the comparison principle, Theorem 3.2, we can construct a unique con-
tinuous viscosity solution to (1.1) with Perron’s method. To apply this method, it is
enough to build some sub and supersolution to (1.1) which is easily done by considering
v±(x) = ±1

ǫ
|H(·, 0)|∞. The Lipschitz regularity of the solution is then obtained from The-

orems 1.1 and 1.2. When A and H are Cα in x, the C2,α regularity of vǫ is a consequence
of the Lipschitz bounds and the classical elliptic regularity theory [15, Theorems 6.13 and
6.14]. �

4. Applications

4.1. Ergodic problem. As a first application of Theorems 1.1 and 1.2, we prove that we
can solve the ergodic problem associated with (1.1), namely, there exist v0 ∈ W 1,∞(TN )
and a unique constant c ∈ R solution to

−trace(A(x)D2v0) +H(x,Dv0) = c, x ∈ T
N .(4.1)

Theorem 4.1. Assume (1.3), H ∈ C(TN ×R
N ;R) and either (1.8)-(1.9) or (1.10)-(1.11)

hold. Then, there exists (c, v0) ∈ R × W 1,∞(TN ) solution to (4.1) and c is unique. If
we assume moreover that H(x, ·) is locally Lipschitz continuous then v0 is unique up to
additive constants.

Proof. Having on hands Theorems 1.1 and 1.2, the result is an easy application of the
method of [20] and the strong maximum principle. We only give a sketch of proof. Let vǫ

be the Lipschitz continuous solution of (1.1) given by Corollary 3.3. Since |ǫvǫ| ≤ |H(·, 0)|∞
and |Dvǫ|∞ ≤ K, the sequences ǫvǫ and vǫ−vǫ(0) are bounded and equicontinuous in C(TN)
for all ǫ > 0. By Ascoli-Arzela Theorem, they converge, up to subsequences to −c ∈ R

and v0 ∈ W 1,∞(TN ) respectively. By stability, (c, v0) is a solution of (4.1). To prove
the uniqueness part of the theorem, assume we have two solutions (c1, v1) and (c2, v2)
of (4.1). Then ũ1(x, t) := v1(x) − c1t − (|v1|∞ + |v2|∞) and ũ2(x, t) := v2(x) − c2t are
respectively subsolution and supersolution of the associated evolution problem (1.2) with
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initial datas ũ1(x, 0) ≤ ũ2(x, 0). Since both ũ1 and ũ2 are Lipschitz continuous, we have
a straightforward comparison principle for the evolution problem which yields ũ1(x, t) ≤
ũ2(x, t) for all (x, t) ∈ T

N × [0,+∞). Sending t→ +∞, we infer c1 ≥ c2 and exchanging the
role of the two solutions, we conclude c1 = c2. It is then easy to prove, using the Lipschitz
continuity of v1, v2 and H with respect to the gradient that v = v1 − v2 is a subsolution of
−trace(A(x)D2v) − C|Dv| ≤ 0 in T

N for some constant C > 0. By the strong maximum
principle ([13]), v1 − v2 is constant. �

4.2. The parabolic equation. In this section, we prove the well-posedness and time-
independent gradient bounds for the nonlinear parabolic problem (1.2) both under the
assumptions (1.8)-(1.9) and (1.10)-(1.11).

Theorem 4.2. Assume (1.3) and that H ∈ C(TN × R
N ;R) satisfies either (1.8)-(1.9)

or (1.10)-(1.11). For any initial data u0 ∈ C2(TN), there exists a unique continuous
viscosity solution u to (1.2) such that, for all x, y ∈ T

N , s, t ∈ [0,+∞),

|u(x, t)− u(y, s)| ≤ K|x− y|+ Λ|t− s| with K,Λ independent of time.(4.2)

If, in addition A, H and u0 are C∞, then u ∈ C∞(TN × [0,+∞)).

To prove the theorem, we adapt the proofs of Theorems 1.1 and 1.2. The proof under
the set of assumptions (1.10)-(1.11) is more delicate since the proof of Theorem 1.2 requires
first to construct a solution to (1.2) which is k−2

k−1
-Hölder continuous. Due to the lack of

comparison principle for (1.2) in our case and since the Hölder regualrity result of [10] does
not apply directly to evolution equations, the task is difficult. We need to extend the result
of [10] for subsolutions of (1.2) which are Lipschitz continuous in time (see Lemma 4.3)
and to construct an approximate solution of (1.2) which is indeed Lipschitz continuous in
time.

Proof of Theorem 4.2.

Step 1. Proof when (1.8)-(1.9) hold. We truncate the Hamiltonian H by defining

Hn(x, p) =

{

H(x, p) x ∈ T
N , |p| ≤ n,

H(x, n p
|p|
) x ∈ T

N , |p| > n.(4.3)

Notice that, on the one side, for n ≥ L, Hn satisfies (1.8). On the other side, for all n, Hn

satisfies (1.9) with the same constant C as for H. Moreover Hn converges locally uniformly
to H as n→ +∞.

By construction, Hn ∈ BUC(TN × R
N ;R). It follows that the comparison principle

holds for (1.2) where H is replaced by Hn. Since Hn(x,Du0(x)) = H(x,Du0(x)), for n
large enough,

u±(x, t) = u0(x)± |H(·, Du0)− trace(AD2u0)|∞t(4.4)

are respectively super and subsolutions of (1.2) with Hn, and Perron’s method yields a
unique continuous viscosity solution un of this latter equation.

By Theorem 4.1, there exists a solution (cn, vn) ∈ R × W 1,∞(TN ) of (4.1) where H
is replaced by Hn. Notice that, since Hn satisfies (1.8)-(1.9) with constants independent
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of n for n > L, both |vn|∞ and |Dvn|∞ are bounded independently of n. Choosing A
independent of n such that A ≥ |vn|∞ + |u0|∞, the functions (x, t) 7→ vn(x)− cnt±A are
respectively a viscosity super and subsolutions of (1.2) with Hn. By comparison with un
we get

vn(x)− cnt−A ≤ un(x, t) ≤ vn(x)− cnt+A for all x ∈ T
N , t ∈ [0,+∞).

It follows that

osc(un(·, t)) ≤ |Dvn|∞diam(TN ) + 2A ≤ C

with C independent of n, t.
It is now possible to mimic the proof of Theorem 1.1 for un.
We begin by proving that un is γ-Hölder continuous with a constant independent of t, n

for some γ ∈ (0, 1). For any η > 0, consider

Mη := max
x,y∈TN ,t>0

{un(x, t)− un(y, t)−Ψ(|x− y|)− ηt},

where Ψ(s) = Ksγ , 0 < γ < 1. If the maximum is nonpositive for some K > 1 and all
η > 0, then we are done. Otherwise, for all K > 1, there exists η > 0 such that the
maximum is positive. It is achieved at some (x, y, t) with x 6= y.

If t = 0, then, using that |x− y| ≤
√
N, we have

Mη ≤ u0(x)− u0(y)−K|x− y|γ ≤ C0|x− y| −K|x− y|γ ≤ 0

for K > C0

√
N

1−γ
, where C0 is the Lipschitz constant of u0.

It follows that, for K big enough, the maximum is achieved at t > 0 and we can write
the viscosity inequalities for un using the parabolic version of Ishii’s Lemma [12, Theorem
8.3]. Using Lemma 2.2 in this context, we get

η − 4νΨ′′(|x− y|)− C̃Ψ′(|x− y|)|x− y|+H(x,Ψ′(|x− y|)q)−H(y,Ψ′(|x− y|)q) < 0.

We then obtain a contradiction in the above inequality repeating readily the proof of Step 1
of Theorem 1.1 with O := supt>0 osc(un(·, t)).

With the same adaptations as above in this parabolic context, we can reproduce the rest
of the proof of Theorem 1.1. We conclude that un is Lipschitz continuous in space with a
constant independent of t, n since we used (1.8)-(1.9) with constants independent of n and
since osc(un(·, t)) is bounded independently of t, n.

By Ascoli-Arzela Theorem, up to extract subsequences, un converge locally uniformly in
T
N × [0,+∞) as n→ +∞ to a function u which is still Lipschitz continuous in space with

a constant independent of t. By stability, u is a solution to (1.2).
The proof of the Lipschitz continuity of u in time requires u0 to be C2 and can be done

exactly as in the second case below.

Step 2. Proof when (1.10)-(1.11) hold. We consider, for q, n ≥ 1, the approximate problem
{

ut − trace(A(x)D2u) + 1
q
|Du|M +Hn(x,Du) = 0, (x, t) ∈ T

N × (0,+∞),

u(x, 0) = u0(x), x ∈ T
N ,

(4.5)

where M > 2 and Hn is defined in (4.3).
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We have a comparison principle for (4.5) since Hn ∈ BUC(TN × R
N) and 1

q
|p|M is a

nonlinearity which is independent of x; when subtracting the viscosity inequality, this term
disappears since we are in T

N and there is no need to add a localization term in the test-
function to achieve the maximum. Moreover, since (4.4) are still super and subsolutions
of (4.5), by means of Perron’s method, we can build a continuous viscosity solution uqn of
the problem (4.5).

The next lemma extends the result of [10] for USC subsolutions of parabolic equations
with coercive Hamiltonian satisfying (1.10). The proof is postponed at the end of the
section.

Lemma 4.3. Assume that (1.10) holds. Let U ∈ USC(TN × [0,+∞)) be a subsolution
of (1.2) which is bounded and Lipschitz continuous in time with constants independent of

t. Then, there exists C̃ > 0 which depends on k, A,Λ (appearing in (1.10) and (4.7)) but
not on t such that

|U(x, t)− U(y, t)| ≤ C̃|x− y| k−2
k−1 x ∈ T

N , t ≥ 0.

We are going to prove that uqn satisfies the assumptions of Lemma 4.3. We first claim
that there exists a constant cqn bounded with respect to n such that uqn + cqnt is bounded
in T

N × [0,+∞) by a constant depending on q but not on n. The equation

ǫv − trace(A(x)D2v) +
1

q
|Dv|M +Hn(x,Dv) = 0, x ∈ T

N ,(4.6)

satisfies Assumptions (1.10)-(1.11) of Theorem 1.2 with k =M and a constant C depending
on q but not on n. By Theorem 4.1, there exists a solution (cqn, vqn) ∈ R×W 1,∞(TN) of the
associated ergodic problem. By the maximum principle, |ǫv| ≤ |Hn(·, 0)|∞ ≤ |H(·, 0)|∞ so
cqn is bounded independently of q, n. Moreover, since the constants in the assumptions in
Theorem 1.2 may be taken independent of n, vqn is bounded and Lipschitz continuous with
constants independent on n. Noticing that ṽqn(x, t) = vqn(x) − cqnt ± Aq are respectively
viscosity super and subsolutions of (4.5) when Aq ≥ |vqn|∞ + |u0|∞ (Aq may be chosen
independent of n). By comparison with uqn we get

vqn(x)− cqnt− Aq ≤ uqn(x, t) ≤ vqn(x)− cqnt+ Aq for all x ∈ T
N , t ∈ [0,+∞)

and the claim is proved.
We then claim that uqn is Lipschitz continuous in time, i.e., there exists Λ > 0 indepen-

dent of t, q, n such that

|uqn(x, t)− uqn(x, s)| ≤ Λ|x− y| x ∈ T
N , s, t ≥ 0.(4.7)

The proof is classical and relies on the comparison principle together with the fact that
u0 ∈ C2(TN ). We only give a sketch of proof. Since A and the Hamiltonian in (4.5) do not
depend on t, for all h > 0, uqn(·, · + h) is solution to (4.5) with initial data uqn(·, h). By
comparison, we obtain

uqn(x, t+ h)− uqn(x, t) ≤ sup
y∈TN

(uqn(y, h)− u0(y))
+ x ∈ T

N , t ≥ 0.(4.8)
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Setting

Λ := |trace(AD2u0)|∞ + |Du0|M∞ + |H(·, 0)|∞
(notice that Λ does not depend neither on q nor n), we have that u0(x)±Λt are respectively
super and subsolutions of (4.5). By comparison, it follows |uqn(x, t)− u0(x)| ≤ Λt. Using
this inequality in (4.8), we obtain (4.7).

Therefore, we can apply Lemma 4.3 to U(x, t) = uqn(x, t) + cqnt which is Lipschitz
continuous in time with a constant independent of t, q, n since cqn is bounded independently
on q, n. We obtain that uqn(x, t) + cqnt and so uqn is M−2

M−1
-Hölder continuous in space with

a constant depending on q (but not on n, t). By Ascoli-Arzela Theorem, uqn converges, up
to subsequences, locally uniformly in T

N × [0,+∞) as n→ +∞ to a function uq which still
satisfies (4.7) (with the same constant Λ). Moreover, by stability, uq is solution to (4.5)
with Hn replaced by H.

Arguing as above on (4.6) where Hn is replaced by H, we can construct a solution (cq, vq)
to the ergodic problem associated to (4.6) with H. Using that

1

q
|p|M +H(x, p) ≥ 1

C
|p|k − C(4.9)

this time and that (1.11) holds for datas independent of q, we can prove that cq is bounded
and vq is bounded and Lipschitz continuous with constants independent of q. By compar-
ison, uq + cqt is bounded independently of q, t.

Applying again Lemma 4.3 to uq + cqt but using (4.9), we obtain that uq is k−2
k−1

-Hölder
continuous with a constant independent of q now. Thanks again to Ascoli-Arzela Theorem,
we can send q → +∞ to obtain, up to subsequences, a solution u of (1.2) which is still
k−2
k−1

-Hölder continuous with a constant independent of t.
We are not in position to mimic the proof of Theorem 1.2 for this solution u, which is

done easily adapting the proof in the time-dependent case.
In conclusion, we built a Lipschitz continuous (in space and time) solution to (1.2) with

constants independent of t.

Step 3. Uniqueness in the class of continuous functions and upper regularity. Even if a
strong comparison principle between semicontinuous viscosity sub and supersolutions does
not necessarily hold for (1.2) under our assumptions, it is easy to see that a comparison
principle holds if either the subsolution or the supersolution is Lipschitz continuous. It
allows to compare any continuous viscosity solution of (1.2) with u.

The regularity of u when the data u0 ∈ C2,α and H is Cα in x-variable is a consequence
of the Lipschitz bounds and the classical parabolic regularity theory, see [17] for instance.

The proof of the theorem is complete. �

Remark 4.4. When σ ∈ C0,1/2(TN ;MN) instead ofW 1,∞(TN ;MN), we need to regularize
also σ into a Lipschitz continuous matrix to build a continuous solution. The estimates on
the approximate solutions are not affected by this regularization thanks to the results of
Sections 2 and 3 and the result of [10], which hold for σ ∈ C0,1/2(TN ;MN).
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Proof of Lemma 4.3. To prove the lemma, it is sufficient to prove that there exists C > 0
such that, for every t > 0,

−trace(A(x)D2U(x, t)) +H(x,DU(x, t)) ≤ C for x ∈ T
N in the viscosity sense.(4.10)

Indeed, once (4.10) is established, we can repeat readily the proof of [10, Theorem 2.7].
Fix t > 0 and suppose that x0 ∈ T

N is a strict maximum point of x 7→ U(x, t)−ϕ(x) in
T
N , where ϕ ∈ C2(TN ). The supremum

sup
x,y∈TN ,t≥0

{U(x, s)− ϕ(x)− (t− s)2

η2
}

is achieved at (x, s) and, since U is bounded, (t−s)2

η2
→ 0 and x → x0 as η → 0. Writing

that (x, s) is a maximum point we have

U(x, t)− ϕ(x) ≤ U(x, s)− ϕ(x)− (t− s)2

η2
.

Using the Lipschitz continuity with respect to time of U (let us say with constant Λ
independent of t), we obtain

|t− s|
η2

≤ Λ.(4.11)

Since U is a viscosity subsolution of (1.2), we get

s− t

η2
− trace(A(x)D2ϕ(x)) +H(x,Dϕ(x)) ≤ 0.

Taking into account (4.11) and letting η → 0, we infer

−trace(A(x0)D
2ϕ(x0)) +H(x0, Dϕ(x0)) ≤ Λ,

which proves (4.10). �

We end this section with a general bound for the oscillation of continuous solutions
to (1.2) when the comparison result holds. It is the analogous of Lemma 2.1 in the parabolic
setting and is a result interesting by itself. We give below as an easy application the
convergence of u(x, t)/t towards a constant.

Lemma 4.5. Suppose that comparison principle holds for (1.2). Let u0 ∈ C2(TN ) and
assume that H,A, u0 satisfy







there exists L > 1 such that for all x, y ∈ T
N , if |p|=L, then

H(x, p) ≥ |p|
[

H(y,
p

|p|)+|H(·, Du0)− trace(AD2u0)|∞+N |x− y||σx|2∞
]

.
(4.12)

Then, the unique continuous solution u of (1.2) satisfies

u(x, t)− u(yt, t) ≤ L|x− yt|, for all t ≥ 0, x ∈ T
N(4.13)

and yt such that u(yt, t) = min
x∈TN

u(x, t).

Notice that (4.12) is a parabolic version of (1.8) which holds as soon as H is superlinear.
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Remark 4.6. Assuming that the comparison principle holds is a bit restrictive in this
context but we do not succeed to skip it.

Proof of Lemma 4.5. Setting

A := |H(·, Du0)− trace(AD2u0)|∞,(4.14)

we have that u0(x)±At are respectively super and subsolutions of (1.2). By comparison,
it follows |u(x, t)− u0(x)| ≤ At. By comparison again, we get

|u(x, t+ s)− u(x, t)| ≤ As.(4.15)

Fix T > 0. We define

M = max
x,y∈TN ,t∈[0,T ]

{u(x, t)− Lu(y, t) + (L− 1) min
x∈TN

u(x, t)− L|x− y|},

where the constant L is the one in (4.12). If M ≤ 0, then (4.13) is straightforward.
Otherwise, M ≥ Lδ > 0 for δ > 0 enough small.

Thanks to (4.15), we can approximate φ(t) := minx∈TN u(x, t) from below over the
compact interval [0, T ] by a sequence of smooth functions φn(t) whose lipschitz norm is
bounded byA given by (4.14). Up to choosing n big enough, we may assume 0 ≤ φ−φn ≤ δ.
For n ∈ N, we consider

Mn = max
x,y∈TN, t∈[0,T ]

{u(x, t)− Lu(y, t) + (L− 1)φn(t)− L|x− y|}.

It is clear that Mn ≥ δ > 0. The above positive maximum is achieved at (xn, yn, tn)
with xn 6= yn. Unless u(xn, tn) − Lu(xn, tn) + (L − 1)φn(tn) ≥ δ, which is impossible
since φn(t) ≤ φ(t) = minx∈TN u(x, t). Moreover, by replacing L with max{L, ||Du0||∞} if
necessary, we can see easily that tn > 0. The claim is proved and the maximum in Mn is
achieved at a differentiable point of the test-function.

The theory of second order viscosity solutions [12, Theorem 8.3] yields, for every ̺ > 0,

the existence of (a, p,X) ∈ J
2,+
u(xn, tn) and (b/L, p/L, Y/L) ∈ J

2,−
u(yn, tn), with p =

L xn−yn
|xn−yn|

, a− b = −(L− 1)φ′(tn), such that






a− trace(A(xn)X) +H(xn, p) ≤ 0,

b

L
− trace(A(yn)

Y

L
) +H(yn,

p

L
) ≥ 0.

It follows

−(L− 1)φ′
n(tn)− trace(A(xn)X − A(yn)Y ) +H(xn, p)− LH(yn,

p

L
) ≤ 0.

Using Lemma 2.2, we have

−trace(A(xn)X − A(yn)Y ) ≥ −LN |xn − yn||σx|2∞ +O(̺)

Finally, we obtain

H(xn, p)− L
[

H(yn,
p

L
) +N |xn − yn||σx|2∞

]

+O(̺) ≤ (L− 1)φ′
n(tn) < LA.

Letting ̺→ 0 and applying (4.12) yields a contradiction. �
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We end this section by an application of the oscillation bound.

Proposition 4.7. Assume (4.12) and suppose that a comparison principle for (1.2) holds.
For every u0 ∈ C(TN), there exists c ∈ R such that the unique solution u of (1.2) satisfies

lim
t→∞

u(x, t)

t
= −c uniformly with respect to x ∈ T

N .

For related results in the case of Bellman equations, see [2, 1].

Sketch of proof of Proposition 4.7. Without loss of generality, we assume that u0 ∈ C2(TN ).
The general case where u0 ∈ C(TN ) can be handled using an approximation of u0 in the
class of C2 functions and the comparison principle.

Set m(t) = minTN u(·, t). Since (x, t) 7→ u0(x) − At, where A is given by (4.14), is a
subsolution of (1.2), we have m(t) ≥ −C(1 + t). Moreover, an easy application of the
comparison principle yields that m is subadditive, namely m(t + s) ≤ m(t) + m(s) for
all t, s ≥ 0. By the subadditive theorem, there exists c ∈ R such that m(t)/t → −c as
t → +∞. By Lemma 4.5, 0 ≤ u(x, t) − m(t) ≤ L diam(TN ). This implies the uniform
convergence of u(·, t)/t to −c. �

4.3. Large time behavior of solutions of nonlinear strictly parabolic equations.

In this section, we use the uniform gradient bound proved in Theorems 1.1 and 1.2 to study
the large time behavior of the solution of (1.2).

The first results on the large time behavior of solutions for second order parabolic
equaions were established in Barles-Souganidis [8]. They prove the uniform gradient
bounds (1.4) and (1.5) for (1.1) and (1.2) in two cases. The first one is for Hamiltoni-
ans with a sublinear growth with respect to the gradient. A typical example is

H(x, p) = 〈b(x), p〉+ ℓ(x), b ∈ C(TN ;RN), ℓ ∈ C(TN ).(4.16)

The second case is for superlinear Hamiltonians. The precise assumptions ([8, (H2)]) are
more involved and require both local Lipschitz regularity properties and convexity-type
assumptions on H. These assumptions are designed to allow the use of weak Bernstein-
type arguments ([5]). The typical example is with a superlinear growth with respect to the
gradient

H(x, p) = a(x)|p|1+α + ℓ(x), α > 0, a, ℓ ∈ W 1,∞(TN ) and a > 0.(4.17)

The proof of the large time behavior of the solution of (1.2) is then a consequence of the
strong maximum principle (we give a sketch of proof below).

On the one hand, our resuts generalizes the assumptions on sublinear Hamiltonians made
in [8]. More importantly, our results allow to deal with a class of superlinear Hamiltonians
which is very different with the superlinear case of [8].

Theorem 4.8. (Large time behavior) Assume that either the assumptions of Theorem 1.1
or the assumptions of Theorem 1.2 hold. Moreover, suppose that H is continuous and
locally lipschitz with respect to p. Then, there exists a unique c ∈ R such that, for all
u0 ∈ C(TN), the solution u of (1.2) satisfies

u(x, t) + ct→ v0(x) uniformly as t→ +∞,(4.18)
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where (c, v0) is a solution of (4.1).

Sketch of proof of Theorem 4.8. First of all, it is enough to assume that u0 ∈ C2(TN ). The
general case where u0 ∈ C(TN ) can be handled using an approximation of u0 in the class
of C2 functions and the comparison principle.

Setm(t) = maxx∈TN (u(x, t)+ct−v0(x)). By the comparison principle, m is nonincreasing
and, since it is bounded from below, m(t) → ℓ as t → ∞. From Theorem 4.2, {u(·, t) +
ct, t > 0} is relatively compact in W 1,∞(TN). So we can extract a sequence, tj → +∞
such that u(·, tj) + ctj → ū ∈ W 1,∞(TN). Applying the comparison principle for (1.2) in
W 1,∞(TN × [0,+∞)), we obtain, for every x ∈ T

N , t ≥ 0, p ∈ N,

|u(x, t+ tj) + ctj − u(x, t+ tp)− ctp)| ≤ max
y∈TN

|u(y, tj) + ctj − u(y, tp)− ctp|,

which proves that (u(·, ·+ tj) + c(· + tj))j is a Cauchy sequence in C(TN × [0,+∞)). We
call u∞ its limit. Notice, on one hand, that |Du∞(·, t)|∞ ≤ K for all t and, on the other
hand, that u∞ − ct is solution of (1.2) with initial data ū by stability.

Passing to the limit with respect to j in m(t + tj) we obtain

ℓ = max
x

(u∞(x, t)− v0(x)) for any t > 0.(4.19)

Since u∞ is solution of (1.2) ith c in the right-hand side and v0 is solution of (4.1),
thanks to the Lipschitz continuity of u∞, v

0 with respect to x and H with respect to the
gradient, we obtain that there exists C > 0 such that w = u∞ − v0 is subsolution of
wt−trace(A(x)D2w)−C|Dw| ≤ 0 in T

N × [0,+∞). Using (4.19) and the strong maximum
principle ([13]), we infer u∞(x, t)−v0(x) = ℓ for every (x, t) ∈ T

N × [0,+∞). Noticing that
ℓ+v0(x) does not depend on the choice of subsequences, we obtain u(x, t)+ct−ℓ−v0(x) → 0
uniformly in x as t→ ∞. �

4.4. Existence result of Hölder continuous solutions for equations without com-

parison principle. Usually, existence results for Equations like (1.1) or (1.2) are conse-
quence of a strong comparison principle as Theorem 3.2 together with Perron’s method
or using the value function of an optimal control problem when H is convex. In this sec-
tion, we use Theorem 3.2 and the result of [10] to build Hölder continuous solutions under
assumptions which are too weak to expect any comparison principle.

Theorem 4.9. Assume A ≥ 0, H is continuous and satisfies

|p|m
C

− C ≤ H(x, p) ≤ C(|p|M + 1), x ∈ T
N , p ∈ R

N , 2 < m ≤M.(4.20)

Then there exists a viscosity solution vǫ of (1.1) which is m−2
m−1

-Hölder continuous solution

and, for every u0 ∈ C2(TN ), a viscosity solution u of (1.2) which is m−2
m−1

-Hölder continuous
in space and Lipschitz continuous in t.

Proof. The proof follows the approach used in Step 2 of the proof of Theorem 4.2.

Step 1. Existence for the stationary problem (1.1). Equation (1.1) with H replaced by

Hq(x, p) =
|p|M+1

q
+H(x, p) and A replaced by A+ 1

q
I satisfies the conditions of Theorem 3.2,
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hence we have the strong comparison principle for this new equation. Therefore, we can
apply Perron’s method to obtain the existence of a continuous solution vǫq. From [10],

vǫq is m−2
m−1

-Hölder continuous. Using Ascoli-Arzela Theorem and stability when q → +∞,

we obtain the existence of a viscosity solution vǫ which is m−2
m−1

-Hölder continuous (with a

constant independent of ǫ).

Step 2. Existence of Hölder continuous solutions to the ergodic problem. We can reproduce
the beginning of the proof of Theorem 4.1 with vǫ: the sequences ǫvǫ and vǫ−vǫ(0) are still
equicontinuous and therefore, we can build a solution (c, v0) ∈ R× C0,m−2

m−1 (TN ) to (4.1).

Step 3. Existence for the parabolic problem. We now consider (4.5). This equation satisfies
a strong comparison principle. We can follow readily the proof of Step 2 of Theorem 4.2 up
to obtain a Hölder continuous solution uq. Notice it is possible to build a solution to (4.1)
as explained in Step 2 above. The comparison of uq with vq − cqt ± C where C is a big
constant is not anymore straightforward as in the proof of Theorem 4.2 since vq is only
Hölder continuous and not Lipschitz continuous. To continue, we need to adapt the proof
of Theorem 3.2 to the parabolic case which can be done easily since uq, vq are m−2

m−1
-Hölder

continuous in space. It is then possible to send a subsequence q → +∞ to obtain a Hölder
continuous (in space) solution u to (1.2) as desired. �

5. Appendix

Proof of Lemma 2.1. For simplicity, we skip the ǫ superscript in vǫ. The constant L which
appears below is the one of (1.8). Consider

M = max
x,y∈TN

{v(x)− Lv(y) + (L− 1)min v − L|x− y|}.

We are done if M ≤ 0. Otherwise, the above positive maximum is achieved at (x, y)
with x 6= y. Notice that the continuity of v is crucial at this step. The theory of second

order viscosity solutions yields, for every ̺ > 0, the existence of (p,X) ∈ J
2,+
v(x) and

(p/L, Y/L) ∈ J
2,−
v(y), p = L x̄−ȳ

|x̄−ȳ|
, such that







ǫv(x̄)− trace(A(x̄)X) +H(x̄, p) ≤ 0,

ǫv(y)− trace(A(y)
Y

L
) +H(y,

p

L
) ≥ 0.

Using Lemma 2.2, we have

−trace(A(x)X −A(y)Y ) ≥ −LN |x − y||σx|2∞ +O(̺)

It follows

ǫ(v(x̄)− Lv(y))− trace(A(x)X −A(y)Y ) +H(x̄, p)− LH(y,
p

L
)} ≤ 0.

Recall that ǫmin v ≤ |H(·, 0)|∞, then

ǫ(v(x̄)− Lv(y)) > −(L− 1)ǫmin v ≥ −L|H(·, 0)|∞.
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Finally, we obtain

H(x̄, p)− L
[

H(y,
p

L
) + |H(·, 0)|∞ +N |x− y||σx|2∞

]

< 0.

Applying (1.8) yields a contradiction. �

5.1. Proof of Lemma 2.2. For simplicity, we skip the ǫ superscript in vǫ. The theory of
second order viscosity solutions yields (see [12, Theorem 3.2] for instance), for every ̺ > 0,

the existence of (p,X) ∈ J
2,+
v(x), (p, Y ) ∈ J

2,−
v(y) such that (2.1), (2.2), (2.3) hold.

Le us prove (2.4) and (2.5). From (2.1), for every ζ, ξ ∈ R
N , we have

〈Xζ, ζ〉 − 〈Y ξ, ξ〉 ≤ Ψ′〈ζ − ξ, B(ζ − ξ)〉+Ψ′′〈ζ − ξ, (q ⊗ q)(ζ − ξ)〉+O(̺).

We estimate trace(A(x)X) and trace(A(y)Y ) using two orthonormal bases (e1, · · · , eN)
and (ẽ1, · · · , ẽN ) in the following way:

T := trace(A(x)X − A(y)Y ) =

N
∑

i=1

〈Xσ(x)ei, σ(x)ei〉 − 〈Y σ(y)ẽi, σ(y)ẽi〉

≤
N
∑

i=1

Ψ′〈ζi, Bζi〉+Ψ′′〈ζi, (q ⊗ q)ζi〉+O(̺)

≤ Ψ′′〈ζ1, (q ⊗ q)ζ1〉+
N
∑

i=1

Ψ′〈ζi, Bζi〉+O(̺),(5.1)

where we set ζi = σ(x)ei − σ(y)ẽi and noticing that Ψ′′〈ζi, (q⊗ q)ζi〉 = Ψ′′〈ζi, q〉2 ≤ 0 since
Ψ is concave.

We now build a suitable base to prove (2.4) and another one to prove (2.5).
In the case of (2.4) where σ could be degenerate, we choose any orthonormal basis such

that ei = ẽi. It follows

T ≤
N
∑

i=1

Ψ′〈(σ(x)− σ(y))ei, B(σ(x)− σ(y))ei〉+O(̺)

≤ Ψ′N |σ(x)− σ(y)|2|B|+O(̺)

≤ Ψ′N |σx|2∞|x− y|+O(̺)

since |B| ≤ 1/|x− y|. Thus (2.4) holds.
When (1.3) holds, i.e., A(x) ≥ νI for every x, the matrix σ(x) is invertible and we can

set

e1 =
σ(x)−1q

|σ(x)−1q| , ẽ1 = − σ(y)−1q

|σ(y)−1q| , where q is given by (2.2).

If e1 and ẽ1 are collinear, then we complete the basis with orthogonal unit vectors ei =
ẽi ∈ e⊥1 , 2 ≤ i ≤ N. Otherwise, in the plane span{e1, ẽ1}, we consider a rotation R of angle
π
2
and define

e2 = Re1, ẽ2 = −Rẽ1.
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Finally, noticing that span{e1, e2}⊥ = span{ẽ1, ẽ2}⊥, we can complete the orthonormal
basis with unit vectors ei = ẽi ∈ span{e1, e2}⊥, 3 ≤ i ≤ N.

From (1.3), we have

ν ≤ 1

|σ(x)−1q|2 ≤ |σ|2∞.(5.2)

It follows

〈ζ1, (q ⊗ q)ζ1〉 =
(

1

|σ(x)−1q| +
1

|σ(y)−1q|

)2

≥ 4ν.

From (2.2), we deduce Bq = 0. Therefore

〈ζ1, Bζ1〉 = 0.

For 3 ≤ i ≤ N, we have

〈ζi, Bζi〉 = 〈(σ(x)− σ(y))ei, B(σ(x)− σ(y))ei〉 ≤ |σx|2∞|x− y|.

Now, we estimate ζ2

|ζ2| = |(σ(x)− σ(y))Re1 + σ(y)R(e1 + ẽ1)| ≤ |σx|∞|x− y|+ |σ|∞|e1 + ẽ1|.

It remains to estimate

|e1 + ẽ1| ≤ 1

|σ(x)−1q| |σ(x)
−1q − σ(y)−1q|+ |σ(y)−1q|

∣

∣

∣

∣

1

|σ(x)−1q| −
1

|σ(y)−1q|

∣

∣

∣

∣

≤ 2|σ|∞|σx|∞
ν

|x− y|,

from (5.2) and |(σ−1)x|∞ ≤ |σx|∞/ν.
From (5.1), we finally obtain T ≤ 4νΨ′′ + C̃Ψ′|x− y|+O(̺) where

C̃ = C̃(N, ν, |σ|∞, |σx|∞) := |σx|2∞(N − 2 + (1 +
2|σ|2∞
ν

)2).(5.3)

This completes the proof of (2.5).
We finally prove (2.6). Writing the viscosity inequality for the subsolution v of (1.1) at

x and the supersolution v at y, we get
{

ǫv(x̄)− trace(A(x̄)X) +H(x̄, p) ≤ 0,

ǫv(y)− trace(A(y)Y ) +H(y, p) ≥ 0.

Since the maximum is supposed to be positive and Ψ ≥ 0, we have v(x̄) > v(y) and obtain

−trace(A(x)X −A(y)Y ) +H(x̄, p)−H(y, p) < 0.

Estimate (2.6) follows from a straightforward application of (2.5).



LIPSCHITZ REGULARITY RESULTS FOR NONLINEAR STRICTLY ELLIPTIC EQUATIONS 29

References

[1] Olivier Alvarez and Martino Bardi. Ergodicity, stabilization, and singular perturbations for Bellman-
Isaacs equations. Mem. Amer. Math. Soc., 204(960):vi+77, 2010.

[2] M. Arisawa and P.-L. Lions. On ergodic stochastic control. Comm. Partial Differential Equations,
23(11-12):2187–2217, 1998.

[3] Scott N. Armstrong and Hung V. Tran. Viscosity solutions of general viscous Hamilton-Jacobi equa-
tions. Math. Ann., 361(3-4):647–687, 2015.

[4] G. Barles. Interior gradient bounds for the mean curvature equation by viscosity solutions methods.
Differential Integral Equations, 4(2):263–275, 1991.

[5] G. Barles. A weak Bernstein method for fully nonlinear elliptic equations. Differential Integral Equa-
tions, 4(2):241–262, 1991.

[6] G. Barles. C0,α-regularity and estimates for solutions of elliptic and parabolic equations by the Ishii &
Lions method. In International Conference for the 25th Anniversary of Viscosity Solutions, volume 30
of Gakuto International Series, Mathematical Sciences and Applications, pages 33–47. Gakkotosho,
Tokyo, Japan, 2008.

[7] G. Barles. A short proof of the C0,α-regularity of viscosity subsolutions for superquadratic viscous
Hamilton-Jacobi equations and applications. Nonlinear Anal., 73(1):31–47, 2010.

[8] G. Barles and P. E. Souganidis. Space-time periodic solutions and long-time behavior of solutions to
quasi-linear parabolic equations. SIAM J. Math. Anal., 32(6):1311–1323 (electronic), 2001.

[9] Guy Barles and Francesca Da Lio. On the generalized Dirichlet problem for viscous Hamilton-Jacobi
equations. J. Math. Pures Appl. (9), 83(1):53–75, 2004.

[10] I. Capuzzo Dolcetta, F. Leoni, and A. Porretta. Hölder estimates for degenerate elliptic equations
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