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Abstract

The renal cell carcinoma (RCC) is the most fre-
quent type of kidney cancer (between 90% and 95%).
Twelve subtypes of RCC can be distinguished, among
which the clear cell carcinoma (ccRCC) and the pap-
illary carcinoma (pRCC) are the two most common
ones (75% and 10% of the cases, respectively). After
resection (i.e., surgical removal), the tumor is pre-
pared for histological examination (fixation, slicing,
staining, observation with a microscope). Along with
protein expression and genetic tests, the histological
study allows to classify the tumor and define its grade
in order to make a prognosis and to take decisions
for a potential additional chemotherapy treatment.
Digital histology is a recent domain, since routinely,
histological slices are studied directly under the mi-
croscope. The pioneer works deal with the automatic
analysis of cells. However, a crucial factor for RCC
classification is the tumoral architecture relying on
the structure of the vascular network. For exam-
ple, coarsely speaking, ccRCC is characterized by a
“fishnet” structure while the pRCC has a tree-like
structure. To our knowledge, no computerized anal-
ysis of the vascular network has been proposed yet.
In this context, we developed a complete pipeline to
extract the vascular network of a given histological
slice and compute features of the underlying graph

structure. Then, we studied the potential of such
a feature-based approach in classifying a tumor into
ccRCC or pRCC. Preliminary results on patient data
are encouraging.

1 Introduction

1.1 Medical context

The renal cell carcinoma (RCC) represents about
90% of kidney cancers, with several hundreds of thou-
sands of new cases each year worldwide [11]. In some
situations, surgery (i.e., partial or total nephrectomy)
is required. It consists in ablating the tumor together
with part or all of the kidney. Once removed, the
tumor is analyzed in order to provide a diagnosis
(namely, the histological subtype of the tumor [21]
and its grade), and therefore an accurate prognosis.
This analysis is based on four criteria:

e the cellular morphology of the tumor [2],

e the architecture of the tumor, mainly corre-
sponding to the vascular organization of the tis-
sue [19],

e the protein expression [20],

o the genetic expression [7].



The histological type allows to establish a progno-
sis [12] and to propose a treatment adapted to the
patient. In 2004, the World Health Organization
(WHO) has established a categorization into twelve
subtypes of renal cell tumors [15]. Only two of
them are benign (papillary adenoma and oncocy-
toma). Among the malignant tumor types, the most
common ones are the clear cell renal cell carcinoma
(ccRCC, 75% of the cases), the papillary carcinoma
(pRCC, 10%), and the chromophobe carcinoma (5%).
Note that there is also an official “unknown type” (4-
6%), illustrating the fact that biological states are not
100% clear-cut.

1.2 Previous works and proposed

viewpoint

Digital histopathology is a technique at the intersec-
tion of histopathology and medical/biological imag-
ing. Scanning conventional glass slides of histological
slices with a motorized microscope is referred to as
Whole Slide Imaging (WSI). It is gaining popularity
among physicians and it brings new problems to im-
age processing. For kidney tumors, a large part of
the literature deals with the segmentation of the var-
ious parts of the tumor [9,17], or with the analysis
of cell and nucleus morphology [10,22]. However, as
mentioned in Section 1.1, cell shape is not the only
morphological feature that helps to establish a diag-
nosis. Indeed, during tumor formation, the vascular
network grows. This phenomenon is called angiogen-
esis (see Fig. 1). Clearly, the histological type is also
characterized by the topology and geometry of this
network, which is therefore a crucial diagnostic crite-
rion [19]. It is also a factor linked to the grade of the
tumor. When the network is regular, it suggests that
the tumor develops in a structured way, probably in-
dicating a low grade. Conversely, when the network
is chaotic, the development may be seen as aggres-
sive, probably indicating a high grade, malignant tu-
mor. The goal of this work is to extract the vascular
network and to perform a feature-based analysis of
its structure at a large scale in order to study rela-
tionships between vascular structure and histological
types. To our knowledge, this kind of feature-based
approach has not been proposed yet.

Figure 1: One slice of a tumor: (left) the whole slice;
(right) a 1400x1000 close-up view. On the right im-
age, the brownish network is the vascular network;
the blue/violet dots are cell nuclei.

2 Data description and pre-
processing

2.1 Histological data

Once the tumor has been extracted, it is prepared
and sliced into 3-micron-thick slices. The slices are
then stained using a standard procedure. The most
commonly used dyes are eosin, an acid that stains
pink the cytoplasm and the cell matrix, and hema-
toxylin, a base that turns the nuclei blue/violet(see
Fig. 1). Our database is composed of seven slides
scanned by a Leica SCN400 and stored in “scn” for-
mat (RGB encoding with 8 bits per channel). The
images have a resolution of 0.25 um and they are
around 100 000x100 000 pixels in size. However, not
the whole tumor area is of interest. For example, it
contains adipose tissue. Hence, the slides were first
manually segmented to extract the regions of inter-
est (ROIs), a step that should be automatized in the
future. Collectively, the ROIs are, on average, equiv-
alent in size to a 40000x40 000-image, which is still
very large (see Section 2.2).

2.2 Computational burden

Since the slides/ROIs have huge dimensions, they
could not be processed in a reasonable time using
typical iterative variational or stochastic approaches.
In other words, we were constrained to build the pro-
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Figure 2: Global processing pipeline: From original
slice to feature extraction on the graph model of the
vascular network.

cessing pipeline with more basic ingredients, namely,
filtering, thresholding, and mathematical morpholog-
ical tools (see Fig. 2 for an overview of the processing
pipeline). Besides the computational load, memory
usage is also a concern. As a consequence, the slides
were split into slightly overlapping sub-images, and
each sub-image was processed independently. The
overlap between neighboring sub-images simplified
the recombination of the individual results. Note
that the result images presented in the following are
close-ups of whole slides, and are never larger than
1000x 1000 pixels.

2.3 Channel combination (a.k.a. color
deconvolution)

In order to make the image elements (here vascu-
lar network and nuclei) appear more clearly in the
images, color channels must be combined together,
a pre-processing step known as color deconvolution.
A simple combination that emphasizes the vascular
network is the average of the red and blue channels,
resulting in the V channel (see Fig. 3):

R+ B
R2+G?+B?

Note that more sophisticated solutions exist,
for example using a principal component analysis
(PCA) [18].More recently, empirical formulas cor-
responding to markers used in histology (including
hematoxylin and eosin) have been proposed [1]. They
are based on the contrast invariant channels proposed
in [6]. Nuclei are more clearly seen on a pure hema-
toxylin channel (the H channel; See Fig. 3). It is
defined as:

V=05 (1)

B
H=—

where (3 = arctan
Cs s (

)

2.4 Detection and removal of non-
vessel nuclei

A nuclei detection step (on the H channel) may seem
as an out-of-scope processing step for studying the
vascular network. Actually, the nuclei appear quite
distinctively in the V channel (see Fig. 4). Neverthe-
less, this channel is dedicated to the vascular network
extraction, which is based on the (natural) assump-
tion that the network has a tubular structure. The
presence of nearby nuclei limits the accuracy of this
assumption. Hence, detecting the nuclei on the H
channel is only used as a mean to remove them effi-
ciently from the V channel (set the pixels of the nuclei
masks to zero). Note however that the vessels also
contain nuclei. Their removal can create discontinu-
ities in the extracted vascular network. Therefore,
once the nuclei are detected, they must be classified
into vessel and non-vessel nuclei, with only the non-
vessel nuclei to be removed from the V channel. The



Figure 3: Color deconvolution. (Top row) Vascular network (V channel): (from left to right) RGB image,
red channel, blue channel, V channel.

(Bottom row) Nuclei (H channel): (from left to right) C3 channel, H channel (for hematoxylin). All images
are 1000x 1000 pixels.

Figure 4: Nuclei visibility on different channels. (From left to right) RGB image, H channel (where the nuclei
have the brightest and sharpest appearance), V channel (used for vascular network extraction; however, the
nuclei also appear quite distinctively). All images are 400x400 pixels.

distinction between the two types of nuclei can be matical morphology tools.The knowledge of the im-
performed based on morphology: non-vessel nuclei age resolution and of the typical size of a nucleus
have a round shape while vessel nuclei are elongated allows to set the procedure parameters appropriately
(see Fig. 5). to detect bright blobs with a size in the correct range.

Specifically, a morphological opening, a thresholding,
The nuclei detection procedure relies on mathe-



Figure 5: Nuclei detection in the H channel. (Left)
Detection of all the nuclei (non-vessel and vessel nu-
clei). (Right) Result after keeping only non-vessel nu-
clei (the elongated, vessel nuclei have been discarded
from the detection). Images are 250x 300 pixels.

and a morphological closing are successively applied
to the H channel. At this point, the vessel and non-
vessel nuclei are detected (see Fig. 5).

To distinguish between vessel and non-vessel nu-
clei, two criteria are used: size and shape. Basically, a
detected blob larger than a certain threshold (chosen
equal to 5 times the average nucleus size) corresponds
to a vessel nucleus or an aggregation of vessel nuclei.
Moreover, a blob shape criterion is computed as the
eccentricity of the ellipse having the same moments
of order 2. The blobs with a large eccentricity are
also classified as vessel nuclei. The remaining, non-
vessel nuclei form an image of masks applied to the V
channel to force the corresponding pixels to zero (see
Fig 6). The vascular network extraction of Section 3
is performed on the resulting, cleaned V channel.

3 Vascular network extraction
and analysis

3.1 Filtering of the V channel

A thresholding step is necessary to reduce the noise
around vessels. An hysteresis thresholding [3] is more
suitable since the high threshold allows to retrieve the

Figure 6: Nuclei removal in the V channel. Before
(left) and after (right) removal. Images are 300x 250
pixels.

Figure 7: V channel thresholding. (From left to right)
(a) Original channel, (b) after thresholding (a), (c)
after removing tiny components in (b). Images are
450x 640 pixels.

main pieces of the network while the low threshold
allows to maintain most of them connected. Tiny,
unconnected components are finally removed. This
procedure is illustrated in Fig. 7.

Several filters have been proposed to detect tubular
structures [4,13].Among them, the Gabor filtering is
one of the most popular. In the 2D case, Gabor filters
are defined by:

G(z,y) = cos <\“}/27;) exp <x'22;y/2> (3)

where ' = x cosf+ysinf, y' = xsinf—ycosb, and o
and 6 are respectively the extent and the orientation
of the filter (see Fig. 8). Filtering an image by a
Gabor set amounts to computing the convolution of
the image with Gabor filters of predefined values of
o and 6, then taking the maximum of the filtering
responses pixelwise. Instead of the classical form (3),




Figure 8: Gabor filters for various values of o and 6.

we propose to use a modified version [16]. The idea is
to cut the Gabor filters along their axis of symmetry
into two half filters, formally:

+ o )

G (z,y) = { 0 otherwise, 4)
B B G(m7 y) ifz<o0

G (zy) = { 0 otherwise. 5)

Using such half filters allows to avoid false alarms
along contours that do not delimit tubular structures.
For given values of o and 6, the pixelwise minimum
of the respective responses to the filters G and G~
is computed. Then, just like in the case of the clas-
sical Gabor filters, the pixelwise maximum of the re-
sponses corresponding to predefined combinations of
extents and orientation is retained (see Fig. 9). In
the following, this whole filtering procedure will be
referred to as the modified Gabor filter bank (mGFB)
processing step.

3.2 Binarization of the modified Ga-
bor filtering

Once the mGFB applied, the next step is to seg-
ment (here, binarize) the resulting response. Again,
a hysteresis thresholding is adapted to our goal: the
high threshold highlights areas of strong response to
the mGFB (which correspond to tubular structures),
then the low threshold allows to keep the main net-
work pieces connected. In order to get a cleaner re-
sult, a few post-processing steps are applied (see the
final result in Fig. 9):

e a morphological closing for a smoother segmen-
tation,

e a hole filling procedure for holes in the segmen-

Figure 9: Gabor filtering of the V channel. (In lexi-
cographical order) (a) Original channel, (b) modified
Gabor filter bank (mGFB) applied to (a), (¢) bina-
rization of (b), (d) (c) superimposed on (a). All im-
ages are 600x600 pixels.

tation with a size below a given threshold,!

e the removal of tiny components corresponding to
segmentation noise.

3.3 Graph-based model

The vascular network can be represented by a graph.
This graph can be built from the skeleton of the seg-
mentation obtained in Section 3.2. Many skeleton
extraction algorithms have been proposed. Among
them, we chose a thinning method [14] (see Fig. 10),
a framework which preserves the topological proper-
ties of the network and is considered robust.

The resulting, raw skeleton must be post-processed
to remove small terminal branches that do not cor-

1This step is important because the skeleton of the segmen-
tation will be computed later in the process (see Section 3.3),
and holes create loops in the skeleton that are not related to
the underlying vascular network.



Figure 10: Skeleton of the vascular network segmen-
tation. (From left to right in the first 2 rows)
Original image, raw skeleton, post-processed skele-
ton. (Bottom image) Post-processed skeleton on a
larger area. Image sizes: first row=500x500, second
row=320x500, bottom image=1000x 1000.

respond to actual branches of the vascular network?

2In other words, it is a pruning step.

but are rather due to either:

e the roughness of the segmentation contours (de-
spite the smoothing described in Section 3.2),

e or the segmentation being too thick (either sim-
ply because some vessels are thick, or at the in-
tersections of vessels).?

First, the terminal branches of the skeleton are ex-
tracted [8]. Then, among such branches, the ones
that are either too small or composed of purely verti-
cal, horizontal, or diagonal pieces are removed. This
removal procedure is iterated until the resulting skele-
ton remains unchanged (see Fig. 10). In practice, at
most 5 iterations are necessary. This final skeleton
corresponds to our graph model of the vascular net-
work.

3.4 Feature extraction

The obtained graph model is used to calculate objec-
tive features of the vascular network. As mentioned
in Section 1.1, the two most common carcinomas
are the clear cell renal cell carcinoma (ccRCC) and
the papillary carcinoma (pRCC). Coarsely speaking,
ccRCC is characterized by a “fishnet” vascular struc-
ture while the pRCC has a tree-like structure. There-
fore, we propose to compute features that should
allow to distinguish between these two cases and
that would permit to apprehend the regularity or the
chaotic pattern* of this network:

e the number of terminal (or end) branches (NE),

e the average length of the terminal branches
(LE),

e the number of junctions (NJ),

e the average length of the non-terminal branches

(LJ).

As a summary, the global processing pipeline, from
original slice to feature extraction, was introduced in
Fig. 2.

3In this case, thinning algorithms often create piecewise
vertical, horizontal, or diagonal branches to cover the whole
surface of the segmentation.

4which, as already mentioned, is linked to the tumor grade



Data description Features ]

Patient Type NE | LE NJ LJ | NE/NJ | LE/LJ

1 ccRCC || 17794 | 61.1 | 139032 | 101.3 | 0.12 0.60

2 ccRCC || 49945 | 67.8 | 118645 | 105.2 | 0.42 0.64

2 ccRCC || 26850 | 63.7 | 76513 | 100.6 | 0.35 0.63

2 ccRCC || 6204 | 62.4 | 25354 | 101.4 | o0.24 0.62

2 ccRCC || 28489 | 56.1 | 68264 | 88.9 0.41 0.63

3 pRCC || 13933 | 72.9 | 23724 | 101.6 | 0.58 0.72

3 pRCC || 23164 | 67.5 | 50085 | 100.6 | 0.46 0.67
[ Average | ccRCC [ 25856 [ 62.2 | 85562 | 99.5 | 0.31 | 0.62 |
[ Average | pRCC || 18548 [ 70.2 | 36904 | 101.1 | 0.52 [ 0.69 |

Table 1: Data description (patient number and histo-
logical type) and extracted features for seven slices.
The last two rows present average features for each
histological type.

3.5 Vascular network analysis

Table 1 presents the features that have been ex-
tracted on seven slices taken from tumors of three
patients. All three tumors have been graded 3 on
the Fuhrman scale [5].° Although the number of
cases is small, the results suggest two tendencies: the
NE/NJ ratio is generally higher for pRCC than for
ccRCC (on average, about 68% higher), and the av-
erage length of the terminal branches (LE) is larger
for pRCC than for ccRCC (on average, LE/LJ ra-
tio about 11% higher). This is in accordance with
their respective tree-like (pRCC; more, longer termi-
nal branches) versus “fishnet” (ccRCC; more junc-
tions, shorter terminal branches) vascular structures.

4 Conclusion

We proposed an automatic processing pipeline to
model (as a graph) and analyze the vascular net-
work of RCCs. The preliminary results obtained on
routinely acquired tumor slices suggest that features
such as the NE/NJ and LE/LJ ratios are potential
biomarkers to distinguish between pRCC and ¢ccRCC
tumor types. This points toward a positive answer
to our initial question: “Is the vascular network dis-
criminant enough to classify renal cell carcinoma?”.
Naturally, it is essential to process much more pa-
tient data. In particular, the complete pipeline de-

5The Fuhrman grade is an integer value between 1 and 4
characterizing the malignity of the tumor, 1 being the most
benign and 4 the most malignant.

pends on a significant number of parameters (thresh-
olds, mGFB parameters...) that were tuned manu-
ally on the same images as the ones used for testing.
A larger database would allow (i) to estimate them
using cross-validation and (%) to properly separate
tuning and testing.

Regarding biomarkers, it can be interesting to
study the potential of other markers such as the num-
ber of “cycles” of the vascular graph/network, their
size, the size of the vessels...Regarding additional
perspectives, let us mention that, when the vascu-
lar network grows, some cells tend to align to it.
Hence, cell arrangement and vascular structure repre-
sent complementary histological information. There-
fore, cell detection could help extracting the vascular
network more accurately and efficiently. Moreover,
as far as analysis is concerned, it seems legitimate to
try to combine the proposed approach with the cell
morphology studies mentioned in Section 1.2.
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