
An Iterative Algorithm for Solving Constrained
Decentralized Markov Decision Processes

Aurélie Beynier, Abdel-Illah Mouaddib
GREYC-CNRS, Bd Marechal Juin, Campus II

BP 5186 , 14032 Caen cedex, France
{abeynier, mouaddib}@info.unicaen.fr

Abstract

Despite the significant progress to extend Markov Decision
Processes (MDP) to cooperative multi-agent systems, devel-
oping approaches that can deal with realistic problems re-
mains a serious challenge. Existing approaches that solve De-
centralized Markov Decision Processes (DEC-MDPs) suffer
from the fact that they can only solve relatively small prob-
lems without complex constraints on task execution. OC-
DEC-MDP has been introduced to deal with large DEC-
MDPs under resource and temporal constraints. However,
the proposed algorithm to solve this class of DEC-MDPs has
some limits: it suffers from overestimation of opportunity
cost and restricts policy improvement to one sweep (or itera-
tion). In this paper, we propose to overcome these limits by
first introducing the notion of Expected Opportunity Cost to
better assess the influence of a local decision of an agent on
the others. We then describe an iterative version of the algo-
rithm to incrementally improve the policies of agents leading
to higher quality solutions in some settings. Experimental re-
sults are shown to support our claims.

Introduction
Solving optimally Decentralized Markov Decision Pro-
cesses (DEC-MDPs) is known to be NEXP (Bernstein, Zil-
berstein, & Immerman 2002). One way to overcome this
complexity barrier consists in identifying specific classes
of DEC-MDPs that can be solved more easily thanks to
characteristics such as transition or observation indepen-
dence (Goldman & Zilberstein 2004; Becker, Lesser, & Zil-
berstein 2004; Becker et al. 2003). Other approaches de-
velop approximate solution algorithms (Nair et al. 2003;
Pynadath & Tambe 2002; Peshkin et al. 2000).

Nevertheless, solving large problems remains a serious
challenge even for approximating approaches, that can solve
relatively small problems. Moreover few approaches con-
sider temporal or resource constraints on task execution. To
address this shortcoming, OC-DEC-MDP has been intro-
duced (Beynier & Mouaddib 2005). This formalism can
be used to represent large decision problems with tempo-
ral, precedence and resource constraints. Furthermore, a
polynomial algorithm efficiently computes an approxima-
tion of the optimal solution considering these constraints.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

This framework proposes to solve local MDPs in a decen-
tralized way. Coordination is guaranteed thanks to Oppor-
tunity Cost (OC) which allows the agents to consider the
consequences of their decisions on the other agents. Experi-
ments proved that good quality policies are obtained even for
large problems. Nonetheless, the algorithm for solving OC-
DEC-MDP suffers from limitations. First of all, OC over-
estimates the influence of a decision on the other agents.
Then, it may lead to fallacies or bad decisions. Moreover,
this algorithm improves the initial policy of each task only
once, the improvement process is not repeated. We suggest
that reiterating the policy improvement should lead to bet-
ter performance in some settings. In this paper, we propose
to overcome these limits by first introducing the notion of
Expected Opportunity Cost to better assess the influence of
a decision on the other agents. Then we develop an itera-
tive version of the algorithm. Higher quality policies could
therefore be obtained in some settings.

We begin by formalizing the problem we are consider-
ing and by giving an overview of the approach described
in (Beynier & Mouaddib 2005). Next, we describe two di-
rections to improve the existing algorithm for solving OC-
DEC-MDP. We start with the description of the Expected
Opportunity Cost and we present its benefits. We then de-
scribe an iterative version of the algorithm that allows policy
improvement to be repeated. Finally, we give some experi-
mental results on the scalability and the performance of our
approach and conclude by discussing possible future issues.

Problem Statement
We consider a set of agents, for instance a fleet of
robots, that have to execute a set of tasks respecting tem-
poral, precedence and resource constraints. The prob-
lems X we deal with (introduced by Beynier and Mouad-
dib (Beynier & Mouaddib 2005)) can be described by a tuple
< T, A, TC, Pred, Pc, Pr, R,Rini >. T is a set of tasks ti
to execute. A is a set of agents Ai that have to execute T .
Ti denotes the set of tasks Ai must execute. TC are tempo-
ral constraints among the tasks. Each task ti is assigned a
temporal window TC(ti) = [ESTi, LETi] during which it
should be executed. ESTi is the earliest start time of ti and
LETi is its latest end time. Pred are precedence constraints
between the tasks. Each task ti has predecessors: the tasks
to be executed before ti can start. The execution time of each

Agent 3
Agent 3

Atmospheric

Agent 3

Move to

site A sample measur.
Test the

Agent 2Agent 2

Agent 1Agent 1

Agent 2 Agent 2

site A

Take a
sample of

ground
Move to

Snap

site B

site B

Move to
site C

Take a
sample of
ground

Move to

Figure 1: A mission graph for planetary rovers
task is uncertain. Pc(δc)i is the probability that the activity
ti takes δc time units for its execution. Each task ti has sev-
eral resource consumptions. Pr(∆r)i is the probability that
ti consumes ∆r units of resources. R is a reward function.
Ri is the reward an agent obtains when it has accomplished
the task ti. Rini is the initial resource rate available for each
agent before the mission starts.

During task execution, each agent has a local view of the
system and do not know the other agents’ states nor actions.
The agents must be able to coordinate without communicat-
ing during the execution. This class of problems can be met
in NASA scenarios dealing with rovers operating on Mars.
In order to increase the scientific feedback, researchers plan
to send fleets of robots that could operate autonomously and
cooperatively. Since the environment is unknown, robots
must deal with uncertainty regarding the duration of actions
and consumption of resources. Once a day, a daily mission
of a hundred tasks is sent to the robots via satellite. It al-
lows the agents to communicate during a fixed amount of
time. The agents can then plan their actions and communi-
cation is possible. For the rest of the day, the rovers must
complete their tasks and cannot communicate via satellite
due to orbital rotation. In addition, because of bandwidth
limitations, the distance between the agents and obstacles,
the agents are unable to communicate directly. To guaran-
tee scientific feedback, temporal and precedence constraints
must be respected. Pictures, for example, must be taken at
sunset or sunrise because of illumination constraints. The
tasks of an agent are ordered by precedence, temporal and
resource constraints. Precedence constraints give a partial
order which can be reduced to a total order while consider-
ing temporal constraints (possible execution intervals) and
space constraints (we aim to minimize distance because of
resource consumptions).

As shown on Figure 1, a problem X can be represented
using a graph of tasks. This example describes a mission
involving three planetary rovers. Edges stand for precedence
constraints. Each task is assigned an agent. The problem of
task allocation is out of the scope of this paper.

Temporal constraints restrict the possible intervals of ex-
ecution and precedence constraints partially order the tasks.
If the execution of a task ti starts before its predecessors
finish, it fails. Because the agent could retry to execute ti
later, this kind of failure is called a partial failure. Partial
failures consume restricted resources and can lead to insuf-
ficient resources. If an agent lacks resources it will be unable
to execute its remaining tasks. Consequently, the agents tend
to avoid partial failures. One way to restrict partial failures
consists in delaying the execution of the tasks. As a result,
the likelihood that the predecessors have finished when an

agent starts to execute a task increases and less resources
are ”wasted” by partial failures. Nonetheless, the more the
execution of a task is delayed, the more the successors are
delayed and the higher the probability of violating temporal
constraints. In fact, the probability the deadline is met in-
creases. If temporal constraints are violated during task ex-
ecution, the agent fails permanently executing the task. This
assumption can be easily relaxed without modifications of
our approach.

The problem is to find a local policy for each agent that
maximizes the sum of the rewards of all the agents. The
agents must trade off the probability of partially failing and
consuming resources to no avail against the consequences
of delaying the execution of a task. To maximize the sum of
the expected rewards, each agent must consider the conse-
quences of a delay on itself and on its successors.

Existing OC-DEC-MDP
Such problems have been formalized byg OC-DEC-
MDPs (Beynier & Mouaddib 2005).

Definition 1 An OC-DEC-MDP for n agents is a set of n
local MDPs. A local MDP for an agent Ai is defined by a
tuple < Si, Ti, Pi, Ri > where: Si is the finite set of states
of the agent Ai, Ti is the finite set of tasks of the agent Ai,
Pi is the transition function and Ri is the reward function.

Each component of a local MDP is defined by consid-
ering and representing precedence, temporal and resource
constraints. The actions consist of Execute the next task ti at
time st: E(ti, st). Precedence constraints restrict the possi-
ble start times of each task. Consequently there is a finite set
of start times for each task and a finite action set. Decisions
rely on the last executed task, the end time of its execution,
the current time and the available resources.

At each decision step, two kinds of states are considered:
safe states and partial failure states. Safe states [ti, I, r] de-
scribe cases where the agent has just finished executing task
ti during an interval of time I and its has r remaining re-
sources. Partial failures [ti, I, et(I ′), r] are also taken into
account when the agent has just tried to execute task ti+1

duringq interval I but failed because execution of the pre-
decessors was not finished. ti is the last task the agent has
safely finished to execute at et(I ′).

Theorem 1 An OC-DEC-MDP has a complexity exponen-
tial in the number of states.

Proof: Each agent’s state is supposed to be locally fully
observable. A joint policy is a mapping from world states
S = 〈S1, · · · , Sn〉 to joint actions A = 〈A1, · · · , An〉 and
the number of joint policies is exponential in the number of
states |S|. Evaluating a joint policy can be done in polyno-
mial time through the use of dynamic programming. The
OC-DEC-MDP is therefore exponential in the number of
states |S|. 2

Constraints affect the policy space but have no effect on
the worst case complexity. They reduce the state space and
the action space. Thus, the policy space can be reduced.
Nonetheless, the number of policies remains exponential.
Consequently, dealing with constraints does not result in a
lower complexity.

Expected Opportunity Cost
As explained in (Beynier & Mouaddib 2005), each agent
computes its own local policy by improving an initial pol-
icy. The probabilities on the end times of the other agents
can therefore be deduced from this initial policy and each
agent’s transition function can be computed. If an agent
modifies its own local policy without taking into account the
influence of such changes on the other agents, the agents
will not coordinate. When an agent decides when to start
the execution of a task ti, its decision influences all the tasks
that can be reached from ti in the mission graph. In order
to coordinate, the agents must consider the consequences of
their decisions on the other agents. The notion of Opportu-
nity Cost is used in order to obtain coordinated policies. It
allows each agent to measure the consequences of its deci-
sion on the other agents. While deciding when to start the
execution of a task ti, each agent must trade off its expected
utility against the OC it will provoke on the other agents.
More specifically, the OC is the loss of expected value by
the other agents resulting from delaying the execution of a
task.

Previous work has demonstrated the usefulness of OC
to predict the influence of a decision on the other agents.
Nonetheless, the OC described previously does not compute
exactly the loss in expected value due to a delay ∆t. First,
resources available by the other agents are not taken into ac-
count. It has been assumed that resources do not influence
the OC. Next, it has been assumed that the delay provoked
by a task ti cannot be increased or decreased by other tasks.
As these assumptions may lead to overestimation of the OC
provoked on an agent, the influence of a decision may then
be approximately computed leading the agents to fallacies.

Opportunity Cost and resources
Each agent’s policy is influenced by the available resource
rate. Expected utility depends on resources and the OC rep-
resents a loss in expected utility. It can be deduced that re-
sources must be taken into account while computing the OC.
For instance, if resources are very tight, the probability the
agent will fail because of lack of resources is very high. De-
laying a task has a low cost because whatever its start time,
the likelihood its execution will fail is very high.

For each start time sttj of tj , bounded by [LBtj , UBtj],
and each resource rate r, OC is given by : OCtj (∆t, r) =
V ∗0,r

tj
− V ∗∆t,r

tj
where V ∗0,r

tj
is the expected value if tj can

start in [LBj , UBj] with r resources, and V ∗∆t,r
tj

is the ex-
pected value if tj can start in the interval [LBj + ∆t, UBj]
with r resources.

Policy Computation and EOC
Revising the policy of a task ti consists in revising the policy
for each state associated with ti. Previous work introduced
an equation to compute a new policy for each task. Nonethe-
less, it considers the OC provoked on the successors. Such
computation may lead to overestimation of OC because the
delay provoked on an agent can be considered more than
once. If there are several paths from a successor k to a task

tj+1, then the OC on tj+1 is considered several times. To
overcome this issue, we propose to compute the EOC pro-
voked on the other agents. The tasks that are influenced by
the end time of ti+1 are the nearest tasks of the other agents.
The nearest task of ti+1 executed by Aj is the nearest task
executed by Aj that can be reached from ti+1 in the mission
graph (in Figure 1, ”agent 3: test the sample” is the nearest
task of ”agent 2: move to site A”). Assume that an agent Ai

ends a task ti+1 at eti+1 and tj is the nearest task executed
by another agent Aj . ti+1 induces an EOC on tj . If ti+1

ends at eti+1 this does not imply that tj can start at eti+1. If
tj is not a successor of ti+1, there may be tasks between ti+1

and tj that can increase or decrease the delay. One solution
to tackle this issue consists in computing the probability to
provoke a delay ∆tj on tj when ti+1 ends at eti+1. This
explains why we consider EOC instead of OC.

New equations are therefore defined. The first one is a
standard Bellman equation:

V (s) =

immediate gain︷ ︸︸ ︷
Ri(ti) +

Expected value︷ ︸︸ ︷
maxE(ti+1,st),st≥et(I)(V

′
) (1)

where s = [ti, I, r] or s = [ti, [st, st + 1], et(I ′), r]. If s
is a permanent failure state, V (s) = −Rti

− ∑
suiv Rsuiv

where suiv is the set of tasks Ai should execute after ti.
The second equation computes the best foregone action

using a modified Bellman equation in which an EOC is in-
troduced. It allows the agent to select the best action to exe-
cute in a state s, considering its expected utility and the EOC
induced on the other agents:

Π
∗
(s) = arg maxE(ti+1,st),st≥et(I)

(Expected utility︷︸︸︷
V
′ −

EOC︷ ︸︸ ︷
EOC(ti+1, st)

)

(2)
where EOC(ti+1, st) is the EOC induced on the other

agents when ti+1 starts at st. Since actions are not deter-
ministic, we do not know exactly when the task ti+1 will
end and the EOC it will induce. Different kinds of transi-
tions must be taken into account so as to consider the pos-
sible end times of the task. The EOC induced on the other
agents when ti+1 starts at st can be rewritten as follows:

EOC(ti+1, st) = Psuc ·
∑

ag∈other agents

EOCag,ti+1 (eti+1) (3)

+Pfail

∑

ag∈other agents

EOCag,ti+1 (fail) + PP CV · EOC(ti+1, st
′
)

where other agents are the agents that do not execute
ti+1, eti+1 is a possible end time of ti+1, EOCag,ti(eti+1)
is the EOC induced on the agent ag when ti+1 ends at eti+1.
It is computed using Equation 3. EOC(ti+1, st

′) is the OC
when the execution of ti+1 partially fails and the agents re-
tries to execute the task at st′ (the next start time given by
the EOC-policy). The execution of ti+1 can lead to differ-
ent transitions, therefore all these transitions must be con-
sidered in EOC(ti+1, st). Psuc stands for the probability to
successfully execute the task, PPCV is the probability to fail
partially because the predecessors have not finished. Pfail

is the probability to fail permanently.

Revision algorithm The previous work algorithm has
been adapted to deal with EOC computation leading to a
new revision algorithm (Algorithm 1). Both algorithms al-
low the agents to evaluate at the same time their own local

MDP and to derive a new local policy from the initial pol-
icy. While computing its policy, an agent first considers the
last level of its graph which consists of the last task it must
execute. It then passes through its graph of tasks from the
leaves to the root and evaluates its policy level by level.

Algorithm 1 Revision Algorithm
1: for level Ln from the leaves to the root do
2: for all task ti in level Ln do
3: while the agent doesn’t have the OC values it needs do
4: wait
5: end while
6: Compute V for the failure state: [failure(ti), ∗, ∗]
7: for all start time st from UBti

to LBti
do

8: for all resource rate rti
of a partial failure do

9: Compute V and Π∗ for partial failure states: [ti−1, [st, st +

1], et(I′), rti
]

10: end for
11: for all resource rate rti

of ti’s safe execution do
12: for all duration ∆t1 of ti do
13: Compute V and Π∗ for the safe states: [ti, [st, st + ∆t1], rti

]

14: end for
15: Compute V

∗∆t,rti
k

where ∆t = st− LBti

16: end for
17: end for
18: for all V

∗∆t,rti
k

computed previously do

19: Compute OC(∆t, rti
) = V

∗0,rti
k

− V
∗∆t,rti

k

20: Send OC(∆t, rti
) to the predecessors

21: for all task tj executed by another agent and for which OC values has
been received do

22: Update the OC values and Send to predecessors
23: end for
24: end for
25: end for
26: end for

Using equation 3 we need to know the EOC provoked
on the other agents when ti+1 ends at eti+1. The delay
provoked on the nearest tasks tk must therefore be known.
This delay depends on the policies of the tasks between ti+1

and tj . Nonetheless, the algorithm passes through the graph
from the leaves to the node. The policies of the tasks ti+1

and tj have been revised when ti+1 is considered. If the
initial policy is used to compute these probabilities, it may
lead to inaccurate results because of policy changes. Accu-
rate probabilities can be deduced from the revised policies
but Ai does not know them unless all policy modifications
are communicated to all agents.

To overcome this difficulty, an update method has been
developed. When an agent Aj has finished revising the pol-
icy of a task tj , it computes the OC values of tj for each
delay ∆ttj and each resource rate rtj of tj (line 19 of algo-
rithm 1). These OC values are sent (line 20) to tj’s predeces-
sor agents. These agents now revise the policy of tj’s pre-
decessor tasks. They also update the received OC of tj fol-
lowing their revised policy (line 22) and send them to their
predecessors. Finally, Ai is going to receive the updated OC
values of tj from its successors. Consequently, even if tj is
not a direct successor of ti, when ti delays the execution of
tk, the exact OC provoked on tj is known.

Thanks to our update method, EOC values can be deduced

by considering the delay provoked on the successors. The
OC described in Equation 3 is given by :

EOCag,ti
(etti

) =

∑
rtj

P
tj
ra(rtj

) ·OCtj
(∆tsucc, rtj

)

where tj is the nearest task that will be executed by ag and
OCtj (∆tsucc, rtj) is the OC provoked on tj when the suc-
cessors of ti are delayed by ∆tsucc. This OC value is known
since the agent received it from its successors. P

tj
ra(rtj

) is
the probability that ag has rtj

resources when it starts to ex-
ecute tj . If ti has several successors and several delays are
provoked, ∆tsucc represents the maximum of these delays.

This method allows each agent to know the exact EOC
provoked on the other agents without communicating re-
vised policies. The agents only need to communicate OC
values. When an agent evaluates the states associated with a
task ti, it needs to know the EOC it will provoke on the other
agents. Therefore, it must have received OC values from its
successors. If these values have not been received yet, the
agent waits until delivery. We assume that there is no loss of
messages. As soon as OC values are known, the agent can
compute its expected value and the policy of each state re-
lated to ti. Notice that even if decentralized execution of the
algorithm requires off-line communication, the agents never
communicate during the execution of the mission.

Theorem 2 The complexity of the revision algorithm is
polynomial time in |S|.
Proof: In the worst case, none of the states can be evalu-
ated at the same time and the algorithm has the same time
complexity as a centralized algorithm which evaluates all the
agents’ states one by one. Therefore only one state is evalu-
ated at a time. The time needed to pass trough the state space
of each local MDP and to value each state is |S|. States have
a form of [task, (end time), interval, resources], so |S| in-
cludes the number of tasks. We will assume that communi-
cation requires one time unit. There is #nOC values of OC
to communicate. Then, the overall complexity of the algo-
rithm is O(#nOC + |S|). As #nOC < |S|, the complexity
can be re-written as O(|S|).2
Experiments
Experiments have been developed to test the influence of
OC computation on performance. We have compared three
kinds of OC : Opportunity Cost without resources (OC),
OC with resources (OCr) and Expected Opportunity Cost
(EOC). Our experiments have been achieved with a bench-
mark composed of different mission sizes.These experi-
ments show the benefits of considering resources and EOC.
We present results obtained on a scenario involving 2 agents
and about 20 tasks. Figure 2 plots the reward the agents ob-
tain over 1000 executions for different resource rates. When
the agents have very few resources, OC computation has no
influence on the performance. In fact, whatever their pol-
icy, the agents do not have enough resources to execute their
tasks, the gain is near zero and delaying a task does not de-
crease the expected value. With large or unlimited resources,
resources have no influence on the expected utility nor the
OC. OCr and OC lead to the same performance. Unless,

there are tight temporal constraints, delaying a task does not
reduce the expected value, EOC and OCr are quite the same
when resources are large.

Improvements are much larger when resources are tight.
In this case, the agents have just enough resources to execute
their tasks and partial failures may lead to permanent failures
through lack of resources. Taking into account resources
while computing the OC increases performance. Moreover,
delaying a task can lead the other agents to fail partially and
waste resources to no avail. Consequently, the agents ac-
curately measure the consequences of their decisions on the
other agents. EOC therefore achieves best improvement un-
der tight resources (Rini ∈ [20, 30]).

Iterative Algorithm
The algorithm presented so far consists in improving an ini-
tial policy. When the revision algorithm stops, each task has
been considered once and a new local policy is available for
each agent. In order to obtain better solutions, we re-execute
the revision algorithm considering that the initial policy is
the policy we have just computed.
Iterative Process
At each iteration step, the agents improve their initial local
policy at the same time. The outcome policies of iteration
N − 1 are the initial policies of iteration N . Obviously,
the transition function depends upon the initial policy of the
current iteration and must be updated for each iteration step.
Once the new transition function is known, each agent can
execute the revision algorithm to obtain new local policies.
This process is repeated until no changes are made. A local
optimum is then reached. Since each policy is considered
once and there is a finite set of policies, we assure conver-
gence.

Algorithm 2 Iterative Algorithm
1: nbChanges = 1
2: while nbChanges > 0 do
3: Compute the new transition function
4: nbChanges = 0
5: for all Agents Ai do
6: Revise local policies πi

7: nbChanges += number of local policy changes
8: end for
9: end while

By iterating the algorithm each task is considered several
times. We will consider a task ti and its predecessor task
tj . At first iteration step tj is supposed to follow the ini-
tial policy. ti’s policy is revised assuming tj’s initial policy.
Once the policy of ti is revised, tj will be considered and
its policy may change. tj’s new policy is computed assum-
ing the new policy of ti (thanks to EOC). Nonetheless, given
the new policy of tj , ti may find a better policy. Using the
iteration process, revision of ti’s policy is possible.
Theorem 3 The complexity of the iterative is polynomial
time in (N + 1) · |S| where N is the number of iterations.
Proof: At each iteration step, the transition function is com-
puted and the revision algorithm is executed. The complex-
ity of the revision algorithm is polynomial time in |S|. The

transition function is updated before each iteration step by
propagating temporal constraints through the mission graph
whose complexity is less than O(|S|). Then, the overall
complexity of the algorithm is O((N + 1) · |S|). 2

Experiments
So that our iterative algorithm can be used to solve realistic
decision problems, it must be able to consider large prob-
lems and to find good approximate solutions. The following
experiments first test the scalability of our approach and then
describe its performance.

Scalability The same space is required to iterate once or
several times. We have proved that large problems can be
solved by the revision algorithm. This assertion remains
true while considering the iterative process.As in OC-DEC-
MDP, this new approach can deal with large problems, for
instance we can consider missions of 200 taks and 15 agents.

The running time of the iterative algorithm relies on the
state space size of each agent, the branching factor of the
mission graph and the number of iterations. The branching
factor of the mission graph defines the number of tasks per
graph level. The iterative algorithm revises all the tasks of a
same level at the same time. The higher the branching fac-
tor is, the more tasks are revised at the same time. Running
time is also influenced by the number of iterations. Most
of the time, the final solution is reached within four itera-
tions. Moreover, a solution is always available even if the
algorithm has not finished its execution. Indeed, the initial
policy of the last ended iteration can stand for a temporary
solution. Experimental results show that for a mission graph
of 20 tasks and 2 agents, the final solution is obtained within
25 seconds. For larger graphs, for instance 60 tasks and
2 agents, the final solution is returned within one minute.
Graphs composed of hundreds of tasks can also be consid-
ered. Our approach can therefore deal with large problems
that cannot be solved by other existing approaches.

Performance Other experiments have been developed to
test the performance and convergence of the iterative algo-
rithm. The number of iteration steps to converge has been
studied. The performances obtained at each iteration step
have been compared by running mission executions. The
benchmark is the same as the one used for OC comparisons.
EST-policy (select the Earliest Possible Start Time) is sup-
posed to be the initial policy of the first iteration.

First, the number of iteration steps needed to converge has
been studied. Experiments show that the algorithm always
converges. Most of the time, it takes less than four itera-
tions to converge. Figure 3 relates the number of iteration
steps to the initial resource rate. With large or unlimited re-
sources, only one iteration step is needed to converge. As the
initial resource rate decreases, the number of iteration steps
increases since it reaches a maximum which corresponds to
a critical resource rate. If the agents initially have less re-
sources than this critical rate, they will not be able to execute
all the tasks. Whatever their policy, the latest tasks cannot
be executed because of a lack of resources. Then, all the
possible policies of these tasks are equivalent and there is no
strictly better policy than the initial EST-policy.

Figure 4 describes the relationship between the initial re-

 0

 2000

 4000

 6000

 8000

 10000

 5 10 15 20 25 30 35 40

R
ew

ar
ds

Initial resource rate

OC

OCr

EOC

Figure 2: Influence of OC

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80

N
um

be
r

of
 It

er
at

io
ns

Initial resource rate

Figure 3: Influence of re-
sources

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60 70 80

N
um

be
r

of
 p

ol
ic

y
ch

an
ge

s

Initial resource rate

Figure 4: Influence of re-
sources

 0

 200

 400

 600

 800

 1000

 1200

 1400

−1 0 1 2 3

N
um

be
r

of
 p

ar
tia

l f
ai

lu
re

s

Iteration

Figure 5: Nb. of Partial fail-
ures

source rate and the number of policy changes of each itera-
tion. If resources are large or unlimited, there is no change.
Indeed, it can be proved that the initial policy is an opti-
mal policy. As the initial resource rate decreases, more and
more changes are needed to obtain the solution. If initial
resources are low, the policy of the latest task remains un-
changed and few changes are necessary. The number of pol-
icy changes per iteration has also been studied. Experiments
demonstrate that the number of policy changes decreases at
each iteration step. Most changes are made during the ear-
liest iteration. The number of policy changes per iteration
diminishes until it becomes null and convergence is reached.

Experiments demonstrate that the performance of the
agents increases with the number of iterations. Moreover,
it can be shown that first iteration achieves largest improve-
ments. Subsequent iterations reduce the number of partial
failures and lead to maximum gain. By iterating the process,
the likelihood the agents fail because of lack of resources
decreases. The resulting policy is safer than policies of pre-
vious iterations and the gain of the agents is steady over ex-
ecutions: it does not fall when partial failures arise. Figure 5
plots the number of partial failures of the agents over 1000
executions. A near optimal policy is obtained at the end of
the first iteration. Second iteration leads to small improve-
ments but it diminishes the number of partial failures. When
resources are tight, more iterations are needed to obtain a
near optimal policy. Now, more benefits are gained from re-
iterating. As soon as the solution produces the maximum
gain, re-iterating reduces the number of partial failures.

Related work
It is difficult to compare the performance of our approach
with other works. We have in fact developed the first ap-
proach that can deal with large problems and several kinds of
constraints. Other existing approaches can only solve small
problems so, we were unable to compare our performance
on large problems. Despite this lack of comparison, exper-
iments show that most of the time, the iterative algorithm
allows the agents to obtain the maximum reward. We may
assume that our solutions are closed to the optimal.

Our results have been compared on smaller problems

which can be solved by other approaches. The Coverage
Set Algorithm (CSA) (Becker et al. 2003) is the only algo-
rithm that is able to deal with complex constraints and solve
these problems. Despite the wide variety of problems for-
malized by CSA, it suffers from exponential complexity. In
practice, only small problems with restricted constraints can
be solved which have been proved to be solved optimally
by our algorithm. We deduce that our approach performs
as well as CSA, on the problems CSA can solve. Other ex-
isting approaches do not consider temporal and precedence
constraints. We were therefore unable to compare our per-
formance with algorithms such as JESP (Nair et al. 2003).
Nonetheless, it can be mentioned that JESP improves only
one local policy at a time while our algorithm allows the
agents’ policies to be improved at the same time.

Conclusion
Most recent multiagent applications such as rescue teams
of robots or planetary rovers demonstrate the need for co-
operative decision making systems that can deal with large
problems and complex constraints. Previous work provided
a framework for solving large decision problems with tem-
poral, precedence and resource constraints. Introduction of
EOC in Bellman Equation improves the coordination of lo-
cal policies. With EOC, each agent can accurately compute
the consequences of its decision on the other agents. We
proposed an iterative version of the previous algorithm for
solving such problems in a decentralized way. This poly-
nomial algorithm consists in improving each agent’s local
policy at the same time. This new algorithm does not reduce
the size of the problems that can be solved. Moreover, higher
quality policies are obtained and best improvements are ob-
tained with tight resources and tight temporal constraints. It
has been shown that the quality of the policies increases at
each iteration step. Experiments show that our algorithm has
anytime properties. Future work will explore this issue.

References
Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman, C. 2003.
Transition-independent decentralized markov decision processes.
In AAMAS, 41–48.
Becker, R.; Lesser, V.; and Zilberstein, S. 2004. Decentralized
markov decision processes with event-driven interactions. In AA-
MAS, 302–309.
Bernstein, D.; Zilberstein, S.; and Immerman, N. 2002. The
complexity of decentralized control of mdps. In Mathematics of
Operations Research, 27(4):819–840.
Beynier, A., and Mouaddib, A.I. 2005. A polynomial algorithm
for decentralized markov decision processes with temporal con-
straints. AAMAS 963–969.
Goldman, C., and Zilberstein, S. 2004. Decentralized control
of cooperative systems: Categorization and complexity analysis.
JAIR 22:143–174.
Nair, R.; Tambe, M.; Yokoo, M.; Marsella, S.; and Pynadath,
D.V. 2003. Taming decentralized pomdps: Towards efficient
policy computation for multiagent settings. In IJCAI, 705–711.
Peshkin, L.; Kim, K.; Meuleu, N.; and Kaelbling, L. 2000. Learn-
ing to cooperate via policy search. In UAI, 307–314.
Pynadath, D., and Tambe, M. 2002. The communicative multi-
agent team decision problem: Analyzing teamwork theories and
models. JAIR 389–423.

