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The distinction between proper (i.e. cell-phone detectable) and geometric (i.e. connection-coefficient) forces
allows one to use Newton’s 3-vector laws in accelerated frames and curved spacetime. Here we show how this
is assisted by use of quantities that are either (i) frame-invariant or (ii) synchrony-free i.e. do not rely on
extended-networks of synchronized-clocks. The acceleration four-vector’s invariant magnitude, and quantities
that build on the metric-equation’s book-keeper frame to define simultaneity, point the way to more robust
student understanding at both low and high speeds. In the process, we gain a simple (3+1)D flat-space work-
energy theorem using the proper-acceleration 3-vector ~α (net proper-force per unit mass), whose integrals

of the motion simplify with a hyperbolic velocity angle (rapidity) written as
√

2/(γo + 1)ατ/c, where c is
lightspeed and τ is traveler-time from “turnaround” when the Lorentz-factor is γo.
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I. INTRODUCTION

Relativists have long expressed unhappiness with
coordinate-acceleration and coordinate-force (for good
reason1,2), but have also pointed out that general-
relativity makes a case for the local-validity of Newton’s
laws in all frames3–5 provided that we consider geometric
(curved-frame or “connection-coefficient”) forces as well
as proper-forces whenever we find ourselves in a non-
“free-float” trajectory6. The distinction has everday rel-
evance to intro-physics students, because texts often in-
troduce gravity as a real force but inertial forces as fake
even though their cell-phones detect neither for the same
reason: Accelerometers only detect proper-forces, while
gravity and inertial (e.g. centrifugal) forces are geomet-
ric.
In this paper we explore an approach to accelerated

motion designed to be: (i) the most frame-independent,
and (ii) the least in need of synchronized-clock arrays.

a)pfraundorf@umsl.edu

These latter might be difficult to come by on accelerated
platforms and in curved spacetime.
The first proper-time derivative of an accelerated trav-

eler’s 4-vector position has lightspeed c as its invari-
ant magnitude. Here we simply define simultaneity us-
ing bookkeeper coordinates and then examine the sec-
ond proper-time derivative of position, as seen from the
proper reference-frame3 of that accelerated traveler.
In the process we show: (a) that the distinction be-

tween proper and geometric forces is already quite useful
for introductory physics, (b) that via the metric equa-
tion a lot can be done with only a single extended map-
frame of yardsticks and synchronized clocks, and (c) that
the traveler’s view of anyspeed-acceleration is less frame-
variant than the map perspective. We also exploit the
frame-invariance of proper-force in an empirical observa-
tion exercise on the electrostatic origin of magnetism,
which provides some visceral experience with length-
contraction at the same time.

II. FRAME DEPENDENCE & SYNCHRONY

The value of frame-independence in the modeling of
relativistic-motion and curved-spacetime goes without
saying. The frame-invariance of lightspeed c (the mag-
nitude of the velocity 4-vector Uλ ≡ dXλ/dτ) has
been central to our understanding of spacetime from
the beginning7. Proper-time (the magnitude of the dis-

placement 4-vector Xλ) is finding increasing use by
introductory text authors as we speak.
The Lorentz-transform view of proper-time, of course,

is that it is time-passing on the synchronized clocks of a
tangent but co-moving free-float-frame in flat spacetime.
The metric equation’s view of proper-time is simpler but
more general, i.e. as a quantity measured on a single
clock under any conditions i.e. accelerated or not, in
curved space-time or not.
Proper-time is frame-invariant in the sense that its

value may be agreed upon using any general-relativistic
book-keeper coordinates that we choose. These book-
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TABLE I. Accelerated-motion definitions in flat (3+1)D spacetime. Note that acceleration/force magnitudes are spacelike,
while the others are timelike along a traveler’s worldline, and that we’ve defined x and y as spatial coordinates || and ⊥ to the
direction of proper-acceleration 3-vector ~α.

4-vector magnitude time-components || to spatial 3-vector ~α ⊥ to spatial 3-vector ~α

power/force ΣFo ≡ dpo
dτ

P
c
= ( 1

c
) dE
dτ

F|| ≡
dp||
dτ

F⊥ ≡ dp⊥
dτ

acceleration α = ΣFo

m
c dγ
dτ

= P
mc

= γ P
mc

dw||

dτ
=

F||

m
= γ

f||
m

dw⊥
dτ

= F⊥
m

= γ f⊥
m

energy/momentum mc E
c
= γmc p|| = mw|| p⊥ = mw⊥

velocity c cγ ≡ c dt
dτ

= E
mc

w|| ≡ dx
dτ

=
p||
dτ

= γv|| w⊥ ≡ dx
dτ

= p⊥
dτ

= γv⊥

coordinate cτ ct x y

TABLE II. Relationship between variables: Here τ is traveler-time elapsed from “turnaround” (when γ ≡ γo) for as long as

proper acceleration ~α doesn’t change, and γ± ≡
√

(γo ± 1)/2. The right arrow → denotes the non-relativistic limit.

4-vector invariant time-components/c || to spatial 3-vector ~α ⊥ to spatial 3-vector ~α

accel. α dγ
dτ

= α
c
γ+ sinh

[

ατ
cγ+

]

→
(

α
c

)2
τ

dw||

dτ
= α cosh

[

ατ
cγ+

]

→ α dw⊥
dτ

= αγ− sinh
[

ατ
cγ+

]

→ 0

velocity c γ = γ2
− + γ2

+ cosh
[

ατ
cγ+

]

→ 1 w|| = cγ+ sinh
[

ατ
cγ+

]

→ ατ w⊥ = c
√
2γ− cosh

[

ατ
2cγ+

]2

→ v⊥

coord. τ t = γ2
−τ + γ

3/2
+

c
α
sinh

[

ατ
cγ+

]

→ τ x = γ2
+

2c2

α
sinh

[

ατ
2cγ+

]2

→ 1
2
ατ 2 y = γ+γ−cτ + γ+

c2

2α
sinh

[

ατ
cγ+

]

→ v⊥τ

keeper coordinates are alone used to define extended si-
multaneity (i.e. the global place and time of events),
while the frame-invariance of proper-time drastically im-
proves the transformation-properties of quantities differ-
entiated with respect to it. The proper-velocity 3-vector
~w ≡ d~x/dτ (which unlike coordinate velocity ~v ≡ d~x/dt
adds vectorially with appropriate rescaling of the “out-of-
frame” component) and the proper-acceleration 3-vector
(discussed here) are cases in point.
The topic of this paper is in particular the frame-

invariant magnitude of the acceleration 4-vector, in
standard notation3:

Aλ :=
DUλ

dτ
=

dUλ

dτ
+ Γλ

µνU
µUν (1)

and uses for this vector’s components (as power/force)
when they are multiplied by frame-invariant rest-mass
m. Here free-float or geodesic trajectories have Aλ = 0,
so that we can think of coordinate acceleration dUλ/dτ
as a sum of proper and geometric terms, the latter
depending on local space-time curvature through the
64-component affine-connection Γλ

µν which gives rise to
“apparent” forces in accelerated coordinate-systems and
curved space-time. As usual greek indices run from
0 (time-component) to 3 (space-components) and obey
the Einstein summation convention when repeated in a
product. Because this proper-acceleration four-vector
becomes purely space-like in a frame instantaneously-
comoving with our traveler, its physical interpretation is
simply the proper-force/mass felt to be “pressing on” our
traveler, as well as the 3-vector proper-acceleration8–10 ~α
seen by free-float observers in the co-moving frame.
In addition to a preference here for frame-invariance,

the concept of simultaneity is a messy one in acceler-
ated frames (e.g. using radar-time methods11) as well
as in curved spacetime. Hence we take a “metric-first”

approach to kinematics here by choosing a single “book-
keeper” coordinate-system in terms of which both “map-
time” t and “map-position” ~x are measured. Simultane-
ity will be defined in terms of synchronized (but not al-
ways local e.g. in the case of Schwarzschild “far-time”)
clocks in this book-keeper frame.
In addition purely space-like vectors, along with frame-

invariants, may be described as “synchrony-free” to use
a word employed by William Shurcliff when discussing
proper-velocity12,13 ~w ≡ d~x/dτ = ~p/m. These are quan-
tities whose operational-definition does not require an ex-
tended network of synchronized-clocks, something of lim-
ited availability around gravitational-objects (like earth),
and impossible to find on platforms (like spaceships) un-
dergoing accelerated motion. The time-like energy of a
moving object via its dependence on the Lorentz-factor
γ ≡ dt/dτ is (like “mixed objects” such as coordinate-
velocity ~v ≡ d~x/dt) not synchrony-free, because it re-
quires map-time t data from clocks at multiple locations.
The “traveler’s point of view” that we argue offers the

most direct way to communicate about an accelerated
traveler is the frame that Misner, Thorne and Wheeler3

refer to as “the proper reference frame of an accelerated
traveler”. One can always convert these to expressions
written in terms of bookkeeper variables like map-time
t and coordinate-velocity ~v, but we show here that the
algorithmically-simplest way to describe the effects of the
local space-time metric on motion (following the critera
above) involves the parameterization described here.

III. LOW SPEED APPLICATIONS

For applications at low speed, telling students about
proper-forces as distinct from geometric-forces (that act
on every ounce of a object’s being) is a good start in
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FIG. 1. Two views of proper (red) and geometric (dark blue or brown) forces in some everyday settings.

preparing them for the value of Newton’s laws in both
free-float and accelerated frames. The simple example
(a) of a car leaving a stop-sign is illustrated by the screen
capture from a wikimedia commons animation in the top-
left of Fig. 1, which shows the red proper-force seen by
observers in both frames as pressing on the driver’s back
while the car accelerates. This of course is canceled only

in the car frame by a geometric force which (like grav-
ity) acts on every ounce of the driver’s being. Animation
screen captures are also provided in that figure which
show proper and geometric forces from two perspectives
in the cases of (b) carousel motion, (c) the process of
rolling off a cliff, and (d) the later stages of a bungie jump.
The screen capture in Fig. 2 from the ”real-time” ani-
mation of a 50[m] diameter rotating-wheel space-habitat
with 1 “gee” of artificial gravity at its perimeter is simi-
larly instructive.

We also recommend telling intro-physics students that
time itself is dependent on a given clock’s location and
state of motion, with the “speed of map-time” relative
to a traveler’s clock (i.e. dt/dτ) an important clue to
the traveling-clock’s energy (potential and/or kinetic).
These things may be done at the outset, followed by the
assertion that introductory physics texts by default refer
to map-time (t) since traveler-time (τ) differences at low
speed are negligible, and they traditionally treat grav-
ity as another proper-force even though we now know

that it too is a geometric-force, caused not by a trav-
eler’s motion but by gravity’s curvature of space-time
around massive objects. Traditional treatments often
further focus only on application of Newton’s laws from
“inertial-frame” perspectives, in which case geometric-
forces (other than gravity) can be ignored. With these
minor “metric-first” changes to the introduction, tradi-
tional introductory physics treatments remain perfectly
self-consistent and intact.

IV. BRINGING IN THE METRIC

In order for teachers to feel grounded when address-
ing introductory issues in context of an intimidating
Riemann-geometry framework, it is crucial that the con-
sequences of their assumptions be easy to for them to
verify. Thankfully the metric-equation, unlike Lorentz
transforms, requires only one bookkeeper frame whose
time-variable may (or may not) be possible to asso-
ciate with time’s passage on clocks synchronized across a
meaningful region of spacetime.

Our first step, namely choosing the metric parameter-
ization to describe a specific problem, is especially im-
portant because it defines both the meaning of measur-
ments and our (perhaps implicit) definition of simultane-
ity. This is good news for introductory teachers, since
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its bad enough to be talking about different times on dif-

ferent clocks, without having to also be juggling multiple

definitions of simultaneity.
For general relativity applications in a world where

time is measured on watches, and distances are measured
with yardsticks, whenever possible we will seek met-
ric parameterizations whose time-variable corresponds to
clocks that can be synchronized. We therefore follow
Newton in flat-space settings by choosing a set of free-
float (e.g. inertial or un-accelerated) frame variables like
coordinate-time t and coordinate-position ~x to describe
accelerated motion.
As teachers, once we have a metric and a corre-

sponding definition of what simultaneity means, we are
back on familiar territory. The caveat is that frame-
independence may be attributed only to four-vector mag-
nitudes, and no longer to time-intervals, distances, or
rates of momentum-change. For the flat-space (1+1)D
case, for instance, the proper time-interval δτ and deriva-
tives with respect to τ yield the following frame-invariant
magnitudes:

(cδτ)2 = (cδt)2 − (δx)2, (2)

with the lightspeed constant c

c2 =

(

c
δt

δτ

)2

−

(

δx

δτ

)2

, (3)

and proper-acceleration α:

−α2 =

(

c
δ2t

δτ2

)2

−

(

δ2x

δτ2

)2

. (4)

Given this, the challenge of finding the integrals of the
motion e.g. for constant acceleration is much like that
challenge of showing that x = 1

2at
2 via the same deriva-

tive relations, but using Newton’s assumptions that

coordinate-intervals and coordinate-acceleration a ≡ δ2x
δt2

are frame-invariant. Simple-form versions of the metric-
based integrals are tabulated in context of the discussions
to follow.

V. ANY SPEED APPLICATIONS

Table I defines notation for describing accelerated mo-
tion in (3+1)D flat spacetime. Table II shows the in-
stantaneous relationship between these varables (also at
low speed), as parameterized by the “traveler-time τ and
Lorentz-factor γo from turnaround” were the instanta-
neous proper acceleration to remain constant (cf. Ap-
pendix A). In both tables, only values in the “time-
components” column rely on synchrony between map-
frame clocks at more that one location. Values in the
spatial-coordinate columns to the right are synchrony-
free, while values in the column to the left are frame-
invariant as well.

FIG. 2. Free-float and ship frame views of a pentagonal
dropped-ball trajectory in a rotating-wheel space habitat,
to illustrate the non-contact nature of the “cell-phone un-
detectable” centrifugal force.

Of course a map-frame observer’s measurements of
map-position as a function of map-time (along with deliv-
erables like inferred coordinate-forces) will be parameter-
ized in terms of synchrony-dependent map-time instead
of frame-invariant traveler-time. Although map-frame
observers can calculate synchrony-free quantities like
momentum and proper-velocity in terms of synchrony-
dependent parameters, it will take extra steps going to
there from what they measure, and perhaps also going
from there to what they want to infer.

If on the other hand the traveler measures their “felt
proper-acceleration”, as well as the rates at which they
pass “map-landmarks” on their route, the equations to
everything else are simpler and organically related as
shown in Table II. Plus, everything that the traveler
measures and reports on (except for elements in the time-
component column of the table) will either be synchrony-
free or frame-invariant.

The connection between the traveler control-
parameters and Table II is reinforced if we imagine
long-distance travel in a spacecraft with traveler control
over thust (i.e. proper-force) magnitude and direction.
The table connects proper-acceleration’s magnitude and
direction to instantaneous values of “proper-time from
turnaround” and v⊥, which in turn are related via the
same table to navigational objectives (like the x and y
values for the turnaround-point itself).

Although variable-rearrangement is complicated rela-
tive to the low-speed case via “gamma-factor” coupling
between directions, a wide range of puzzles involving
high-speed navigation in free-space may be addressed
with this table. Of most interest perhaps to beginning
students are of course the possibilities that relativity
opens up for constant proper-acceleration (e.g. 1 “gee”)
round-trips between distant locations. Not only are these
equations even simpler than the (3+1)D case, but the
real limiting factor (namely the payload to launch-mass
ratio) is quite simple to calculate as well.

A practical classroom application of the frame-
independence of proper-force in this context involves an
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FIG. 3. Two views of proper force on a moving charge from a neutral current-carrying wire, with 40 millisecond time-steps
between after-images. The shorter light-arrow in the wire-frame is the coordinate-force f ≡ dp/dt = Fo/γ⊥. Effects of the
depicted forces on the charge-motion are ignored, as is the B-field in the moving-charge frame which has no effect.

TABLE III. Relationships between variables for acceleration in (1+1)D flat-spacetime: Here τ is traveler-time elapsed from
“turnaround” for as long as proper acceleration α doesn’t change. The right arrow → shows simplification when ατ ≪ c.

4-vector invariants time-components/c space-components

acceleration α ≡ ΣFo

m
dγ
dτ

= P
mc2

= γP
mc2

= α
c
sinh

[

ατ
c

]

→
(

α
c

)2
τ dw

dτ
= ΣF

m
= γΣf

m
= α cosh

[

ατ
c

]

→ α

velocity c γ ≡ dt
dτ

= E
mc2

=
√

1 + (w
c
)2 = cosh

[

ατ
c

]

→ 1 w ≡ dx
dτ

= p
m

= γv = c sinh
[

ατ
c

]

→ ατ

coordinate τ t = c
α
sinh

[

ατ
c

]

→ τ x = c2

α

(

cosh
[

ατ
c

]

− 1
)

→ 1
2
ατ 2

empirical observation exercise for students interested in
the electrostatic origins of the magnetic force between
moving charges. In essence, students are asked to take
data in real time from animations (cf. Fig. 3) show-
ing neutral-wire and moving-charge perspectives on the
proper-force felt by the moving charge.
Simple ratios (in either space or time) allow students to

quantify the length-contraction, the currents and charge
densities from these two perspectives, and a variety of
other physical quantities. In order to see significant dif-
ferences in these quantities from the two perspectives,
of course, charge velocities have to be relativistic. Since
velocities are also perpendicular to observed forces, a sig-
nificant difference between the coordinate-force observed
in the neutral wire frame, and the proper-force felt by
the moving charge, also shows up.

VI. DISCUSSION

As mentioned above, extended arrays of synchronized
clocks are difficult to come by in curved spacetime (cf.
the relativistic corrections needed to make global posi-
tioning estimates accurate). They are perhaps even more

difficult to come by on accelerated platforms (cf. discus-
sions of accelerated-frame “Rindler coordinates”).

“Lorentz-transform first” analyses of any-speed motion
of course require at least two relativistically co-moving
frames of synchronized clocks. No wonder accelerated
motion is of little interest in that context.

“Metric-first” approaches require only one such map-
frame, since proper-time on traveler clocks is a frame-
invariant. The integrals of constant proper-acceleration,
especially in (1+1)D e.g. as α = ∆w/∆t = c∆η/∆τ =
c2∆γ/∆x where η ≡ sinh[w

c
], are also quite manageable.

As shown Table III, which is a (1+1)D version of Tables
I and II combined, the general magnitude-inequality be-

tween coordinate-force ~f ≡ d~p/dt (where we are using
the relativistic momentum ~p) and proper-acceleration ~α,

namely |Σ~f | ≤ |m~α|, also becomes the more familiar-
looking signed-equality Σf = mα.

The approach also works in curved-spacetime. Table
IV illustrates for the “radial-only” Schwarzschild case us-
ing the exact Lorentz-factor from Hartle4, even though
the integration (even in the Newtonian case) is simplest
if we can ignore variations of g with r. The competition
between velocity-related, and gravitational, time-dilation
e.g. for GPS-system orbits is nonetheless quite clear.
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TABLE IV. Relationship between variables for acceleration in (1+1)D gravity: Here τ is traveler-time from “turnaround” for
fixed proper acceleration, while as usual g ≡ GM

r2
and rs ≡ 2GM

c2
. Here ≃ neglects changes in g and → assumes that ατ ≪ c.

4-vector invariants time-components/c space-components

acceleration α ≡ ΣFo

m
dγ
dτ

= P
mc2

= γP
mc2

≃ α−g
c

sinh
[

(α−g)τ
c

]

→
(

α−g
c

)2
τ dw

dτ
= ΣF

m
= γΣf

m
≃ (α− g) cosh

[

(α−g)τ
c

]

→ (α− g)

velocity c γ ≡ dt
dτ

= E
mc2

= γr

√

1 +
(

γrw
c

)2 → γr ≡
√

1
1−

rs
r

w ≡ dr
dτ

= p
m

= γv ≃ c sinh
[

(α−g)τ
c

]

→ (α− g)τ

coordinate τ t ≃ c
α−g

sinh
[

(α−g)τ
c

]

→ τ r ≃ c2

α−g

(

cosh
[

(α−g)τ
c

]

− 1
)

→ 1
2
(α− g)τ 2

Just as in flat-spacetime, the metric equation in gen-
eral associates a set of {t, x, y, z} bookkeeper-coordinates
with each event. In the Schwarzschild case, however,
clocks can only be synchronized at fixed-r. Hence a radar-
time model11 (or some such) of extended-simultaneity
might be needed to answer the question “What time is
it now at radius r?”

The good news for the case of Schwarzschild (and other
steady-state metrics) is that γ ≡ dt

dτ
= E

mc2
can be defined

regardless of one’s model for extended-simultaneity. Al-
though in general momentum ~p ≡ d~x

dτ
remains synchrony-

free, definitions of synchrony-dependent energy may en-
counter significant complication when the bookkeeper
time-derivative dt

dτ
becomes dependent on extended-

simultaneity.

We further show that frame-invariance (where all
frames agree) is quite valuable for illustrations. The
synchrony-free nature of proper-velocity and momentum,
as well as of force-components described as derivatives
using proper-time τ instead of map-time t, also lead to
a simpler and more robust picture of accelerated motion
when examined from the point of view of the accelerated
traveler.

ACKNOWLEDGMENTS

Thanks are due to: Roger Hill for some lovely course
notes, Bill Shurcliff for his counsel on minimally-variant
approaches, as well as Eric Mandell and Edwin Taylor
for their ideas and enthusiasm.

1A. P. French, Special relativity, The M.I.T. Introductory Physics
Series (W. W. Norton, New York, 1968) page 154: “...acceler-
ation is a quantity of limited and questionable value in special
relativity”.

2T.-P. Cheng, Relativity, gravitation and cosmology (Ox, 2005)
page 6: in special relativity... “we are still restricted to” ... “in-
ertial frames of reference” and hence no acceleration.

3C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(W. H. Freeman, San Francisco, 1973).
4J. B. Hartle, Gravity (Addison Wesley Longman, 2002).
5R. J. Cook, “Physical time and physical space in general relativ-
ity,” American Journal of Physics 72, 214–219 (2004).

6E. Taylor and J. A. Wheeler, Exploring black holes, 1st ed. (Ad-
dison Wesley Longman, 2001).

7A. Einstein, Relativity: The special and the general theory, a

popular exposition (Methuen and Company, 1920, 1961).
8A. Einstein and N. Rosen, “The particle problem in the general
theory of relativity,” Phys. Rev. 48, 73–77 (1935).

9E. Taylor and J. A. Wheeler, Spacetime physics, 2nd ed. (W. H.
Freeman, San Francisco, 1992).

10C. Lagoute and E. Davoust, “The interstellar traveler,” American
Journal of Physics 63, 221 (1995).

11C. E. Dolby and S. F. Gull, “On radar time and the twin para-
dox,” American Journal of Physics 69, 1257–1261 (2001).

12F. W. Sears and R. W. Brehme, Introduction to the theory of

relativity (Addison-Wesley, NY, New York, 1968) section 7-3.
13W. A. Shurcliff, “Special relativity: The central ideas,” (1996),
19 Appleton St, Cambridge MA 02138.

14J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley
and Sons, 1999).

15D. G. Messerschmitt, “Special relativity from the traveler’s per-
spective,” (2015), private communication.

16J. M. Levy, “A simple derivation of the Lorentz transform and of
the related velocity and acceleration formulae,” American Jour-
nal of Physics 75, 615–618 (2007).

Appendix A: 3-vector relativity

By way of example, A. P. French1 examines coordinate-
acceleration components with respect to coordinate-
velocity, J. D. Jackson’s relativity chapters14 do an excel-
lent job at showing both 3-vector and Lorentz-covariant
(4-vector) versions of the way that electro-magnetic
proper forces work, and D. G. Messerschmitt15 has ex-
amined scaling relations for proper-acceleration from a
modern engineering perspective. Each of these has fo-
cused on components relative to the direction of motion,
rather than relative to the direction of proper accelera-
tion e.g. of a rocketship which has local control of its
direction of thrust.

One must of course use caution in using relativistic 3-
vectors (especially in curved-spacetime and accelerated-
frames) because many implicit Newtonian assumptions
are no longer valid. One may also encounter disso-
nance from uni-directional “simplifications”, like the
breakdown of relativistic-momentum ~p into a product
of “relativistic-mass” γm and coordinate-velocity ~v ≡
d~x/dt, rather than into a product of frame-invariant rest-
mass m and synchrony-free proper-velocity ~w ≡ d~x/dτ =
γ~v.

In flat spacetime, quantities demoted to the status of
frame-variant or “effective for the indicated frame only”
(eifo13) include:

• coordinate-time t in comparison to the frame-
invariant proper-time τ elapsed e.g. on a traveling
clock,
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• simultaneity whose frame invariance may be (only
temporarily) put aside by using the metric equa-
tion to select but one “book-keeper” definition of
simultaneity, and

• force Σ~F ≡ d~p/dτ which we deal with by intro-

ducing the net felt or “proper-force” Σ~Fo (from
the traveler’s perspective) whose magnitude (like
proper-time τ and lightspeed c) is frame-invariant.

Note that rates of energy-change dE/dτ are frame-
variant even at low speeds: For instance, dE/dτ is always
zero in the rest-frame (as well as the “tangent free-float-
frame”) of an accelerated object even if energy is rapidly
changing from the vantage point of other frames.
In curved-spacetimes and accelerated-frames, key con-

cepts include the added ideas of:

• bookkeeper coordinates in the metric-equation
which may be chosen for convenience but might not
permit extended networks of synchronized clocks,

• vectors as locally-defined tangents3 instead of as
lines between points A and B,

• free-float (geodesic) trajectories and “tangent free-
float-frames” in particular, and

• geometric (connection-coefficient) forces as distinct
from proper-forces.

As discussed in the article, of course, the latter are also
not new to students of low-speed physics if “inertial
forces” like centrifugal and Coriolis have been studied.
These caveats in mind, familiar relations in scalar

and/or 3-vector form can often be written with an addi-
tive (γ−1) term for the eifo-correction. For instance, the
motion-related eifo-correction to frame-invariant rest-
energy mc2 in flat spacetime is simply kinetic-energy
(γ − 1)mc2, coordinate-time dilation for proper-time in-
terval δτ may be written as δt = δτ + (γ − 1)δτ , and

vector length-contraction for proper-length interval ~Lo is

~L = ~Lo +
(γ − 1)

γ
~Lo||~w , (A1)

where the subscript ||~w selects only that component of
~Lo which is parallel to proper-velocity w.

More generally, for 4-vector {Xt, ~X} the Lorentz boost
to a primed-frame moving at proper-velocity ~w has time-

component X ′
t = Xt −

~w
c
· ~X + (γw − 1)Xt. The space-

component is ~X ′ = ~X − ~w
c
Xt + (γw − 1) ~X||~w.

Since proper-acceleration is purely spacelike in the
frame of the accelerated traveler, we can say that the
time-component yields the flat spacetime work-energy

expression dE/dτ = m~α · ~w = Σ~Fo · ~w. The space-
component says that the frame-variant force can be ex-
pressed in terms of proper-acceleration16 and proper-
velocity as:

Σ~F =
d~p

dτ
= m

d~w

dτ
= m~α+ (γ − 1)m~α||~w, (A2)

The second term here is a correction to the net proper-

force Σ~Fo = mα that (like the only term in the work-
energy expression since “proper-power” is always zero)

allows one to determine the net-force Σ~F ≡ d~p/dτ from
the map-frame perspective.
Note that since proper-velocity uses a time-variable

localized to the traveler (and hence does not require
synchronized map-clocks along the traveler’s trajectory),
these 3-vector expressions may be useful locally in curved
as well as flat spacetime settings, provided that we have
a definition for γ ≡ dt/dτ (from the metric) and hence
an effective value for traveler total energy E = γmc2.
In flat spacetime, where the metric tells us that γ ≡

dt/dτ =
√

1 + (w/c)2, one can obtain the energy-integral
differential equation:

c2

α
γ̈ =

(

1 + γ + ( c
α
γ̇)2

1 + γ

)

α (A3)

where the dot refers to differentiation with respect to
proper-time τ , and w|| = (c2/α)dγ/dτ . This integrates
pretty quickly to the contents of Table II. Table III en-
tries then follow directly for the (1+1)D case by letting
γo → 1.
For the Schwarzschild potential, dt/dτ becomes

γr
√

(1 + (γrw/c)2) if γr ≡ 1/(1 − rs/r) and rs is the
event-horizon radius 2GM/c2. Application of equation
A2 then only qualitatively yields the approximate rela-
tionships in Table IV.
Note also that the rescaled velocity-term in equa-

tion A2 is reminescent of the factor (γBC + (γAB −
1)~wBC||~wAB

) that rescales (in magnitude only) the out-of-

frame proper-velocity ~wAB → (~wAB)C when calculating
relative proper-velocity 3-vectors by 3-vector addition:

~wAC ≡ γAC~vAC = (~wAB)C + ~wBC . (A4)

Thus a focus on frame-invariant and synchrony-free vari-
ables might help cautiously open the door to a wider
range of “dimensioned 3-vector” relativistic explorations.
Finally, let’s examine the connection of these equations

to the Lorentz-equation for electromagnetic proper-force,
which underpins Fig. 3 as well as most proper-forces that
we encounter in everyday life. It is also a prototype for
the Maxwell-like equations that underpin field-mediated

proper-forces in general. In terms of electric ~E and mag-

netic ~B fields in a frame with respect to which a charge
Q is moving at proper-velocity ~w = γ~v, we can use the
Lorentz-transform equations (SI-units version14) for the
electric field in the “primed” frame of charge Q to write
the proper-force as:

Σ~Fo = Q ~E′ = Q~E||~w + γQ( ~E⊥~w + ~v × ~B) (A5)

Although the force on our moving charge (as a rate of
momentum change) is in general frame-variant, all ob-
servers (traveling at any speed even in curved spacetime)
should be able to agree on the proper-force and proper-
acceleration that the charge is experiencing. Putting this
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general expression, for the net frame-invariant proper-
force on a moving charge, into the expression for net
frame-variant force above gives us:

Σ~F ≡
d~p

dτ
= γ

d~p

dt
= γQ( ~E + ~v × ~B) (A6)

This Lorentz-force expression, here obtained from the

electrostatic definition of ~E and the field transformation-
rules, illustrates how a “magnetic field” that yields a force
perpendicular to velocity may serve as a natural comple-
ment to any static “proper-force field”.


