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Recently, it was discovered that the non-uniform Meissner current flowing around the pinning sites

in the type-II superconductor induces the unconventional vortex-antivortex pairs with the non-

quantized magnetic flux [Ge et al., Nat. Commun. 6, 6573 (2015)]. Here, we provide the theory of

this phenomenon showing that the vortex-like structures originate from the perturbation of the cur-

rent streamlines by the non-superconducting defect, which results in the generation of the localized

magnetic field. The position and the shape of such vortex dipoles are shown to be very sensitive to
the defect form. Thus, applying the external magnetic field or current to the superconductor and

using, e.g., the high-resolution scanning Hall microscope to measure the stray magnetic field, one

can plot the map containing the information about the position of the defects and their shape.

The control of the Abrikosov vortex pinning is one of the 
corner-stone problems in the physics of superconducting 
systems.1,2 The reduction in the vortex mobility by a lattice of 
the pinning centers allows to damp the energy dissipation and 
substantially increase the critical current,3–7 which is 
extremely important for application of superconductors in 
electronics. During last decades, it became possible to create 
both low- and high-temperature superconductors with vari-

ous types of natural and artificial defects (holes,8–10 grain 
boundaries,11 nanorods,12–14 imbedded nanoparticles,15 sur-

face grades,16 controllable lattice transformations,17 etc.) 
which are shown to be effective barriers for the vortex 
motion. The corresponding enhancement of the critical cur-

rent appears to be very sensitive to the particular shape and 
the spatial distribution of the pinning centers. This aims the 
efforts of both theoreticians and experimentalists at the engi-

neering of the efficient pinning potentials and the extensive 
study of the magnetic flux behavior simultaneously affected 
by the pinning sites and the transport current.

Recently, the magnetic field induced by the Meissner 
current flowing around the pinning sites was measured with 
the high-resolution scanning Hall microscope.18,19 It was 
found that the magnetic contrast near the defects reminds the 
one for the pair of vortex and anti-vortex. Interestingly, the 
magnetic flux carried by each pole of such “vortex dipole” is 
not quantized and depends on current. To explain this effect, 
the authors have performed sophisticated numerical simula-

tions based on the time-dependent Ginzburg-Landau equa-

tion accounting the non-uniform profile of the Meissner 
current. Here, we provide the simple explanation of this phe-

nomenon within the stationary currents theory. It is based on 
the fact that each defect being impervious for the Cooper 
pairs perturbs the streamlines of the superconducting current 
which gives rise to the well-localized stray magnetic field. 
Our analysis clearly shows that the formation of the vortex 
dipoles is not specific to the Meissner state and can be stimu-

lated by the currents of arbitrary nature. We also show that the 
distribution of the magnetic field along the sample

surface contains explicit information about the shape and the

position of the pinning centers. This finding forms the

ground for simple and direct mapping technique, providing

the data on the pinning potential in type-II superconductors.

Our model system is shown in Fig. 1. The superconduct-

ing film of the thickness h contains a non-superconducting 
columnar defect with the straight line perpendicular to the 
surface of the film and parallel to the z-axis. For simplicity, 
we restrict ourselves to the case when the cross-section of the 
defect has the form of the ellipse ðx=aÞ2 þ ð y=bÞ2 � 1 with 
the semi-axes a and b (a > b).

FIG. 1. (a) The sketch of the superconducting sample with the columnar

defect of the elliptic cross section. The current flowing around the defect

produces non uniform magnetic field which is detected by the tip of the

scanning Hall microscope. (b) and (c) The top and the side views of the sam

ple, respectively. The external current j0 forms the angle a with the x axis

containing the semi axes a of the ellipse. The tip of the Hall microscope is

positioned at the point with the coordinates (x0, y0, z0).



Our goal is to calculate the magnetic field outside the film 
induced by the superconducting current flowing around the 
defect. Previously, the distribution of the supercurrent 
affected by the sample boundaries of different shapes (for 
both single- and multiple-connected geometries) was exten-

sively studied on the basis of the self-consistent solution of 
the London and Maxwell equations.20–23 Typically within 
such approach, one deals with the complicated integral-

differential equations which can be solved numerically or 
with the help of the phenomenological material relations 
instead of the exact London equation.

Here, we significantly simplify the problem assuming 
that the size of the defect is much smaller than the London 
penetration depth k. This allows to neglect the screening of the 
stray magnetic field and obtain transparent analytical 
expressions for the current profiles using the electrostatic 
analogy,24,25 which has been successfully applied for the 
description of the interaction between Abrikosov vortices and 
columnar pinning centers.26,27 In this case, the current density j 
satisfies the equation rot j ¼ 0 with the boundary condition 
requiring the absence of the current component perpendicular 
to the defect surface. We assume that at the distance r � a 
(and, at the same time, r � k) from the defect center the cur-

rent is uniform and its density is j0 ¼ j0ðcos ax^ þ sin ay^Þ. 
Then, the current distribution j(x, y) outside the defect can be 
represented in the compact complex form28

jx � ijy ¼ j1 � j2

xþ iy

xþ iyð Þ2 � a2 � b2ð Þ
q ; (1)

where j1 ¼ j0ða cos a þ ib sin aÞ=ða � bÞ; j2 ¼ j0ðb cos a
þia sin aÞ=ða � bÞ, and i is the imaginary unit.

The current (1) induces the non-uniform magnetic field

B localized near the defect. The z-component Bz of such field

can be directly measured, e.g., by the tip of the scanning

Hall microscope. To model such situation, we calculate Bz at 
the point with the coordinates (x0, y0, z0), where z0 is the dis-

tance between the tip and the sample surface (see Fig. 1).

Note that the current j defined by (1) can be formally repre-

sented as the sum of the external uniform current j0 which 
does not induce the magnetic field and the deviation dj which 
has the form of the vortex-antivortex pair [see Fig. 2(b)]. 
Substituting the expression for dj into the Biot-Savart law and 
integrating over the sample volume we obtain the analytical 
expression for the magnetic field component Bz. Before 
analyzing the general situation, we will first consider two 
specific types of defect: the columnar pinning center with the 
circular cross-section (b ¼ a) and the linear crack in the 
superconductor (b ¼ 0). To make the analytical results more 
transparent, hereinafter we consider only the case when the 
sample thickness h!1  and the distance z0 between the tip 
and the sample is negligibly small.

If the cross-section of the defect is circularly symmetric

(b¼ a), the profile of Bz depends only on the current direction

but not on the orientation of the defect; so without the loss of

generality, we put a¼ 0. In this case, introducing the polar

coordinates ðr;uÞ so that x0 ¼ r cos u; y0 ¼ r sin u, we find

Bz r;uð Þ ¼
� 2pj0

c
r sin u for r < a;

� 2pj0
c

a2

r
sin u for r > a:

8>><
>>:

(2)

This profile of the magnetic field is shown in Fig. 2. Clearly, 
the magnetic contrast reflects the vortex structure of the cur-

rent dj induced by the pinning center. The poles of this vor-

tex dipole are positioned at the defect boundary r ¼ a and 
correspond to u ¼ 6p=2 so that the straight line connecting 
the poles is perpendicular to the external current j0. Moreover, 
in contrast with the usual Abrikosov vortex, each pole 
contains the magnetic flux, which is not quantized and is 
determined by the external current j0. Thus, our simple model 
based on the stationary current theory fully explains the 
formation of the vortex-antivortex pairs recently observed 
with the scanning Hall microscope.18,19

Note that the finite sample thickness h and the finite dis-

tance z0 between the tip and the surface of the superconductor

FIG. 2. (a) The representation of the superconducting current j flowing around the defect as the sum of the external uniform current j0 which does not induce 
magnetic field and the deviation dj which has the form of the vortex antivortex pair. (b) The dipole like profile of the perpendicular magnetic field component Bz 
near the pinning center as a function of coordinates at the sample surface. The white circle of the radius a indicates the boundary of the defect. The external 
current j0 is directed along the x axis. The black arrows show the profile of dj. The superconducting film is assumed to be semi infinite (h !1 ). (c) The de 
pendence of the magnetic field Bz on the coordinate y0 perpendicular to the current for different distances z0 from the sample surface. (d) The dependence Bz(y0) 
at the sample surface for different thicknesses h of the superconducting film. In all panels B0 = 2pj0a=c.
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does not lead to any qualitative changes of the Bzðr; uÞ 
profiles [see Figs. 2(c) and 2(d)]. Specifically, the decrease in h 
results in the damping of the magnetic field value and the 
smothering of its profile. The increase in the distance z0 is also 
accompanied by the damping of Bz, but the magnetic field 
profile across the defect qualitatively remains the same.

Now we turn to another limiting case b� a correspond-

ing to the linear crack in the superconductor. In this case, the

magnetic field profile strongly depends on the orientation of

the defect relative to the direction of the external current.

Then, the magnetic field profile can be represented in terms

of the elliptic coordinates defined as x0 ¼ acoshl cos h; y0

¼ asinhl sin h

Bz l; hð Þ ¼ 2pj0a

c
e l cos h sin a: (3)

The corresponding magnetic contrast is shown in Fig. 3(a). 
Contrary to the case of the circular defect where the posi-

tion of the vortex and antivortex depend on the external cur-

rent direction, here the poles of the vortex dipole always 
appear near the ends of the crack independently on the vec-

tor j0 orientation. At the same time, the maximum value of 
the magnetic field is proportional to sin a, whic h allo ws  to  
extract the information about the crack orientation from the 
measurements of the magnetic contrast for different j0 
directions.

Finally, when the pinning center has the elliptic cross-

section the expression for the magnetic field strongly

depends on whether the tip is positioned above the defect or

above the superconducting region. In the first case, the com-

ponent Bz of the magnetic field is

Bz ¼
2pj0

c
x0 sin a� y0 cos að Þ; (4)

while in the second case

Bz ¼
2pj0

c

aþ b

a� b

r
e l a cos h sin a� b sin h cos að Þ; (5)

where l and h are the elliptic coordinates characterizing the

position of the microscope tip: x0 ¼ a2 � b2
p

cosh l cos h;
y0 ¼ a2 � b2

p
sinh l sin h. The magnetic contrasts (4) and

(5) for different orientations of the external current with 
respect to the ellipse are shown in Fig. 3(b).

Interestingly, the defects can provide more favorable 
conditions for the vortex creation compared to the bounda-

ries of uniform superconductors. Indeed, for the flat surface 
of the superconductor, Abrikosov vortices enter the sample 
when the current exceeds the depairing current jc. At the 
same time, the pinning center strongly increases the current 
density at the certain points of its boundary. In the case of the 
circular cross-section, the current density at the points u ¼ 
6p=2 is doubled compared to j0. As a consequence, even the 
current j0 � jc/2 should produce the pair of Abrikosov vortex 
and antivortex. The modification of the current density profile 
is even more dramatic for the case of elliptic defect. If a ¼ 
p/2, the maximal current density jm monotonically increases 
with the increase in the ratio a/b: for u ¼ 6p=2 one finds jm ¼ 
j0ð1 þ a=bÞ. This local increase in the current density should 
strongly damp the energy barrier for the entry of the vortex-

antivortex pairs. The experimental verification of this 
prediction can be per-formed with the scanning Hall 
microscope which recently allowed to observe the depinning 
of the Abrikosov vortex from the non-superconducting defect 
in the presence of the external Meissner current.19

The sensitivity of the magnetic field profiles to the form

of the defects makes it possible to develop the magnetic

FIG. 3. The dependence of the magnetic field profile near the pinning center on the shape of the defect and the orientation of the external current. (a) The pro

files of Bz at the surface of the semi infinite superconducting film containing the crack like defect of the length a. Different pictures correspond to different

angles a between the external current j0 and the straight line containing the defect. (b) The profiles of Bz near the defect of elliptic cross section. In both panels,

the white dotted lines indicate the defect boundaries.
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mapping technique which can provide the direct information

about the position of the pinning centers in the superconduc-

tor, their shape, and orientation. Remarkably, for an arbitrary

straight line in the (x0, y0)-plane containing the ellipse center,

the local maxima of the magnetic field jBzj indicate the

defect boundaries. This feature is robust against the decreas-

ing the film thickness h or increasing the distance between

the film surface and the tip of the Hall microscope z0. Thus,

analyzing different cross-sections of the measured magnetic

contrast, one can find the position of the center of the pinning

site (as the center of the line between two poles) and then

reconstruct the profile of the defect boundary within the

elliptic approximation. The proposed method can become a

convenient tool for direct mapping of the columnar pinning

sites in the type-II superconductors.

Thus, we demonstrate that the vortex-antivortex mag-

netic dipoles recently observed with the scanning Hall 
microscope18,19 originate from the stationary current flow 
around the pinning center. The spatial profile of the non-

uniform magnetic field induced by the current contains the 
explicit information about the shape of the defect. Using the 
model of the columnar defect with elliptic cross-section, we 
found analytical expressions for the stray magnetic field and 
analyzed how magnetic contrast measured by the Hall micro-

scope depends on the direction of the external current. Our 
results provide the platform for the realization of direct and 
simple magnetic mapping technique, which allows to recon-

struct the spatial distribution of the columnar pinning sites 
inside the particular superconductor and to analyze the shape 
of their cross-section.

This work was supported by the French ANR “MASH”

and NanoSC COST Action MP1201.
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