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Most of lipschitz regularity results for nonlinear strictly elliptic equations are obtained for a suitable growth power of the nonlinearity with respect to the gradient variable (subquadratic for instance). For equations with superquadratic growth power in gradient, one usually uses weak Bernstein-type arguments which require regularity and/or convex-type assumptions on the gradient nonlinearity. In this article, we obtain new Lipschitz regularity results for a large class of nonlinear strictly elliptic equations with possibly arbitrary growth power of the Hamiltonian with respect to the gradient variable using some ideas coming from Ishii-Lions' method. We use these bounds to solve an ergodic problem and to study the regularity and the large time behavior of the solution of the evolution equation.

Introduction

The main goal of this work is to obtain gradient bounds, which are uniform in ǫ > 0 and t respectively, for the viscosity solutions of a large class of nonlinear strictly elliptic equations ǫv ǫ -trace(A(x)D 2 v ǫ ) + H(x, Dv ǫ ) = 0, x ∈ T N , (1.1) and    ∂u ∂t -trace(A(x)D 2 u) + H(x, Du) = 0, (x, t) ∈ T N × (0, +∞), u(x, 0) = u 0 (x), x ∈ T N .

(1.2)

We work in the periodic setting (T N denotes the flat torus R N /Z N ) and assume for simplicity that A(x) = σ(x)σ(x) T with σ ∈ W 1,∞ (T N ; M N ). Let us mention that all the results of this paper hold true if σ ∈ C 0,1/2 (T N ; M N ). We recall that a diffusion matrix A is called strictly elliptic if there exists ν > 0 such that A(x) ≥ νI, x ∈ T N . (1.3) Most of Lipschitz regularity results for elliptic equations are obtained for a suitable growth power with respect to the gradient variable (subquadratic for instance, see Frehse [START_REF] Frehse | On the regularity of solutions to elliptic differential inequalities[END_REF], ). In this article, we establish some gradient bounds |Dv ǫ | ∞ ≤ K, where K is independent of ǫ, (1.4) |Du(•, t)| ∞ ≤ K, where K is independent of t, (1.5) for strictly elliptic equations whose Hamiltonians H have arbitrary growth power in the gradient variable, which is unsual.

An important feature of our work is that we look for uniform gradient bounds in ǫ or t. In many results, the bounds depend crucially on the L ∞ norm of the solution (which looks like O(ǫ -1 ) or O(t)), something we want to avoid in order to be able to solve some ergodic problems by sending ǫ → 0 or to study the large time behavior of u(x, t) when t → +∞. These applications are discussed more in details below and are done in Section 4. We focus now on the more delicate part, i.e., the Lipschitz bounds for (1.1).

Let us start by recalling the existing results when H is superquadratic and coercive. Hölder regularity of the solution is proved under the very general assumption

H(x, p) ≥ 1 C |p| k -C, with k > 2,
see Capuzzo Dolcetta et al. [START_REF] Capuzzo Dolcetta | Hölder estimates for degenerate elliptic equations with coercive Hamiltonians[END_REF], Barles [START_REF] Barles | A short proof of the C 0,α -regularity of viscosity subsolutions for superquadratic viscous Hamilton-Jacobi equations and applications[END_REF], Cardaliaguet-Silvestre [START_REF] Cardaliaguet | Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side[END_REF], Armstrong-Tran [START_REF] Armstrong | Viscosity solutions of general viscous Hamilton-Jacobi equations[END_REF]. But there are only few results as far as Lipschitz regularity is concerned. In general they are established using Bernstein method [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF][START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF] or the adaptation of this method in the context of viscosity solutions, see Barles [START_REF] Barles | A weak Bernstein method for fully nonlinear elliptic equations[END_REF], Barles-Souganidis [START_REF] Barles | Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations[END_REF], Lions-Souganidis [START_REF] Lions | Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications[END_REF], Capuzzo Dolcetta et al. [START_REF] Capuzzo Dolcetta | Hölder estimates for degenerate elliptic equations with coercive Hamiltonians[END_REF]. This approach requires some structural assumptions on H which are often close to "convexity-type assumptions". They appear naturally when differentiating the equation, a drawback of the original Bernstein method. Even if the weak Bernstein method [START_REF] Barles | A weak Bernstein method for fully nonlinear elliptic equations[END_REF] is less restrictive as far as the regularity of the datas is concerned (Lipschitz continuity is enough), we do not consider this approach here to be able to deal with Hamiltonians having few regularity like Hölder continuous Hamiltonians for instance. Actually most of our assumptions do not even require the Hamiltonian to be continuous as soon as a continuous solution to the equation exists. However, let us mention that the weak Bernstein method has also several advantages: the method may be used for degenerate equations in some cases and the Hamiltonian may have arbitrary growth, see for instance [START_REF] Barles | Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations[END_REF][START_REF] Capuzzo Dolcetta | Hölder estimates for degenerate elliptic equations with coercive Hamiltonians[END_REF]. Instead, in this work, we use the Ishii-Lions' method introduced in [START_REF] Ishii | Viscosity solutions of fully nonlinear second-order elliptic partial differential equations[END_REF], see also [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Barles | C 0,α -regularity and estimates for solutions of elliptic and parabolic equations by the Ishii & Lions method[END_REF]. This method allows to takes profit of the strict ellipticity of the equation to control the strong nonlinearities of the Hamiltonian. In Ishii-Lions [START_REF] Ishii | Viscosity solutions of fully nonlinear second-order elliptic partial differential equations[END_REF] and Barles [4], weak regularity assumptions are assumed over H, merely a kind of balance between some Hölder continuity in x and the growth size of H with respect to the gradient, namely |H(x, p) -H(y, p)| ≤ ω(|x -y|)|x -y| τ |p| 2+τ + C in [START_REF] Ishii | Viscosity solutions of fully nonlinear second-order elliptic partial differential equations[END_REF]Assumption (3.2)], (1.6) or |H(x, p) -H(y, p)| ≤ C|x -y||p| 3 + C(1 + |p| 2 ) in [START_REF] Barles | Interior gradient bounds for the mean curvature equation by viscosity solutions methods[END_REF]Assumption (3.4)], (1.7) where x, y ∈ T N , p ∈ R N , τ ∈ [0, 1], ω is a modulus of continuity and C > 0. These assumptions are designed for subquadratic (or growing at most like |p| 3 ) Hamiltonians. This is not surprising since it is known that, in general, the ellipticity is not powerful enough to control nonlinearities which are more than quadratic [START_REF] Capuzzo Dolcetta | Hölder estimates for degenerate elliptic equations with coercive Hamiltonians[END_REF]. Under these assumptions, the authors prove a Lipschitz bound, which depends however of the L ∞ norm of the solution.

Our results consists in improving the previous ones in the periodic setting. We give two new results, the first one being a slight generalization of of [START_REF] Ishii | Viscosity solutions of fully nonlinear second-order elliptic partial differential equations[END_REF][START_REF] Barles | Interior gradient bounds for the mean curvature equation by viscosity solutions methods[END_REF] while the second one takes profit of the strong coercivity of H and allows arbitrary growth of H with respect to the gradient. Then, there exists K > 0 such that for all ǫ > 0, any continuous solution v ǫ of (1.1) satisfies (1.4). where o(|p| k )/|p| k → 0 as |p| → +∞, uniformly with respect to x ∈ T N . Then, there exists K > 0 such that for all ǫ > 0, any continuous solution v ǫ of (1.1) satisfies (1.4).

Before giving some comments about these results, let us explain in a formal way the strategy to establish them. The proof follows roughly the same lines as the one in [START_REF] Barles | Interior gradient bounds for the mean curvature equation by viscosity solutions methods[END_REF]. We aim at proving that the maximum max

x,y∈T N {v ǫ (x) -v ǫ (y) -ψ(|x -y|)}
is nonnegative, choosing in a first step ψ(r) = Lr α , α ∈ (0, 1), to obtain a Hölder bound, and, in a second step, ψ(r) = L(r -r 1+α ), to improve the Hölder bound into a Lipschitz one. To do this, we use in a crucial way the strict concave behavior of ψ near 0 to take profit of the strict ellipticity of the equation as usual in Ishii-Lions' method.

The first notable difference with the previous works is that we are able to force the maximum to be achieved at (x, y) with r := |x -y| enough close to 0 without increasing L in terms of the L ∞ norm of v ǫ . This is a consequence of an a priori oscillation bound osc(v ǫ ) := sup

T N v ǫ -inf T N v ǫ ≤ K, where K is independent of ǫ, (1.12)
obtained by the authors [START_REF] Ley | Gradient bounds for nonlinear degenerate parabolic equations and application to large time behavior of systems[END_REF] for any continuous solution of (1.1) when merely (1.8) We extend the oscillation bound in the parabolic setting, see Lemma 4.5, and give an application.

The second step starts by noticing that, once we have on hands a Hölder bound, then the strength of the nonlinearity is weakened. We can apply again Ishii-Lions' method in a context where the ellipticity is reinforced compared to the nonlinearity, even when the Hamiltonian has a large growth with respect to the gradient. It allows to improve the regularity up to Lipschitz continuity. This is one of the main novelty to obtain the gradient bounds. Then, a careful study of the balance between both terms finally gives the best exponents.

Let us comment our results. Theorem 1.1 reduces to [4, III.1] when α = 1. But notice that our Lipschitz bound does not depend on the L ∞ bound of the solution and we are able to deal with Hamiltonians having less regularity with respect to x. For instance, our result applies when (1.14) and G satisfies (1.13) (superlinearity) and |G(x, p)| ≤ C(1 + |p| 2 ) (subquadratic) without any regularity condition on G.

H(x, p) = |Σ(x)p| m + G(x, p), m ≤ α + 2, Σ ∈ C 0,α (T N ; M N ),
In Theorem 1.2, the coercivity assumption (1.10) is the one needed to obtain the Hölder regularity with exponent k-2 k-1 in [START_REF] Capuzzo Dolcetta | Hölder estimates for degenerate elliptic equations with coercive Hamiltonians[END_REF]. Notice that, this estimate being independent of ǫ, we get for free the oscillation bound (1.12). The first step in this case consists in showing that the solution is γ-Hölder continuous for any γ ∈ ( k-2 k-1 , 1). It then allows us to improve the regularity up to Lipschitz continuity. In (1.11), the growth power with respect to the gradient variable can be much greater than k > 2, which enlarges the class of Hamiltonians under which our result applies. Let us emphasize that the situation is very different comparing to Theorem 1.1 where we can start with any Hölder exponent to get the Lipschitz regularity. Here, starting with a Hölder exponent equal to k-2 k-1 seems crucial to be able to improve the regularity when H has a strong growth with respect to the gradient.

As examples of applications of Theorem 1.2, we can deal with some new classes of Hamiltonians for which the existing regularity theory does not apply. We can first consider again (1.14), where now there exists k > 2 such that

k ≤ m ≤ (k -1)α + k, Σ > 0 and G(x, p) |p| k → |p|→+∞ 0.
Notice that even if Σ is now assumed to be nondegenerate, this Hamiltonian is not necessarily convex.

The Hamiltonian

H(x, p) = a(x)h(p) + G(x, p), k > 2, |p| k C ≤ h(p) ≤ C|p| k , G(x, p) |p| k → |p|→+∞ 0,
where a is merely continuous and positive, satisfies all the assumptions of Theorem 1.2 and is not convex in general. Let us give another example which will be used in Section 4.2 to extend the results to the parabolic case (1.2) and in Section 4.4 to prove an existence result in a quite surprising situation. Let K be any continuous function satisfying K(x, p) ≤ C(|p| M + 1), for any x ∈ T N , p ∈ R N , M > 2. Then, the function

H(x, p) = K(x, p) + α|p| M +δ , α > 0, δ > 0
satisfies all the assumptions of Theorem 1.2. These examples also illustrate the few regularity assumptions on the datas which are needed.

Our work takes place in the periodic setting to take profit of the compactness and the absence of boundary of T N . The issue of extending our results in a bounded set is very interesting and not obvious. In the case of Neumann boundary conditions, it should be true but the case of Dirichlet boundary conditions faces the problem of loss of boundary conditions when H is superquadratic [START_REF] Barles | On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations[END_REF]. Notice that we cannot expect such general results to be true in a general bounded set since it is known [START_REF] Capuzzo Dolcetta | Hölder estimates for degenerate elliptic equations with coercive Hamiltonians[END_REF] that k-2 k-1 -Hölder continuity is optimal in general. Our results can be extended for A = σσ T with σ ∈ C 0,1/2 (T N ; M N ), for quasilinear equations when A = A(x, p) and for fully nonlinear equations of Bellman-Isaacs type, see Section 2.5 for a discussion.

To study the well-posedness of (1.1) under the assumptions of Theorems 1.1 and 1.2, we have first to prove a comparison principle (Theorem 3.2) whose proof is not classical since the Hamiltonian is not Lipschitz continuous with respect to the gradient. Instead, we use the same ideas as for the proof of the Lipschitz bounds. As a consequence, we obtain the existence and uniqueness of a continuous viscosity solution to (1.1). Moreover this solution is Lipschitz continuous and, if the datas are C ∞ , then the solution is C ∞ thanks to the classical elliptic regularity theory. Let us mention that our approach also allows to construct Hölder continuous solutions to (1.1) (Theorem 4.9) under the general assumption (4.20) which is not sufficient to provide a comparison principle.

We then give several applications of our results. A straightforward consequence to the bound (1.4) is the solvability of the ergodic problem associated with (1.1), see [START_REF] Lions | Homogenization of Hamilton-Jacobi equations[END_REF][START_REF] Arisawa | On ergodic stochastic control[END_REF] and Theorem 4.1: there exists (c,

v 0 ) ∈ R × W 1,∞ (T N ) solution to -trace(A(x)D 2 v 0 ) + H(x, Dv 0 ) = c, x ∈ T N . (1.15)
The next application is the study of the parabolic equation (1.2). The natural idea to extend the gradient bound for (1.1) to (1.2) is to prove first a bound for the time derivative | ∂u ∂t | ∞ and then to apply the results obtained for the stationary equation. This approach does not work directly for several reasons. On the one side, the bound for the time derivative is usually obtained as a consequence of the comparison principle which is not available here. On the other side, our a priori stationary gradient bounds are valid for continuous solutions and not for subsolutions. We overcome these difficulties by considering a tricky approximate equation where H is replaced by

H nq (x, p) = 1 q |p| M + H n (x, p),
with a bounded uniformly continuous approximation H n of H. A crucial point is that, since the coercive term 1 q |p| M does not depend on x, the comparison principle holds for this new equation allowing us to build a continuous viscosity solution. Moreover, the approximate Hamiltonian satisfies the key assumptions (1.8)-(1.9) or (1.10)-(1.11) with the same constants as the original H. So we can build a solution of the ergodic problem in this case. This solution allows us to control the L ∞ , oscillation and time derivative bounds of the solution of the parabolic problem. We therefore can prove a parabolic version of the Hölder regularity result of [START_REF] Capuzzo Dolcetta | Hölder estimates for degenerate elliptic equations with coercive Hamiltonians[END_REF] using the strong coercivity of H nq (Lemma 4.3). By this way, we are in position to mimic the proofs of gradient bounds in the stationary case and to conclude to the existence of a unique Lipschitz continuous solution to (1.2), see Theorem 4.2.

We finally apply all the previous results to prove the large time behavior of the solution of (1.2). Having on hands the gradient bound (1.5), a solution of the ergodic problem (1.15) and the strong maximum principle, the proof is classical [START_REF] Barles | Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations[END_REF].

The paper is organized as follows. In Section 2, we prove the stationary gradient bounds, Theorems 1.1 and 1.2. Section 3 is devoted to establish the well-posedness of (1.1). Finally, the applications are presented in Section 4. We start by solving the ergodic problem, then a study of the parabolic equation (1.2) is provided. We end with the long-time behavior of the solution of (1.2) and the construction of Hölder continuous solutions to equations with Hamiltonians of arbitrary growth without the use of comparison principle. Acknowledgement. This work was partially supported by the ANR (Agence Nationale de la Recherche) through HJnet project ANR-12-BS01-0008-01 and WKBHJ project ANR-12-BS01-0020.

2. Gradient bound for the stationary equation (1.1) 2.1. Oscillation bound. Lemma 2.1. Assume (1.8). Let v ǫ be a continuous solution of (1.1) and let v ǫ (x ǫ ) = min v ǫ . Then

v ǫ (x) -v ǫ (x ǫ ) ≤ L|x -x ǫ | for all x ∈ T N ,
where L is the constant (independent of ǫ) which appears in (1.8).

An immediate consequence is osc(v ǫ ) := max v ǫ -min v ǫ ≤ √ N L.
To make the article self-contained, we present the proof of this result in Appendix.

2.2. Preliminary lemma for Ishii-Lions's method. The following technical lemma is a key tool in this article.

Lemma 2.2. Supose v ǫ is a continuous viscosity solution of (1.1) in some open subset Ω with A(x) = σ(x)σ T (x), σ ∈ W 1,∞ (Ω). Let Ψ : R + → R + be an increasing concave function such that Ψ(0) = 0 and the maximum of

max x,y∈Ω {v ǫ (x) -v ǫ (y) -Ψ(|x -y|)},
is achieved at (x, y). If we can write the viscosity inequalities for v ǫ at x and y, then for every ̺ > 0, there exists (p, X)

∈ J 2,+ v ǫ (x), (p, Y ) ∈ J 2,-v ǫ (y) such that X 0 0 -Y ≤ A + ̺A 2 , (2.1) with p = Ψ ′ (|x -y|)q, q = x -y |x -y| , B = 1 |x -y| (I -q ⊗ q), (2.2) 
A = Ψ ′ (|x -y|) B -B -B B + Ψ ′′ (|x -y|)
q ⊗ q -q ⊗ q -q ⊗ q q ⊗ q (2.3) and the following estimate holds

-trace(A(x)X -A(y)Y ) ≥ -N|σ x | 2 ∞ |x -y|Ψ ′ (|x -y|) + O(̺). (2.4)
If, in addition, (1.3) holds, then there exists

C = C(N, ν, |σ| ∞ , |σ x | ∞ ) (given by (5.3)) such that -trace(A(x)X -A(y)Y ) ≥ -4νΨ ′′ (|x -y|) -CΨ ′ (|x -y|)|x -y| + O(̺) (2.5)
and, if the maximum is positive, then

-4νΨ ′′ (|x -y|) -CΨ ′ (|x -y|)|x -y| + H(x, Ψ ′ (|x -y|)q) -H(y, Ψ ′ (|x -y|)q) < 0. (2.6)
The first part of the result is a basic application of Ishii's Lemma in viscosity theory, see [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. The trace estimates can be found in [START_REF] Ishii | Viscosity solutions of fully nonlinear second-order elliptic partial differential equations[END_REF][START_REF] Barles | Interior gradient bounds for the mean curvature equation by viscosity solutions methods[END_REF][START_REF] Barles | Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations[END_REF] and (2.6) takes benefit of the ellipticity of the equation and allows to apply Ishii-Lion's method introduced in [START_REF] Ishii | Viscosity solutions of fully nonlinear second-order elliptic partial differential equations[END_REF]. For reader's convenience, we provide a proof in the Appendix.

2.3.

Proof of Theorem 1.1. The proof relies on some ideas of [START_REF] Barles | Interior gradient bounds for the mean curvature equation by viscosity solutions methods[END_REF]. The main difference is that, thanks to the uniform oscillation bound presented in Lemma 2.1, we can obtain a gradient bound independent of the L ∞ norm of the solution.

Step 1. Hölder continuity. We claim that there exist some constants γ ∈ (0, 1], K > 0 independent of ǫ such that

|v ǫ | C 0,γ ≤ K 0 .
We skip the ǫ superscript in v ǫ hereafter for sake of notations.

Thanks to Lemma 2.1, the oscillation of v is uniformly (in ǫ) bounded by a constant O. Consider max

x,y∈T N {v(x) -v(y) -Ψ(|x -y|)},
where Ψ(s) = K 0 s γ . Our goal is to choose γ ∈ (0, 1], K 0 > 0, which depend only on C, α given by the hypothesis (1.9) such that the above maximum is nonegative. To do so, we assume by contradiction that the maximum is positive and hence, it is achieved at (x, y) with x = y thanks to the continuity of v. We next choose r depending on K 0 such that

K 0 r γ = O + 1.
With such a choice of r, it is clear that |x -y| < r. Denote s := |x -y|. From Lemma 2.2 and (1.9), we will have a contradiction if we can choose K, γ such that

-4νΨ ′′ (s) -CsΨ ′ (s) ≥ Cs α Ψ ′ (s) α+2 + CΨ ′ (s) 2 + C. Computing Ψ ′ (s) = K 0 γs γ-1 and Ψ ′′ (s) = K 0 γ(γ -1)s γ-2 , we have to prove 4νK 0 γ(1 -γ)s γ-2 -CK 0 γs γ ≥ Cs α (K 0 γs γ-1 ) α+2 + C(K 0 γs γ-1 ) 2 + C.
It is clear that νK 0 γ(1 -γ)s γ-2 ≥ CK 0 γs γ + C when r is small enough. Hence, the above inequality holds true if we can choose K 0 , γ such that the two following inequalities hold,

νK 0 γ(1 -γ)s γ-2 ≥ Cs α (K 0 γs γ-1 ) α+2 ⇔ ν(1 -γ) ≥ C(K 0 s γ ) α+1 γ α+1 ,
and

νK 0 γ(1 -γ)s γ-2 ≥ CΨ ′2 ⇔ ν(1 -γ) ≥ CK 0 s γ γ. Since K 0 s γ ≤ K 0 r γ ≤ O + 1,
both inequalities hold true when γ is small enough depending on the oscillation O (but not on K 0 ). This proves the claim.

Step 2. Improvement of the Hölder regularity to Lispchitz regularity. From the previous step, v is γ Hölder continuous (γ is possibly small) and the Hölder constant K 0 can be chosen to be independent of ǫ. We fix such a γ. We also recall that, from Lemma 2.1, the oscillation of v is bounded by a constant O independent of ǫ.

We first construct a concave function Ψ :

[0, r] → R + by Ψ(s) = A 1 [A 2 s -(A 2 s) 1+γ ], (2.7)
where r, A 1 , A 2 > 0, which depend only on C, α, β given by the hypothesis (1.9), will be precised later. We extend Ψ into R + by defining Ψ(s) = Ψ(r) for s ≥ r.

We compute, for 0 ≤ s < r,

Ψ ′ (s) = A 1 A 2 [1 -A γ 2 (1 + γ)s γ ], Ψ ′′ (s) = -A 1 A 1+γ 2 γ(1 + γ)s γ-1 < 0.
We then choose r depending on A 2 (A 2 may vary in the next arguments) such that

A 2 r = 1 3 and Ψ(r) = O + 1 (2.8) A consequence of this choice is that A 1 is now fixed since A 1 (3 -1 -3 -1-γ ) = O + 1. It is straightforward to see that Ψ is a smooth concave increasing function on [0, r) satisfying Ψ(0) = 0 and, for all s ∈ [0, r], A 1 A 2 [1 - 1 + γ 3 γ ] = Ψ ′ (r) ≤ Ψ ′ (s) ≤ Ψ ′ (0) = A 1 A 2 . (2.9) Consider M := max x,y∈T N {v(x) -v(y) -Ψ(|x -y|)}.
If M ≤ 0 then the theorem holds with K = A 1 A 2 . The rest of the proof consists in proving that M is indeed nonpositive for A 2 big enough. We argue by contradiction assuming that M > 0. This maximum is achieved at (x, y) with x = y. With the choice of r in the condition (2.8) and the fact that Ψ is non-decreasing, it is clear that |x -y| < r.

Denote s := |x -y|. From (1.9) and Lemma 2.2, we have

-4νΨ ′′ (s) -CsΨ ′ (s) < Cs α Ψ ′ (s) α+2 + C + CΨ ′ (s) 2 ,
which gives us

4νA 1 A 1+γ 2 γ(1 + γ)s γ-1 -CA 1 A 2 s[1 -A γ 2 (1 + γ)s γ ] < Cs α Ψ ′ (s) α+2 + C + CΨ ′ (s) 2 .
The goal now is to have a contradicton in the above inequality for large A 2 .

We first note that it is possible to increase A 2 in order that

νA 1 A 1+γ 2 γ(1 + γ)s γ-1 -CA 1 A 2 s[1 -A γ 2 (1 + γ)s γ ] ≥ 0. (2.10)

Indeed, the inequality is true for all

A 2 ≥ 1 if s ≥ 1 and, when s ≤ 1, it is sufficient to take A 2 ≥ (νγ) -1 C.
Therefore, it is enough to show that we may choose A 2 such that the following inequalities hold true,

νA 1 A 1+γ 2 γ(1 + γ)s γ-1 ≥ Cs α Ψ ′ (s) α+2 = C sΨ ′ (s) 1 1-γ α Ψ ′ (s) α+2-α 1-γ , (2.11) and 2νA 1 A 1+γ 2 γ(1 + γ)s γ-1 ≥ C + CΨ ′ (s) 2 . (2.12)
We first prove that it is possible to choose A 2 such that (2.11) holds true. We know that Ψ is concave and γ-Hölder continuous, so we have

sΨ ′ (s) ≤ Ψ(s) < v(x) -v(y) ≤ K 0 s γ , Hence sΨ ′ (s) 1 1-γ ≤ K 1 1-γ 0 (2.13)
and it follows that (2.11) is true provided

νA 1 A 1+γ 2 γ(1 + γ)s γ-1 ≥ CK α 1-γ 0 (A 1 A 2 ) α+2-α 1-γ . (2.14)
Recalling that 1/s ≥ 1/r > A 2 from (2.8), we have

A 1+γ 2 s γ-1 ≥ A 2 2 (2.15)
and (2.14) is true if

νA 1 A 2 2 γ(1 + γ) ≥ CK α 1-γ 0 (A 1 A 2 ) α+2-α 1-γ . (2.16)
Finally, (2.16) indeed holds for A 2 big enough since α + 2 -α 1-γ < 2. We now prove that it is possible to choose A 2 such that (2.12) holds true. At first, from (2.15), we have

νA 1 A 1+γ 2 γ(1 + γ)s γ-1 ≥ νA 1 A 2 2 γ(1 + γ) ≥ C when A 2 big enough. So, (2.12) holds if we can choose A 2 such that νA 1 A 1+γ 2 γ(1 + γ) ≥ Cs 1-γ Ψ ′ (s) 2 .
(2.17) From (2.9) and (2.13),

Cs 1-γ Ψ ′ (s) 2 = C(sΨ ′ (s) 1 1-γ ) 1-γ Ψ ′ (s) ≤ CK 0 A 1 A 2 , so (2.17) holds provided νA 1 A 1+γ 2 γ(1 + γ) ≥ CK 0 A 1 A 2 , which is obviously true if A 2 is big enough.
The proof of the theorem is complete 2.4. Proof of Theorem 1.2. From [START_REF] Capuzzo Dolcetta | Hölder estimates for degenerate elliptic equations with coercive Hamiltonians[END_REF], we have

v is k -2 k -1
-Hölder continuous and the Hölder constant is equal to K 0 , (2.18) where k > 2 is given by the assumption (1.10). In [START_REF] Capuzzo Dolcetta | Hölder estimates for degenerate elliptic equations with coercive Hamiltonians[END_REF], the authors prove that the Hölder constant depends only on N, k, |ǫv ǫ | ∞ and, since |ǫv ǫ | ∞ ≤ |H(x, 0)| ∞ , K 0 can be chosen independent of ǫ. A by-product of the above result (or of Lemma 2.1) is that the oscillation of v ǫ is bounded by a constant O > 0 independent of ǫ.

Hereafter we write v for v ǫ .

Step 1. Improvement of the Hölder exponent. Fix any χ ∈ ( k-2 k-1 , 1). We show that v is χ-Hölder continuous.

We set

Ψ(s) = Ks χ ,
where K > 0, which depend only on C, α, β given by the hypothesis (1.11), will be precised later. We fix a constant r which depends on K as follows

Kr χ = O + 1. (2.19) Consider max x,y∈T N {v(x) -v(y) -K|x -y| χ }. (2.20)
If the maximum is nonpositive then the theorem holds. From now on, we argue by contradiction assuming that the maximum is positive. The maximum is achieved at (x, y) with x = y. With the choice of r in (2. [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF], it is clear that |x -y| < r.

Denote s := |x -y|. From (1.11) and Lemma 2.2, we have

-4νΨ ′′ (s) -CsΨ ′ (s) < ω (1 + Ψ ′ (s) β )s s α Ψ ′ (s) (k-1)α+k + o(|p| k ), with β < k -1, Ψ ′ (s) = Kχs χ-1 , Ψ ′′ (s) = Kχ(χ -1)s χ-2 and p = Ψ ′ (s) x-y |x-y| .
We can rewrite the above inequality as

4νKχ(1 -χ)s χ-2 -CKχs χ < ω (1 + Ψ ′ (s) β )s s α Ψ ′ (s) (k-1)α+k + o(|p| k ).
At first, from (2.19), it is possible to increase K such that r is small enough in order to have

2νKχ(1 -χ)s χ-2 ≥ CKχs χ , for s ≤ r.
Hence, to get a contradiction in the above inequality, we only need to choose K such that the two following inequalities hold,

νKχ(1 -χ)s χ-2 ≥ ω (1 + Ψ ′ (s) β )s s α Ψ ′ (s) (k-1)α+k (2.21) and νKχ(1 -χ)s χ-2 ≥ o(|p| k ). (2.22)
Step 1.1. Choosing K large enough such that we have (2.21). Writing that the maximum (2.20) is positive and using the concavity of Ψ and (2.18), we have sΨ

′ (s) ≤ Ks χ = Ψ(s) < v(x) -v(y) ≤ K 0 s k-2 k-1 , hence sΨ ′ (s) k-1 ≤ K k-1 0 and 1 s ≥ K K 0 1 χ-k-2 k-1 . (2.23) It follows ω (1 + Ψ ′ (s) β )s s α Ψ ′ (s) (k-1)α+k = ω (1 + Ψ ′ (s) β )s sΨ ′ (s) k-1 α Ψ ′ (s) k ≤ ω (1 + Ψ ′ (s) β )s K α(k-1) 0 (Kχs χ-1 ) k . Therefore, (2.21) is true provided νKχ(1 -χ)s χ-2 ≥ ω (1 + Ψ ′ (s) β )s K α(k-1) 0 (Kχs χ-1 ) k . Setting ν = νχ(1 -χ)K α(1-k) 0 χ -k ,
which is a constant independent of K, s, we rewrite the above desired inequality as

ν 1 s k(χ-1)-χ+2 ≥ ω (1 + Ψ ′ (s) β )s K k-1 . (2.24) From (2.23) and the choice χ > k-2 k-1 , it follows that inequality (2.24) holds true if ν K K 0 k(χ-1)-χ+2 χ-k-2 k-1 ≥ ω (1 + Ψ ′ (s) β )s K k-1 or ν 1 K 0 k-1 ≥ ω (1 + Ψ ′ (s) β )s . (2.25) Using (2.23) and β < k -1, we have sΨ ′ (s) β = s 1-β k-1 sΨ ′ (s) k-1 β k-1 ≤ s k-1-β β K β 0 ≤ r k-1-β β K β 0 → r→0 0.
Finally (2.25) holds true for large K since r → 0 as K → +∞ by (2.19). This proves (2.21).

Step 1.2. Choosing K large enough such that we have (2.22). We have

o(|p| k ) = o(|p| k ) Ψ ′ (s) k (Kχs χ-1 ) k = o(|p| k ) Ψ ′ (s) k χ k Ψ(s) k-1 , so (2.22) holds if ν(1 -χ) ≥ o(|p| k ) Ψ ′ (s) k χ k-1 s 2-k Ψ(s) k-1 .
Recalling that Ψ(s) [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF]), we have that |p| → +∞ as K → +∞. We then obtain that the above inequality holds true for large K concluding (2.22). This ends Step 1.

≤ K 0 s k-2 k-1 , it is sufficient to ensure ν(1 -χ) ≥ o(|p| k ) Ψ ′ (s) k (χK 0 ) k-1 . Since |p| = Ψ ′ (s) = χKs χ-1 ≥ χKr χ-1 = χ(O + 1) χ-1 χ K 1 χ by (2.
Step 2. Improvement of the new Hölder exponent to Lipschitz continuity. We are now ready to prove the lipschitz continuity.

The beginning of the proof is similar to the one of Theorem 1.1. We consider the increasing concave function Ψ given by (2.7) for any γ ∈ (0, 1) and A 1 , A 2 , r > 0 satisfying (2.8) and set

M = max x,y∈T N {v(x) -v(y) -Ψ(|x -y|)}.
We are done if the maximum is nonnegative. Assuming by contradiction that the maximum is positive, we know it is achieved at (x, y) with s := |x -y| < r. Applying Lemma 2.2 and (1.11), we see that we reach the desired contradiction if the following inequalities hold

νA 1 A 1+γ 2 γ(1 + γ)s γ-1 ≥ ω (1 + Ψ ′ (s) β )s s α Ψ ′ (s) (k-1)α+k (2.26) = ω (1 + Ψ ′ (s) β )s (sΨ ′ (s) 1 1-χ ) α Ψ ′ (s) (k-1)α+k-α 1-χ and νA 1 A 1+γ 2 γ(1 + γ)s γ-1 ≥ o(|p| k ) where |p| = Ψ ′ (s). (2.27)
Next substeps are devoted to prove that we can fulfill the two above inequalities by choosing A 2 large enough. It then leads to a contradiction which implies that the maximum M is nonnegative concluding that v is Lipschitz continuous with constant A 1 A 2 and ending the proof of Theorem 1.2.

Step 2.1. Choosing A 2 such that (2.26) holds true. From Step 1, we know that v is χ-Hölder continuous for any χ ∈ ( k-2 k-1 , 1) with a constant K = K χ which is independent of ǫ. We then have sΨ ′ (s) ≤ Ψ(s) < K χ s χ , hence sΨ ′ (s)

1 1-χ ≤ K 1 1-χ χ . (2.28) Moreover c γ A 1 A 2 := log 3 -1 3 γA 1 A 2 ≤ A 1 A 2 1 - 1 + γ 3 γ = Ψ ′ (r) ≤ Ψ ′ (s) ≤ Ψ ′ (0) = A 1 A 2 . (2.29)
It follows that (2.26) holds provided

νA 1 A 1+γ 2 γ(1 + γ)s γ-1 ≥ ω (1 + Ψ ′ (s) β )s K α 1-χ χ c -|(k-1)α+k-α 1-χ | γ (A 1 A 2 ) (k-1)α+k-α 1-χ . Recalling that 1/s ≥ 1/r > A 2 , the above inequality is true if νA 1 A 2 2 γ(1 + γ) ≥ ω (1 + Ψ ′ (s) β )s K α 1-χ χ c -|(k-1)α+k-α 1-χ | γ (A 1 A 2 ) (k-1)α+k-α 1-χ .
First of all, we have β < k -1 < 1 1-χ , so, by (2.26), ω (1 + Ψ ′ (s) β )s is small for small s. Therefore, to fulfill (2.26), it is enough to fix χ close enough to 1 such that

(k -1)α + k - α 1 -χ < 2 ⇔ χ > 1 - α (k -1)α + k -2 (2.30)
and to take A 2 large enough.

Step 2.2. Choosing A 2 such that (2.27) holds true. We need to choose A 2 such that

νA 1 A 1+γ 2 γ(1 + γ) ≥ s 1-γ o(|p| k ) = o(|p| k ) Ψ ′ (s) k s 1-γ Ψ ′ (s) k = o(|p| k ) Ψ ′ (s) k (sΨ ′ (s) 1 1-χ ) 1-γ Ψ ′ (s) k-1-γ 1-χ .
Using (2.28) and (2.29) again, we see that the above inequality is true provided

νA 1 A 1+γ 2 γ(1 + γ) ≥ o(|p| k ) Ψ ′ (s) k K 1-γ 1-χ χ (A 1 A 2 ) k-1-γ 1-χ .
We fix χ ∈ ( k-2 k-1 , 1) close enough to 1 such that (2.30) holds and k -1-γ 1-χ < 1 + γ. Noticing that Ψ ′ (s) = |p| → +∞ when A 2 → +∞, the previous inequality holds when A 2 is big enough. Therefore (2.27) holds. The proof of the theorem is complete.

2.5. Extensions. As said in the introduction, all proofs still hold true when when

σ ∈ C 0,θ (T N ; M N ), θ ∈ [ 1 2 , 1], instead of W 1,∞ (T N ; M N ).
Actually, on the one side, (2.4) and (2.5) in Lemma 2.2 are modified as follows:

-N|σ x | 2 ∞ |x -y|Ψ ′ (|x -y|) (respectively -CΨ ′ (|x-y|)|x-y|) are replaced by -N|σ| 2 C 0,θ |x-y| 2θ-1 Ψ ′ (|x-y|) (respectively -CΨ ′ (|x- y|)|x -y| 2θ-1 with C = C(N, ν, |σ| ∞ , |σ| C 0,θ )). On the other side, the oscillation bound, Lemma 2.1, hold when N|x -y||σ x | 2 ∞ is replaced by N|σ| 2 C 0,1/2 in (1.8).
The computations in the proofs of Theorems 1.1 and 1.2 are adapted accordingly.

The proofs of Theorems 1.1 and 1.2 can be adapted easily to quasilinear equations with diffusion matrices of type A(x, p) = σ(x, p)σ(x, p) T under suitable growth structures in x, p of σ(x, p).

As far as fully nonlinear equations of Bellman-Isaacs-type We prove the well-posedness of the stationary equation in a slightly more general framework, namely, we work in an open bounded subset of R N instead of T N , assuming some Dirichlet boundary conditions hold.

ǫv ǫ + sup a∈A inf b∈B -trace(A ab (x)D 2 v ǫ ) + H ab (x, Dv ǫ ) =
More precisely, we consider

ǫv ǫ -trace(A(x)D 2 v ǫ ) + H(x, Dv ǫ ) = 0, x ∈ Ω, v ǫ (x) = g(x), x ∈ Ω. (3.1)
where Ω ⊂ R N is an open bounded set with ∂Ω ∈ C 1,1 , g ∈ C(∂Ω), ǫ > 0 and we need to assume that H ∈ C(Ω × R N ; R) to prove the comparison principle.

The comparison principle follows easily from the ad-hoc inequality (3.3) which follows. The proof of the proposition follows the same ideas of the proof of Theorem 1.2. We only sketch the minor changes between two proofs.

Proof. We make the proof under assumptions (1.10)-(1.11), the another case being simpler. With the assumption ∂Ω ∈ C 1,1 and (1.10), the result of [START_REF] Capuzzo Dolcetta | Hölder estimates for degenerate elliptic equations with coercive Hamiltonians[END_REF] gives

u is k -2 k -1 -Hölder continuous in Ω with a constant K 0 , (3.4)
where k is given by the assumption (1.10).

Since u, v are bounded, we can set

U = ||u|| ∞ + ||v|| ∞ . (3.5)
By the upper semi-continuity of u and the compactness of ∂Ω, there exists r > 0 such that u(x) -u(y) ≤ d for all y ∈ ∂Ω, x ∈ Ω and |x -y| ≤ r, v(x) -v(y) ≤ d for all x ∈ ∂Ω, y ∈ Ω and |y -x| ≤ r.

Hence, using u ≤ v on ∂Ω, there exists r > 0 such that u(x) -v(y) ≤ d if |y -x| ≤ r and either x ∈ ∂Ω or y ∈ ∂Ω.

This implies that for

C = U r , we have u(x) -v(y) ≤ d + C|x -y| if either x ∈ ∂Ω or y ∈ ∂Ω. (3.6)
Step 1. Now, we prove that for any χ ∈ ( k-2 k-1 , 1), there exists a constant K such that max

x,y∈Ω {u(x) -v(y) -d -K|x -y| χ } ≤ 0, (3.7)
where K > 0 depends only on C, α, β given by the hypothesis (1.11) and will be precised later.

We argue by contradiction assuming that the maximum is positive for any K > 0. It is therefore achieved at (x, y) with x = y. Denote s := |x -y|. We have

Ks χ < u(x) -v(y) -d. (3.8)
It follows from (3.5) that s tends to zero as K → +∞. Thanks to (3.6), we then infer that necessarily x, y ∈ Ω for K big enough. Therefore, for K big enough, we can write the viscosity inequalities for u at x and v at y.

From this point, the next arguments follow exactly the same ones of Part 1 and 2 in the proof of Theorem 1.2. The only minor difference if the way we get (2.23). From (3.8) and (3.4), setting Ψ(t) = Kt χ , we obtain

sΨ ′ (s) ≤ Ks χ < u(x) -u(y) ≤ K 0 s k-2 k-1 , hence s(Ψ ′ (s)) k-1 ≤ K k-1 0 and 1 s ≥ ( K K 0 ) 1 χ-k-2 k-1 .
which is exactly the estimation (2.23) as desired.

Step 2. Proof of (3.

3). Consider the function Ψ(s) =

A 1 [A 2 s -(A 2 s) 1+γ ] defined as in (2.7) with r, A 1 , A 2 > 0 satisfying (2.8). Consider max x,y∈Ω {u(x) -v(y) -d -Ψ(|x -y|)}.
If the maximum is negative, (3.3) holds with C = A 1 A 2 . From now, we argue by contradiction assuming that the maximum is positive and achieved at (x, y). With the choice of r in (2.8), we have 0 < s := |x -y| < r. Using the same arguments as in the beginning of Step 1, up to take A 2 big enough, we can assume that x, y ∈ Ω and therefore we can write the viscosity inequalities for u at x and v at y.

The next arguments follow exactly the same ones of Part 3 in the proof of Theorem 1.2. The only minor difference is the way we get (2.28). Fix any χ ∈ ( k-2 k-1 , 1). From Step 1, we obtain

d + Ψ(s) < u(x) -v(y) ≤ d + Ks χ .
We then have sΨ ′ (s) ≤ Ψ(s) < Ks χ , hence

s(Ψ ′ (s)) 1 1-χ ≤ K 1 1-χ .
This is exactly Estimate (2.28) as we want. Having on hands (2.28) we repeat readily the arguments of Part 3 in the proof of Theorem 1.2 to conclude.

We now prove the comparison principle Theorem 3.2. Assume (1.3), H is continuous and either (1.8)-(1.9) or (1.10)-(1.11) hold, where the torus T N is replaced by Ω. Let u ∈ USC(Ω) be a subsolution and v ∈ LSC(Ω) be a supersolution of (3.1) such that u ≤ g ≤ v on ∂Ω. Then u(x) ≤ v(x) for all x ∈ Ω.

Notice that we assume that the Dirichlet boundary conditions hold in the classical viscosity sense on ∂Ω. This is a little bit restrictive especially when working with superquadratic Hamiltonians since it is known that loss of boundary conditions may happen, see [START_REF] Barles | On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations[END_REF] for instance. But it is enough for our purpose here since we work in the periodic setting without boundary condition.

Proof. The proof of this result is followed quite easily from the estimate (3.3). Define d as in (3.2). We assume that d > 0 and try to get a contradiction. Since u ≤ g ≤ v on ∂Ω, any z ∈ Ω such that d = u(z) -v(z) lies in Ω. The maximum

M η = max x,y∈Ω {u(x) -v(y) - |x -y| 2 2η 2 -d} ≥ 0 is achieved at (x η , y η ) ∈ Ω × Ω.
If there is a sequence η → 0 such that x η , y η → x ∈ ∂Ω, then

M η = u(x η ) -v(y η ) - |x η -y η | 2 2η 2 -d → u(x) -v(x) -d < 0,
which is a contradiction. Therefore, (x η , y η ) ∈ Ω × Ω for η small enough. The theory of second order viscosity solutions yields, for every ̺ > 0, the existence of (p η , X)

∈ J 2,+ u(x η ), (p η , Y ) ∈ J 2,-v(y η )
such that and the following viscosity inequalities hold

ǫu(x η ) -trace(A(x η )X) + H(x η , p η ) ≤ 0, ǫv(y η ) -trace(A(y η )Y ) + H(y η , p η ) ≥ 0.
Thanks to Proposition 3.1, we have

|x η -y η | 2 2η 2 + d ≤ u(x η ) -v(y η ) ≤ d + C|x η -y η |. Thus p η 2 = |x η -y η | 2η 2 ≤ K.
This implies that p η is bounded independently of η. Subtracting the viscosity inequalities and using (2.4), we get ǫd ≤ H(y η , p η ) -H(x η , p η ) + O(η) + O(̺), which leads to a contradiction when ̺ → 0, η → 0, thanks to the uniform continuity of H on compact subsets.

As a consequence of the previous results, we obtain the well-posedness for (1.1) in the class of Lipschitz continuous functions. Proof. Thanks to the comparison principle, Theorem 3.2, we can construct a unique continuous viscosity solution to (1.1) with Perron's method. To apply this method, it is enough to build some sub and supersolution to (1.1) which is easily done by considering

v ± (x) = ± 1 ǫ |H(•, 0)| ∞ .
The Lipschitz regularity of the solution is then obtained from Theorems 1.1 and 1.2. When A and H are C α in x, the C 2,α regularity of v ǫ is a consequence of the Lipschitz bounds and the classical elliptic regularity theory [15, Theorems 6.13 and 6.14]. Proof. Having on hands Theorems 1.1 and 1.2, the result is an easy application of the method of [START_REF] Lions | Homogenization of Hamilton-Jacobi equations[END_REF] and the strong maximum principle. We only give a sketch of proof. Let v ǫ be the Lipschitz continuous solution of (1.1) given by Corollary 3.3. Since |ǫv ǫ | ≤ |H(•, 0)| ∞ and |Dv ǫ | ∞ ≤ K, the sequences ǫv ǫ and v ǫ -v ǫ (0) are bounded and equicontinuous in C(T N ) for all ǫ > 0. By Ascoli-Arzela Theorem, they converge, up to subsequences to -c ∈ R and v 0 ∈ W 1,∞ (T N ) respectively. By stability, (c, v 0 ) is a solution of (4.1). To prove the uniqueness part of the theorem, assume we have two solutions (c 1 , v 1 ) and (c 2 , v 2 ) of (4.1). Then ũ1 (x, t)

Applications

:= v 1 (x) -c 1 t -(|v 1 | ∞ + |v 2 | ∞ ) and ũ2 (x, t) := v 2 (x) -c 2 t
are respectively subsolution and supersolution of the associated evolution problem (1.2) with initial datas ũ1 (x, 0) ≤ ũ2 (x, 0). Since both ũ1 and ũ2 are Lipschitz continuous, we have a straightforward comparison principle for the evolution problem which yields ũ1 (x, t) ≤ ũ2 (x, t) for all (x, t) ∈ T N ×[0, +∞). Sending t → +∞, we infer c 1 ≥ c 2 and exchanging the role of the two solutions, we conclude c 1 = c 2 . It is then easy to prove, using the Lipschitz continuity of v 1 , v 2 and H with respect to the gradient that v = v 1 -v 2 is a subsolution of -trace(A(x)D 2 v) -C|Dv| ≤ 0 in T N for some constant C > 0. By the strong maximum principle ( [START_REF] Lio | Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations[END_REF]), v 1 -v 2 is constant. 4.2. The parabolic equation. In this section, we prove the well-posedness and timeindependent gradient bounds for the nonlinear parabolic problem (1.2) both under the assumptions (1.8)-(1.9) and (1.10)- (1.11).

Theorem 4.2. Assume (1.3) and that H ∈ C(T N × R N ; R) satisfies either (1.8)-(1.9) or (1.10)- (1.11). For any initial data u 0 ∈ C 2 (T N ), there exists a unique continuous viscosity solution u to (1.2) such that, for all x, y ∈ T N , s, t ∈ [0, +∞),

|u(x, t) -u(y, s)| ≤ K|x -y| + Λ|t -s| with K, Λ independent of time. (4.2) If, in addition A, H and u 0 are C ∞ , then u ∈ C ∞ (T N × [0, +∞)).
To prove the theorem, we adapt the proofs of Theorems 1.1 and 1.2. The proof under the set of assumptions (1.10)-(1.11) is more delicate since the proof of Theorem 1.2 requires first to construct a solution to (1.2) which is k-2 k-1 -Hölder continuous. Due to the lack of comparison principle for (1.2) in our case and since the Hölder regualrity result of [START_REF] Capuzzo Dolcetta | Hölder estimates for degenerate elliptic equations with coercive Hamiltonians[END_REF] does not apply directly to evolution equations, the task is difficult. We need to extend the result of [START_REF] Capuzzo Dolcetta | Hölder estimates for degenerate elliptic equations with coercive Hamiltonians[END_REF] for subsolutions of (1.2) which are Lipschitz continuous in time (see Lemma 4.3) and to construct an approximate solution of (1.2) which is indeed Lipschitz continuous in time.

Proof of Theorem 4.2.

Step 1. Proof when (1.8)-(1.9) hold. We truncate the Hamiltonian H by defining 

H n (x, p) = H(x, p) x ∈ T N , |p| ≤ n, H(x, n p |p| ) x ∈ T N , |p| > n. ( 4 
n . Since H n (x, Du 0 (x)) = H(x, Du 0 (x)), for n large enough, u ± (x, t) = u 0 (x) ± |H(•, Du 0 ) -trace(AD 2 u 0 )| ∞ t (4.4)
are respectively super and subsolutions of (1.2) with H n , and Perron's method yields a unique continuous viscosity solution u n of this latter equation.

By Theorem 4.1, there exists a solution (c n , v n ) ∈ R × W 1,∞ (T N ) of (4.1) where H is replaced by H n . Notice that, since H n satisfies (1.8)-(1.9) with constants independent of n for n > L, both |v n | ∞ and |Dv n | ∞ are bounded independently of n. Choosing A independent of n such that A ≥ |v n | ∞ + |u 0 | ∞ , the functions (x, t) → v n (x) -c n t ± A are respectively a viscosity super and subsolutions of (1.2) with H n . By comparison with u n we get

v n (x) -c n t -A ≤ u n (x, t) ≤ v n (x) -c n t + A for all x ∈ T N , t ∈ [0, +∞). It follows that osc(u n (•, t)) ≤ |Dv n | ∞ diam(T N ) + 2A ≤ C with C independent of n, t.
It is now possible to mimic the proof of Theorem 1.1 for u n .

We begin by proving that u n is γ-Hölder continuous with a constant independent of t, n for some γ ∈ (0, 1). For any η > 0, consider

M η := max x,y∈T N ,t>0 {u n (x, t) -u n (y, t) -Ψ(|x -y|) -ηt},
where Ψ(s) = Ks γ , 0 < γ < 1. If the maximum is nonpositive for some K > 1 and all η > 0, then we are done. Otherwise, for all K > 1, there exists η > 0 such that the maximum is positive. It is achieved at some (x, y, t) with x = y.

If t = 0, then, using that |x -y| ≤ √ N , we have

M η ≤ u 0 (x) -u 0 (y) -K|x -y| γ ≤ C 0 |x -y| -K|x -y| γ ≤ 0 for K > C 0 √ N 1-γ
, where C 0 is the Lipschitz constant of u 0 .

It follows that, for K big enough, the maximum is achieved at t > 0 and we can write the viscosity inequalities for u n using the parabolic version of Ishii's Lemma [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]Theorem 8.3]. Using Lemma 2.2 in this context, we get

η -4νΨ ′′ (|x -y|) -CΨ ′ (|x -y|)|x -y| + H(x, Ψ ′ (|x -y|)q) -H(y, Ψ ′ (|x -y|)q) < 0.
We then obtain a contradiction in the above inequality repeating readily the proof of Step 1 of Theorem 1.1 with O := sup t>0 osc(u n (•, t)).

With the same adaptations as above in this parabolic context, we can reproduce the rest of the proof of Theorem 1.1. We conclude that u n is Lipschitz continuous in space with a constant independent of t, n since we used (1.8)-(1.9) with constants independent of n and since osc(u n (•, t)) is bounded independently of t, n.

By Ascoli-Arzela Theorem, up to extract subsequences, u n converge locally uniformly in T N × [0, +∞) as n → +∞ to a function u which is still Lipschitz continuous in space with a constant independent of t. By stability, u is a solution to (1.2).

The proof of the Lipschitz continuity of u in time requires u 0 to be C 2 and can be done exactly as in the second case below.

Step 2. Proof when (1.10)-(1.11) hold. We consider, for q, n ≥ 1, the approximate problem

u t -trace(A(x)D 2 u) + 1 q |Du| M + H n (x, Du) = 0, (x, t) ∈ T N × (0, +∞), u(x, 0) = u 0 (x), x ∈ T N , (4.5) 
where M > 2 and H n is defined in (4.3).

We have a comparison principle for (4.5) since H n ∈ BUC(T N × R N ) and 1 q |p| M is a nonlinearity which is independent of x; when subtracting the viscosity inequality, this term disappears since we are in T N and there is no need to add a localization term in the testfunction to achieve the maximum. Moreover, since (4.4) are still super and subsolutions of (4.5), by means of Perron's method, we can build a continuous viscosity solution u qn of the problem (4.5).

The next lemma extends the result of [START_REF] Capuzzo Dolcetta | Hölder estimates for degenerate elliptic equations with coercive Hamiltonians[END_REF] for USC subsolutions of parabolic equations with coercive Hamiltonian satisfying (1.10). The proof is postponed at the end of the section.

Lemma 4.3. Assume that (1.10) holds. Let U ∈ USC(T N × [0, +∞)) be a subsolution of (1.2) which is bounded and Lipschitz continuous in time with constants independent of t. Then, there exists C > 0 which depends on k, A, Λ (appearing in (1.10) and (4.7)) but not on t such that

|U(x, t) -U(y, t)| ≤ C|x -y| k-2 k-1 x ∈ T N , t ≥ 0.
We are going to prove that u qn satisfies the assumptions of Lemma 4.3. We first claim that there exists a constant c qn bounded with respect to n such that u qn + c qn t is bounded in T N × [0, +∞) by a constant depending on q but not on n. The equation

ǫv -trace(A(x)D 2 v) + 1 q |Dv| M + H n (x, Dv) = 0, x ∈ T N , (4.6) 
satisfies Assumptions (1.10)-(1.11) of Theorem 1.2 with k = M and a constant C depending on q but not on n. By Theorem 4.1, there exists a solution (c qn , v qn ) ∈ R×W 1,∞ (T N ) of the associated ergodic problem. By the maximum principle, |ǫv| ≤ |H n (•, 0)| ∞ ≤ |H(•, 0)| ∞ so c qn is bounded independently of q, n. Moreover, since the constants in the assumptions in Theorem 1.2 may be taken independent of n, v qn is bounded and Lipschitz continuous with constants independent on n. Noticing that ṽqn (x, t) = v qn (x) -c qn t ± A q are respectively viscosity super and subsolutions of (4.5) when A q ≥ |v qn | ∞ + |u 0 | ∞ (A q may be chosen independent of n). By comparison with u qn we get

v qn (x) -c qn t -A q ≤ u qn (x, t) ≤ v qn (x) -c qn t + A q for all x ∈ T N , t ∈ [0, +∞)
and the claim is proved.

We then claim that u qn is Lipschitz continuous in time, i.e., there exists Λ > 0 independent of t, q, n such that

|u qn (x, t) -u qn (x, s)| ≤ Λ|x -y| x ∈ T N , s, t ≥ 0. (4.7)
The proof is classical and relies on the comparison principle together with the fact that u 0 ∈ C 2 (T N ). We only give a sketch of proof. Since A and the Hamiltonian in (4.5) do not depend on t, for all h > 0, u qn (•, • + h) is solution to (4.5) with initial data u qn (•, h). By comparison, we obtain

u qn (x, t + h) -u qn (x, t) ≤ sup y∈T N (u qn (y, h) -u 0 (y)) + x ∈ T N , t ≥ 0. (4.8) Setting Λ := |trace(AD 2 u 0 )| ∞ + |Du 0 | M ∞ + |H(•, 0)| ∞ (notice
that Λ does not depend neither on q nor n), we have that u 0 (x)±Λt are respectively super and subsolutions of (4.5). By comparison, it follows |u qn (x, t) -u 0 (x)| ≤ Λt. Using this inequality in (4.8), we obtain (4.7).

Therefore, we can apply Lemma 4.3 to U(x, t) = u qn (x, t) + c qn t which is Lipschitz continuous in time with a constant independent of t, q, n since c qn is bounded independently on q, n. We obtain that u qn (x, t) + c qn t and so u qn is M -2 M -1 -Hölder continuous in space with a constant depending on q (but not on n, t). By Ascoli-Arzela Theorem, u qn converges, up to subsequences, locally uniformly in T N × [0, +∞) as n → +∞ to a function u q which still satisfies (4.7) (with the same constant Λ). Moreover, by stability, u q is solution to (4.5) with H n replaced by H.

Arguing as above on (4.6) where H n is replaced by H, we can construct a solution (c q , v q ) to the ergodic problem associated to (4.6) with H. Using that

1 q |p| M + H(x, p) ≥ 1 C |p| k -C (4.9)
this time and that (1.11) holds for datas independent of q, we can prove that c q is bounded and v q is bounded and Lipschitz continuous with constants independent of q. By comparison, u q + c q t is bounded independently of q, t.

Applying again Lemma 4.3 to u q + c q t but using (4.9), we obtain that u q is k-2 k-1 -Hölder continuous with a constant independent of q now. Thanks again to Ascoli-Arzela Theorem, we can send q → +∞ to obtain, up to subsequences, a solution u of (1.2) which is still k-2 k-1 -Hölder continuous with a constant independent of t.

We are not in position to mimic the proof of Theorem 1.2 for this solution u, which is done easily adapting the proof in the time-dependent case.

In conclusion, we built a Lipschitz continuous (in space and time) solution to (1.2) with constants independent of t.

Step 3. Uniqueness in the class of continuous functions and upper regularity. Even if a strong comparison principle between semicontinuous viscosity sub and supersolutions does not necessarily hold for (1.2) under our assumptions, it is easy to see that a comparison principle holds if either the subsolution or the supersolution is Lipschitz continuous. It allows to compare any continuous viscosity solution of (1.2) with u.

The regularity of u when the data u 0 ∈ C 2,α and H is C α in x-variable is a consequence of the Lipschitz bounds and the classical parabolic regularity theory, see [START_REF] Krylov | Lectures on elliptic and parabolic equations in Hölder spaces[END_REF] for instance.

The proof of the theorem is complete.

Remark 4.4. When σ ∈ C 0,1/2 (T N ; M N ) instead of W 1,∞ (T N ; M N ), we need to regularize also σ into a Lipschitz continuous matrix to build a continuous solution. The estimates on the approximate solutions are not affected by this regularization thanks to the results of Sections 2 and 3 and the result of [START_REF] Capuzzo Dolcetta | Hölder estimates for degenerate elliptic equations with coercive Hamiltonians[END_REF], which hold for σ ∈ C 0,1/2 (T N ; M N ).

Proof of Lemma 4.3. To prove the lemma, it is sufficient to prove that there exists C > 0 such that, for every t > 0, -trace(A(x)D 2 U(x, t)) + H(x, DU(x, t)) ≤ C for x ∈ T N in the viscosity sense. (4.10) Indeed, once (4.10) is established, we can repeat readily the proof of [START_REF] Capuzzo Dolcetta | Hölder estimates for degenerate elliptic equations with coercive Hamiltonians[END_REF]Theorem 2.7].

Fix t > 0 and suppose that x 0 ∈ T N is a strict maximum point of x → U(x, t) -ϕ(x) in T N , where ϕ ∈ C 2 (T N ). The supremum sup x,y∈T N ,t≥0

{U(x, s) -ϕ(x) - (t -s) 2 η 2 }
is achieved at (x, s) and, since U is bounded, (t-s) 2 η 2

→ 0 and x → x 0 as η → 0. Writing that (x, s) is a maximum point we have

U(x, t) -ϕ(x) ≤ U(x, s) -ϕ(x) - (t -s) 2 η 2 .
Using the Lipschitz continuity with respect to time of U (let us say with constant Λ independent of t), we obtain |t -s| η 2 ≤ Λ. (4.11) Since U is a viscosity subsolution of (1.2), we get s -t η 2 -trace(A(x)D 2 ϕ(x)) + H(x, Dϕ(x)) ≤ 0. Taking into account (4.11) and letting η → 0, we infer -trace(A(x 0 )D 2 ϕ(x 0 )) + H(x 0 , Dϕ(x 0 )) ≤ Λ, which proves (4.10).

We end this section with a general bound for the oscillation of continuous solutions to (1.2) when the comparison result holds. It is the analogous of Lemma 2.1 in the parabolic setting and is a result interesting by itself. We give below as an easy application the convergence of u(x, t)/t towards a constant. Lemma 4.5. Suppose that comparison principle holds for (1.2). Let u 0 ∈ C 2 (T N ) and assume that H, A, u 0 satisfy    there exists L > 1 such that for all x, y ∈ T N , if |p| = L, then

H(x, p) ≥ |p| H(y, p |p| )+|H(•, Du 0 ) -trace(AD 2 u 0 )| ∞ +N|x -y||σ x | 2 ∞ .
(4.12)

Then, the unique continuous solution u of (1.2) satisfies u(x, t) -u(y t , t) ≤ L|x -y t |, for all t ≥ 0, x ∈ T N (4.13) and y t such that u(y t , t) = min x∈T N u(x, t).

Notice that (4.12) is a parabolic version of (1.8) which holds as soon as H is superlinear. Fix T > 0. We define

M = max x,y∈T N ,t∈[0,T ] {u(x, t) -Lu(y, t) + (L -1) min x∈T N u(x, t) -L|x -y|},
where the constant L is the one in (4.12). If ≤ 0, then (4.13) is straightforward.

Otherwise, M ≥ Lδ > 0 for δ > 0 enough small. Thanks to (4.15), we can approximate φ(t) := min x∈T N u(x, t) from below over the compact interval [0, T ] by a sequence of smooth functions φ n (t) whose lipschitz norm is bounded by A given by (4.14). Up to choosing n big enough, we may assume 0 ≤ φ-φ n ≤ δ.

For n ∈ N, we consider

M n = max x,y∈T N , t∈[0,T ] {u(x, t) -Lu(y, t) + (L -1)φ n (t) -L|x -y|}.
It is clear that M n ≥ δ > 0. The above positive maximum is achieved at (x n , y n , t n ) with The theory of second order viscosity solutions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]Theorem 8.3] yields, for every ̺ > 0, the existence of (a, p, X) ∈ J 2,+ u(x n , t n ) and (b/L, p/L, Y /L) ∈ J 2,-u(y n , t n ), with p =

x n = y n . Unless u(x n , t n ) -Lu(x n , t n ) + (L -1)φ n (t n ) ≥ δ, which is impossible since φ n (t) ≤ φ(t) = min x∈T N u(x,
L xn-yn |xn-yn| , a -b = -(L -1)φ ′ (t n ), such that    a -trace(A(x n )X) + H(x n , p) ≤ 0, b L -trace(A(y n ) Y L ) + H(y n , p L ) ≥ 0.
It follows

-(L -1)φ ′ n (t n ) -trace(A(x n )X -A(y n )Y ) + H(x n , p) -LH(y n , p L ) ≤ 0.
Using Lemma 2.2, we have

-trace(A(x n )X -A(y n )Y ) ≥ -LN|x n -y n ||σ x | 2 ∞ + O(̺) Finally, we obtain H(x n , p) -L H(y n , p L ) + N|x n -y n ||σ x | 2 ∞ + O(̺) ≤ (L -1)φ ′ n (t n ) < LA.
Letting ̺ → 0 and applying (4.12) yields a contradiction.

We end this section by an application of the oscillation bound. Proposition 4.7. Assume (4.12) and suppose that a comparison principle for (1.2) holds. For every u 0 ∈ C(T N ), there exists c ∈ R such that the unique solution u of (1.2) satisfies lim t→∞ u(x, t) t = -c uniformly with respect to x ∈ T N .

For related results in the case of Bellman equations, see [START_REF] Arisawa | On ergodic stochastic control[END_REF][START_REF] Alvarez | Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations[END_REF].

Sketch of proof of Proposition 4.7. Without loss of generality, we assume that u 0 ∈ C 2 (T N ).

The general case where u 0 ∈ C(T N ) can be handled using an approximation of u 0 in the class of C 2 functions and the comparison principle. Set m(t) = min T N u(•, t). Since (x, t) → u 0 (x) -At, where A is given by (4.14), is a subsolution of (1.2), we have m(t) ≥ -C(1 + t). Moreover, an easy application of the comparison principle yields that m is subadditive, namely m(t + s) ≤ m(t) + m(s) for all t, s ≥ 0. By the subadditive theorem, there exists c ∈ R such that m(t)/t → -c as t → +∞. By Lemma 4.5, 0 ≤ u(x, t) -m(t) ≤ L diam(T N ). This implies the uniform convergence of u(•, t)/t to -c.

Large time behavior of solutions of nonlinear strictly parabolic equations.

In this section, we use the uniform gradient bound proved in Theorems 1.1 and 1.2 to study the large time behavior of the solution of (1.2).

The first results on the large time behavior of solutions for second order parabolic equaions were established in Barles-Souganidis [START_REF] Barles | Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations[END_REF]. They prove the uniform gradient bounds (1.4) and (1.5) for (1.1) and (1.2) in two cases. The first one is for Hamiltonians with a sublinear growth with respect to the gradient. A typical example is

H(x, p) = b(x), p + ℓ(x), b ∈ C(T N ; R N ), ℓ ∈ C(T N ). (4.16)
The second case is for superlinear Hamiltonians. The precise assumptions ([8, (H2)]) are more involved and require both local Lipschitz regularity properties and convexity-type assumptions on H. These assumptions are designed to allow the use of weak Bernsteintype arguments ([5]). The typical example is with a superlinear growth with respect to the gradient H(x, p) = a(x)|p| 1+α + ℓ(x), α > 0, a, ℓ ∈ W 1,∞ (T N ) and a > 0. (4.17)

The proof of the large time behavior of the solution of (1.2) is then a consequence of the strong maximum principle (we give a sketch of proof below).

On the one hand, our resuts generalizes the assumptions on sublinear Hamiltonians made in [START_REF] Barles | Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations[END_REF]. More importantly, our results allow to deal with a class of superlinear Hamiltonians which is very different with the superlinear case of [START_REF] Barles | Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations[END_REF].

Theorem 4.8. (Large time behavior) Assume that either the assumptions of Theorem 1.1 or the assumptions of Theorem 1.2 hold. Moreover, suppose that H is continuous and locally lipschitz with respect to p. Then, there exists a unique c ∈ R such that, for all u 0 ∈ C(T N ), the solution u of (1.2) satisfies u(x, t) + ct → v 0 (x) unif ormly as t → +∞, (4.18) where (c, v 0 ) is a solution of (4.1). Sketch of proof of Theorem 4.8. First of all, it is enough to assume that u 0 ∈ C 2 (T N ). The general case where u 0 ∈ C(T N ) can be handled using an approximation of u 0 in the class of C 2 functions and the comparison principle.

Set m(t) = max x∈T N (u(x, t)+ct-v 0 (x)). By the comparison principle, m is nonincreasing and, since it is bounded from below, m(t) → ℓ as t → ∞. From Theorem 4.2, {u(•, t) + ct, t > 0} is relatively compact in W 1,∞ (T N ). So we can extract a sequence, t j → +∞ such that u(•, t

j ) + ct j → ū ∈ W 1,∞ (T N ). Applying the comparison principle for (1.2) in W 1,∞ (T N × [0, +∞)), we obtain, for every x ∈ T N , t ≥ 0, p ∈ N, |u(x, t + t j ) + ct j -u(x, t + t p ) -ct p )| ≤ max y∈T N |u(y, t j ) + ct j -u(y, t p ) -ct p |, which proves that (u(•, • + t j ) + c(• + t j )) j is a Cauchy sequence in C(T N × [0, +∞))
. We call u ∞ its limit. Notice, on one hand, that |Du ∞ (•, t)| ∞ ≤ K for all t and, on the other hand, that u ∞ -ct is solution of (1.2) with initial data ū by stability.

Passing to the limit with respect to j in m(t + t j ) we obtain

ℓ = max x (u ∞ (x, t) -v 0 (x)) for any t > 0. (4.19)
Since u ∞ is solution of (1.2) ith c in the right-hand side and v 0 is solution of (4.1), thanks to the Lipschitz continuity of u ∞ , v 0 with respect to x and H with respect to the gradient, we obtain that there exists [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF]) and the strong maximum principle ( [START_REF] Lio | Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations[END_REF]), we infer u ∞ (x, t) -v 0 (x) = ℓ for every (x, t) ∈ T N × [0, +∞). Noticing that ℓ+v 0 (x) does not depend on the choice of subsequences, we obtain u(x, t)+ct-ℓ-v 0 (x) → 0 uniformly in x as t → ∞.

C > 0 such that w = u ∞ -v 0 is subsolution of w t -trace(A(x)D 2 w) -C|Dw| ≤ 0 in T N × [0, +∞). Using (4.

4.4.

Existence result of Hölder continuous solutions for equations without comparison principle. Usually, existence results for Equations like (1.1) or (1.2) are consequence of a strong comparison principle as Theorem 3.2 together with Perron's method or using the value function of an optimal control problem when H is convex. In this section, we use Theorem 3.2 and the result of [START_REF] Capuzzo Dolcetta | Hölder estimates for degenerate elliptic equations with coercive Hamiltonians[END_REF] to build Hölder continuous solutions under assumptions which are too weak to expect any comparison principle. Theorem 4.9. Assume A ≥ 0, H is continuous and satisfies

|p| m C -C ≤ H(x, p) ≤ C(|p| M + 1), x ∈ T N , p ∈ R N , 2 < m ≤ M. (4.20)
Then there exists a viscosity solution v ǫ of (1.1) which is m-2 m-1 -Hölder continuous solution and, for every u 0 ∈ C 2 (T N ), a viscosity solution u of (1.2) which is m-2 m-1 -Hölder continuous in space and Lipschitz continuous in t.

Proof. The proof follows the approach used in Step 2 of the proof of Theorem 4.2.

Step 1. Existence for the stationary problem (1.1). Equation (1.1) with H replaced by H q (x, p) = |p| M +1 q +H(x, p) and A replaced by A+ 1 q I satisfies the conditions of Theorem 3.2, hence we have the strong comparison principle for this new equation. Therefore, we can apply Perron's method to obtain the existence of a continuous solution v ǫ q . From [10], v ǫ q is m-2 m-1 -Hölder continuous. Using Ascoli-Arzela Theorem and stability when q → +∞, we obtain the existence of a viscosity solution v ǫ which is m-2 m-1 -Hölder continuous (with a constant independent of ǫ).

Step 2. Existence of Hölder continuous solutions to the ergodic problem. We can reproduce the beginning of the proof of Theorem 4.1 with v ǫ : the sequences ǫv ǫ and v ǫ -v ǫ (0) are still equicontinuous and therefore, we can build a solution (c, v 0 ) ∈ R × C 0, m-2 m-1 (T N ) to (4.1).

Step 3. Existence for the parabolic problem. We now consider (4.5). This equation satisfies a strong comparison principle. We can follow readily the proof of Step 2 of Theorem 4.2 up to obtain a Hölder continuous solution u q . Notice it is possible to build a solution to (4.1) as explained in Step 2 above. The comparison of u q with v q -c q t ± C where C is a big constant is not anymore straightforward as in the proof of Theorem 4.2 since v q is only Hölder continuous and not Lipschitz continuous. To continue, we need to adapt the proof of Theorem 3.2 to the parabolic case which can be done easily since u q , v q are m-2 m-1 -Hölder continuous in space. It is then possible to send a subsequence q → +∞ to obtain a Hölder continuous (in space) solution u to (1.2) as desired.

Appendix

Proof of Lemma 2.1. For simplicity, we skip the ǫ superscript in v ǫ . The constant L which appears below is the one of (1.8). Consider

M = max

x,y∈T N {v(x) -Lv(y) + (L -1) min v -L|x -y|}.

We are done if M ≤ 0. Otherwise, the above positive maximum is achieved at (x, y) with x = y. Notice that the continuity of v is crucial at this step. The theory of second order viscosity solutions yields, for every ̺ > 0, the existence of (p, X) ∈ J 5.1. Proof of Lemma 2.2. For simplicity, we skip the ǫ superscript in v ǫ . The theory of second order viscosity solutions yields (see [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]Theorem 3.2] for instance), for every ̺ > 0, the existence of (p, X) ∈ J 2,+ v(x), (p, Y ) ∈ J 2,-v(y) such that (2.1), (2.2), (2.3) hold.

Le us prove (2.4) and (2. 

Ψ ′ ζ i , Bζ i + Ψ ′′ ζ i , (q ⊗ q)ζ i + O(̺) ≤ Ψ ′′ ζ 1 , (q ⊗ q)ζ 1 + N i=1 Ψ ′ ζ i , Bζ i + O(̺), (5.1) 
where we set ζ i = σ(x)e i -σ(y)ẽ i and noticing that Ψ ′′ ζ i , (q ⊗ q)ζ i = Ψ ′′ ζ i , q 2 ≤ 0 since Ψ is concave.

We now build a suitable base to prove (2.4) and another one to prove (2.5).

In the case of (2.4) where σ could be degenerate, we choose any orthonormal basis such that e i = ẽi . It follows When (1.3) holds, i.e., A(x) ≥ νI for every x, the matrix σ(x) is invertible and we can set e 1 = σ(x) -1 q |σ(x) -1 q| , ẽ1 = -σ(y) -1 q |σ(y) -1 q| , where q is given by (2.2).

If e 1 and ẽ1 are collinear, then we complete the basis with orthogonal unit vectors e i = ẽi ∈ e ⊥ 1 , 2 ≤ i ≤ N. Otherwise, in the plane span{e 1 , ẽ1 }, we consider a rotation R of angle Finally, noticing that span{e 1 , e 2 } ⊥ = span{ẽ 1 , ẽ2 } ⊥ , we can complete the orthonormal basis with unit vectors e i = ẽi ∈ span{e 1 , e 2 } ⊥ , 3 ≤ i ≤ N.

From (1.3), we have ). (5.3) This completes the proof of (2.5).

We finally prove (2.6). Writing the viscosity inequality for the subsolution v of (1.1) at x and the supersolution v at y, we get ǫv(x) -trace(A(x)X) + H(x, p) ≤ 0, ǫv(y) -trace(A(y)Y ) + H(y, p) ≥ 0.

Since the maximum is supposed to be positive and Ψ ≥ 0, we have v(x) > v(y) and obtain -trace(A(x)X -A(y)Y ) + H(x, p) -H(y, p) < 0. Estimate (2.6) follows from a straightforward application of (2.5).

Theorem 1 . 1 .

 11 Assume (1.3) and H satisfies    there exists L > 1 such that for all x, y ∈ T N ,if |p| = L, then H(x, p) ≥ |p| H(y, p |p| )+|H(•, 0)| ∞ +N|x -y||σ x | 2 ∞ .(1.8) and There are constants α > 0, C such that for all x, y ∈ T N , p ∈ R N , |H(x, p) -H(y, p)| ≤ C|x -y| α |p| α+2 + C(1 + |p| 2 ). (1.9)

Theorem 1 . 2 .

 12 Assume (1.3) and H satisfies there exist constants k > 2, C > 0 such that H(x, p) modulus of continuity ω and constants α ∈ [0, 1], β < k -1 such that for all x, y ∈ T N , p ∈ R N , |H(x, p) -H(y, p)| ≤ ω (1 + |p| β )|x -y| |x -y| α |p| (k-1)α+k + o(|p| k ), (1.11)

3 .

 3 0, are concerned, our results apply provided that Assumptions (1.3), (1.8)-(1.9), (1.10)-(1.11) hold with constants independent of a, b. Comparison principle, existence and uniqueness for the stationary equation (1.1)

Proposition 3 . 1 .

 31 Assume (1.3) and either (1.8)-(1.9) or (1.10)-(1.11) hold, where the torus T N is replaced by Ω. Let u ∈ USC(Ω) be a subsolution and v ∈ LSC(Ω) be a supersolution of (3.1) such that u ≤ g ≤ v on ∂Ω and d := sup x∈Ω (u -v) > 0. (3.2)Then, there exists a constant C such that u(x) -v(y) ≤ d + C|x -y| for all x, y ∈ Ω.(3.3) 

Corollary 3 . 3 .

 33 Assume (1.3), H ∈ C(T N × R N ; R) and either (1.8)-(1.9) or (1.10)-(1.11) hold. Then, there exists a unique continuous viscosity solution v ǫ of (1.1) which is Lipschitz continuous with a constant independent of ǫ. Moreover, if A = σσ T and H are C ∞ , then v ǫ is C ∞ .

4. 1 .

 1 Ergodic problem. As a first application of Theorems 1.1 and 1.2, we prove that we can solve the ergodic problem associated with (1.1), namely, there exist v 0 ∈ W 1,∞ (T N ) and a unique constant c ∈ R solution to -trace(A(x)D 2 v 0 ) + H(x, Dv 0 ) = c, x ∈ T N . (4.1) Theorem 4.1. Assume (1.3), H ∈ C(T N × R N ; R) and either (1.8)-(1.9) or (1.10)-(1.11) hold. Then, there exists (c, v 0 ) ∈ R × W 1,∞ (T N ) solution to (4.1) and c is unique. If we assume moreover that H(x, •) is locally Lipschitz continuous then v 0 is unique up to additive constants.

Remark 4 . 6 .

 46 Assuming that the comparison principle holds is a bit restrictive in this context but we do not succeed to skip it.Proof of Lemma 4.5. SettingA := |H(•, Du 0 ) -trace(AD 2 u 0 )| ∞ , (4.14)we have that u 0 (x) ± At are respectively super and subsolutions of (1.2). By comparison, it follows |u(x, t) -u 0 (x)| ≤ At. By comparison again, we get |u(x, t + s) -u(x, t)| ≤ As.(4.15) 

2 ,

 2 + v(x) and (p/L, Y /L) ∈ J 2,-v(y), p = L x-ȳ |x-ȳ| , such that    ǫv(x) -trace(A(x)X) + H(x, p) ≤ 0, ǫv(y) -trace(A(y) Y L ) + H(y, p L ) ≥ 0.Using Lemma 2.2, we have-trace(A(x)X -A(y)Y ) ≥ -LN|x -y||σ x | 2 ∞ + O(̺) It follows ǫ(v(x) -Lv(y)) -trace(A(x)X -A(y)Y ) + H(x, p) -LH(y, p L )} ≤ 0. Recall that ǫ min v ≤ |H(•, 0)| ∞ , then ǫ(v(x) -Lv(y)) > -(L -1)ǫ min v ≥ -L|H(•, 0)| ∞ .Finally, we obtainH(x, p) -L H(y, p L ) + |H(•, 0)| ∞ + N|x -y||σ x | 2 ∞ < 0.Applying (1.8) yields a contradiction.

  [START_REF] Barles | A weak Bernstein method for fully nonlinear elliptic equations[END_REF]. From (2.1), for every ζ, ξ ∈ R N , we haveXζ, ζ -Y ξ, ξ ≤ Ψ ′ ζ -ξ, B(ζ -ξ) + Ψ ′′ ζ -ξ, (q ⊗ q)(ζ -ξ) + O(̺).We estimate trace(A(x)X) and trace(A(y)Y ) using two orthonormal bases (e 1 , • • • , e N ) and (ẽ 1 , • • • , ẽN ) in the following way:T := trace(A(x)X -A(y)Y ) = N i=1 Xσ(x)e i , σ(x)e i -Y σ(y)ẽ i , σ(y)ẽ i ≤ N i=1

Ψ

  ′ (σ(x) -σ(y))e i , B(σ(x) -σ(y))e i + O(̺)≤ Ψ ′ N|σ(x) -σ(y)| 2 |B| + O(̺) ≤ Ψ ′ N|σ x | 2 ∞ |x -y| + O(̺) since |B| ≤ 1/|x -y|. Thus (2.4) holds.

π 2 and define e 2 =

 2 Re 1 , ẽ2 = -Rẽ 1 .

2 ∞ν ) 2

 22 2), we deduce Bq = 0. Thereforeζ 1 , Bζ 1 = 0. For 3 ≤ i ≤ N, we have ζ i , Bζ i = (σ(x) -σ(y))e i , B(σ(x) -σ(y))e i ≤ |σ x | 2 ∞ |x -y|. Now, we estimate ζ 2 |ζ 2 | = |(σ(x) -σ(y))Re 1 + σ(y)R(e 1 + ẽ1 )| ≤ |σ x | ∞ |x -y| + |σ| ∞ |e 1 + ẽ1 |.It remains to estimate|e 1 + ẽ1 | ≤ 1 |σ(x) -1 q| |σ(x) -1 q -σ(y) -1 q| + |σ(y) -1 q| 1 |σ(x) -1 q| -1 |σ(y) -1 q| ≤ 2|σ| ∞ |σ x | ∞ ν |x -y|, from(5.2) and |(σ -1 ) x | ∞ ≤ |σ x | ∞ /ν. From (5.1), we finally obtain T ≤ 4νΨ ′′ + CΨ ′ |x -y| + O(̺) where C = C(N, ν, |σ| ∞ , |σ x | ∞ ) := |σ x | 2 ∞ (N -2 + (1 + 2|σ|

  It follows that the comparison principle holds for (1.2) where H is replaced by H

.3) Notice that, on the one side, for n ≥ L, H n satisfies (1.8). On the other side, for all n, H n satisfies (1.9) with the same constant C as for H. Moreover H n converges locally uniformly to H as n → +∞.

By construction, H n ∈ BUC(T N × R N ; R).

  t). Moreover, by replacing L with max{L, ||Du 0 || ∞ } if necessary, we can see easily that t n > 0. The claim is proved and the maximum in M n is achieved at a differentiable point of the test-function.
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