Tarek Menouer
email: tarek.menouer@prism.uvsq.fr

Mohamed Rezgui
email: rezgui@i3s.unice.fr

Bertrand Le Cun
email: bertrand.lecun@prism.uvsq.fr

Jean-Charles Régin

Mixing Static and Dynamic Partitioning to Parallelize a Constraint Programming Solver

Keywords: Parallelism, Constraint Programming, Work Stealing, Dynamic Load Balancing. 1 Constraint Programming is sometimes called Branch and Infer

This paper presents an external parallelization of Constraint Programming (CP) search tree mixing both static and dynamic partitioning. The principle of the parallelization is to partition the CP search tree into a set of sub-trees, then assign each sub-tree to one computing core in order to perform a local search using a sequential CP solver. In this context, static partitioning consists of decomposing the CP variables domains in order to split the CP search tree into a set of disjoint sub-trees to assign them to the cores. This strategy performs well without adding an extra cost to the parallel search, but the problem is the load imbalance between computing cores. On the other hand, dynamic partitioning is based on preservation of the search state to generate, dynamically or on demand, the sub-trees that are assigned to the cores. This strategy oers good load balancing between the dierent computing cores, but computing overcosts appear due to the initialisation of the search when a sub-tree is migrated from one core to another. In this paper, we propose a new partitioning strategy that mixes the static and dynamic partitioning and enjoys the benets of each strategy. This mixed partitioning is designed to run on shared and distributed memory architectures. The performances obtained are illustrated by solving the CP problems modelled using the FlatZinc format and solved using the Google OR-Tools solver on top of the parallel Bobpp framework.

Introduction

Parallel search trees have been widely studied in the dierent contexts of Divide and Conquer, Branch and Bound, and Constraint programming (CP) 1 . Most of these studies propose a parallelization of the entire tree search algorithm that must be used in place of the sequential one, as studies proposed in [START_REF] Theodor Crainic | Parallel Branch and Bound Algorithms[END_REF][START_REF] Gendron | Parallel branch-and-bound algorithms: Survey and synthesis[END_REF]39,[START_REF] Alfonso Ferreira | Solving Combinatorial Optimization Problems in Parallel Methods and Techniques[END_REF][START_REF] Ferreira | Models for Parallel Algorithm Design: An Introduction[END_REF][START_REF] Pardalos | Parallel Processing of Discrete Problems[END_REF][START_REF] Pardalos | Parallel Processing of Discrete Optimization Problems[END_REF].

In this paper, we propose an external parallelization of CP search tree 2 . The main part of the search is performed by a sequential CP solver. In other words, we propose parallel algorithms that are used to dispatch or schedule the tasks which will be executed by each computing core using a sequential CP solver.

Parallel search tree algorithms are usually explained in terms of static or dynamic partitioning. The principle of static partitioning [START_REF] Régin | Embarrassingly parallel search[END_REF] is to partition the search tree into a nite set of distinct sub-trees according to the decomposition of the variables' domains within the CP problem, then assign each sub-tree to one computing core. The advantage of this strategy is that when a computing core begins searching a new sub-tree, it starts directly without adding an extra cost to the parallel search. However, the workload is not well-balanced. The only way to handle the balancing problem is to generate enough sub-trees to have a good load balance.

The second strategy is dynamic partitioning [START_REF] Menouer | Anticipated dynamic load balancing strategy to parallelize constraint programming search[END_REF]. The principle of this strategy is based on a previously studied Work Stealing technique to partition the search tree into a set of sub-trees, and schedule them during the execution of the search algorithm in order to have good load balancing between the different computing cores. For technical reasons within the sequential CP solver (Google OR-Tools) used to perform the local search, when a computing core starts the search with a new sub-tree, some extra cost is added to the parallel search. This additional cost of each Work Stealing operation implies a specic scheduling and partitioning algorithm to obtain a good performance.

The contribution of this paper is to propose a new partitioning strategy to parallelize the CP search tree that mixes the static and dynamic strategies. For the needs of High Performance Computing (HPC), this new partitioning strategy will be run in shared and distributed memory architectures. This mixed partitioning starts by performing the static partitioning in order to generate a sucient number of sub-trees for the dierent computing cores used in the resolution, and ensure that these starting sub-trees are the good sub-trees to be explored (without adding an extra cost to the search). In the second step, dynamic partitioning is used to ensure good load balancing between computing cores.

We illustrate the performance of the mixed partitioning by using the OR-Tools solver [START_REF] Van Omme | Or-tools[END_REF] on top of the parallel Bobpp framework [START_REF] Le Cun | Bobpp[END_REF].

OR-Tools is an open source sequential CP solver developed by a Google research team. Bobpp is a framework that provides an interface between solvers of combinatorial problems and parallel computers.

The next section presents related work. The static and dynamic partitioning strategies are described in section 3, mixed partitioning is presented in section 4. Section 5 presents some experiments using the Bobpp framework to solve CP problems. Finally, a conclusion and some perspectives are presented in section 6.

Related Work

A CP problem Π is a triplet (X , D, C), dened as follows:

A set of n variables X = {x 1 , x 2 , . . . , x n } A set of n nite domains D = {D(x 1), D(x 2), . . . , D(x n)} with D(x i) the set of possible values for the variable

x i A set of constraints between the variables C = {C 1 , C 2 , . . . , C e }. A con- straint C i is dened on a subset of variables X Ci = {x i1 , x i2 , . . . , x ij } of X with a subset of the Cartesian product D(x i1) × D(x i2) × . . . × D(x ij),
that states which combinations of values of variables {x i1 , x i2 , . . . , x ij } are compatible Each constraint C i is associated with a lter algorithm that removes values from the domains of its variables when it is not possible to satisfy the constraint. The constraint propagation applies ltering algorithms of C to reduce the domains of variables in turn until no more reduction can be done. Thereby, it detects the combinations of locally inconsistent values that cannot be solutions.

Π is solved as follows: First, all variables of Π are unassigned. For each step, a variable x i is chosen and a value a ∈ D(x i) is assigned to x i in turn. Each branch of a search tree computed by this search denes an assignment. Next, the constraint propagation mechanism checks the consistency of the partial assignment with the constraints C. Each partial assignment creates a node in the search tree. Thus, we associate the consistency of a node with the consistency implied by an assignment.

CP algorithms are used to solve combinatorial problems with great complexity, such as scheduling problems [START_REF] Baptiste | Constraint-Based Scheduling -Applying Constraint Programming to Scheduling Problems[END_REF]. Several methods are proposed in order to parallelize the CP search-space, as in [START_REF] Gent | A preliminary review of literature on parallel constraint solving[END_REF] [32] [START_REF] Rolf | Parallelism in Constraint Programming[END_REF] [25] [START_REF] Vander-Swalmen | Designing a parallel collaborative sat solver[END_REF]. In the literature there are several parallel CP solvers such as Gecode [START_REF] Schulte | Restart strategies in optimization: parallel and serial cases[END_REF], Parallel COMET [START_REF] Michel | Parallelizing constraint programs transparently[END_REF], ILOG Parallel Solver [START_REF] Perron | Search procedures and parallelism in constraint programming[END_REF], parallel Mozart solver [START_REF] Schulte | Parallel search made simple[END_REF], etc. Each solver uses a specic CP technique, but from a parallel point of view they all use the same principle based on Work Stealing [START_REF] Chu | Condence-based work stealing in parallel constraint programming[END_REF][START_REF] Blumofe | Scheduling multithreaded computations by work stealing[END_REF][START_REF] Guo | Slaw: A scalable locality-aware adaptive work-stealing scheduler[END_REF][START_REF] Gautier | Regular versus irregular problems and algorithms[END_REF][START_REF] Acar | The data locality of work stealing[END_REF].

Work Stealing is the most popular technique used to implement load balancing between computing cores. Each computing core does some tasks, then when a core has nothing left to do, it steals tasks from another core to keep busy. Some studies which used Work Stealing to paralellize the exploration of the CP search space are presented in [START_REF] Xie | Solving scheduling problems using parallel message-passing based constraint programming[END_REF][START_REF] Fischetti | Self-splitting of workload in parallel computation[END_REF][START_REF] Jaar | Scalable distributed depth-rst search with greedy work stealing[END_REF][START_REF] Bordeaux | Experiments with massively parallel constraint solving[END_REF][START_REF] Yun | A hybrid paradigm for adaptive parallel search[END_REF].

For example, the study presented by Xie et al. [START_REF] Xie | Solving scheduling problems using parallel message-passing based constraint programming[END_REF] proposes the masters/workers approach. Each master has its workers. The search space is divided between the dierent masters, then each master puts its attributed subtrees in a work pool to dispatch to the workers. When a node of the sub-tree is detected that is a root of large sub-tree, the workers generate a large number of sub-trees and put them in a work pool in order to have better load balancing. Fischetti et al. [START_REF] Fischetti | Self-splitting of workload in parallel computation[END_REF], propose a worker-pool without communication between workers. First, the workers decompose the initial problem during a limited sampling phase, during which each worker visits nodes randomly. Thus, they can visit redundant nodes. After the sampling phase, each worker is attributed its nodes by a deterministic function. During the resolution, if a node is detected to be dicult by an estimated function, it is put into a global queue. When a worker nishes the resolution of its node, it receives a hard node from the global queue and solves it. When the queue is empty and there is no work to do, the resolution is done. Jaar et al. [START_REF] Jaar | Scalable distributed depth-rst search with greedy work stealing[END_REF] propose the use of a master which centralizes all pieces of information (bounds, solutions and requests). The master evaluates which worker has the largest amount of work in order to give some work to a waiting worker.

There are other works which use new techniques, such as Portfolio parallelization. Bordeaux et al. [START_REF] Bordeaux | Experiments with massively parallel constraint solving[END_REF], are the rst authors to present a study on the scalability of constraint solving on more than 100 processors. They focus on the resolution of CP and boolean SATisability (SAT) problems. They use two approaches: portfolios and search space splitting. Without communication and using hashing constraints to split the search tree, their results show good speedups for up to 30 processors, but not beyond. Yun et al. [START_REF] Yun | A hybrid paradigm for adaptive parallel search[END_REF] introduced the recursive splitting with iterative bisection partitioning method which decomposes the initial problem into a large number of sub-problems. This decomposition is based on previous unsuccessful resolutions.

In all previous works, the parallelization is performed inside the search algorithm. In this paper we propose an external parallelization of OR-Tools CP solver using a parallel Bobpp framework. The external parallelization is done without changing the OR-Tools source code.

The Partitioning Strategies

This section presents the dierent partitioning strategies proposed in order to perform an external parallelization of CP search tree by using the OR-Tools solver on top of the parallel Bobpp framework.

OR-Tools [START_REF] Van Omme | Or-tools[END_REF] is an open source library that implements a sequential CP solver. It is developed in C++ by a Google research team. The purpose of this library is to explore the search space in order to nd one or all possible solutions using various constraint propagation methods.

Bobpp [START_REF] Galea | Bob++ : a framework for exact combinatorial optimization methods on parallel machines[END_REF] is a parallel framework oriented towards solving Combinatorial Optimization Problems. It is developed in C++ and can be used as the runtime support. Bobpp provides several search algorithms that can be parallelized using dierent parallel programming methods. The goal is to propose a single framework for most classes of Combinatorial Optimization Problems, which can be solved in as many dierent parallel architectures as possible. Figure 1 shows how Bobpp interfaces with high-level applications (QAP, TSP, ...), CP solvers, and dierent parallel architectures using several parallel programming environments like Pthreads as well as MPI or more specialized libraries such as Athapascan/Kaapi.

The Static Partitioning

The principle of static partitioning is to split the CP search tree into a set of disjoint sub-trees. The root node of each sub-tree is named a BOB-static-node, which has a partial assignment as a set of pairs (variable, value) checked by the propagation mechanism. This strategy is explain in detail in [START_REF] Régin | Embarrassingly parallel search[END_REF].

A simple algorithm could be to perform Breadth First Search (BFS) in the search tree until the n BOB-static-node is reached. Unfortunately, it is not easy to eciently perform BFS, mainly because BFS is not an incremental algorithm like Depth First Search (DFS). Therefore, we have used Depthbounded Depth First Search (DBDFS). Let n k denote the number of BOBstatic-nodes found with DBDFS at depth k. To reach the n th BOB-static-node, we repeat the DBDFS until we reach a depth k such that n k-1 < n ≤ n k .

This strategy can be compared with the Iterative Deepening Depth-First Search (IDDFS) [START_REF] Korf | Depth-rst iterative-deepening: an optimal admissible tree search[END_REF], which is based on the same principle (iterations of DBDFS), but with some dierences. IDDFS stops the search when it nds a solution, whereas static partitioning tries to generate n BOB-static-nodes.

As this strategy doesn't add extra cost to the parallel search, we use it to explore the rst level of the search tree and to generate BOB-static-nodes, which are shared between computing cores to perform a parallel search. This 2

Variation of computation time for solving the problem of Naval battle (Sb_sb_13_13_5_1) [START_REF]Minizinc challenge[END_REF] on 12 cores according to the number of sub-trees generated strategy performs well, but it has some problems. The rst problem is the determination of the best number of BOB-static-nodes to generate. Figure 2 shows an example concerning the variation of computation time according to the number of sub-trees generated by static partitioning to solve the Naval battle problem (Sb_sb_13_13_5_1) [START_REF]Minizinc challenge[END_REF], using 12 cores on an Intel machine (12 cores and 48 GB of RAM). Thus, each time we increase the number of sub-trees generated we measure the computation time until an optimal number of sub-trees is found (in gure 2 this is 25 sub-trees). After the optimal value found in this example, as you can see, the computation time slows down again.

The second problem concerns the load imbalance between computing cores. Indeed, the load imbalance implies that sometimes one computing core performs almost all of the search while the other computing cores wait until the rst core nishes.

The Dynamic Partitioning

The principle of the dynamic partitioning is that dierent computing cores share the work via the Bobpp Global Priority Queue, called GPQ. The search tree is decomposed and allocated to the dierent cores on demand and during the execution of the search algorithm. Periodically, a working core tests if waiting core(s) exist(s). If this is the case, the working core stops the search in the left OR-Tools node. Next, the path from the root node to the highest right OR-Tools node is saved in what we called the BOB-dynamic-node. This BOB-dynamic-node is inserted into the GPQ, then the working core continues the search with the left OR-Tools node. Otherwise, if no waiting cores exist, the working core performs the search locally using the OR-Tools solver. The waiting cores are notied by the insertion of a new BOB-dynamic-node in the GPQ. If a new BOB-dynamic-node is inserted in the GPQ, the waiting core picks up the node and starts the search. This partitioning strategy is presented in detail in [START_REF] Menouer | Anticipated dynamic load balancing strategy to parallelize constraint programming search[END_REF]. For technical reasons in the OR-Tools solver, each time a computing core starts the search with a new BOB-dynamic-node, redundant nodes must be explored. To limit the exploration of redundant nodes, it is proposed to add a threshold, which limits the depth of each BOB-dynamic-node. The choice of the value of the threshold is a dicult problem. Choosing a very small threshold makes the algorithm similar to static partitioning, with a limited number of sub-trees explored by the dierent computing cores. Conversely, choosing a high threshold makes the algorithm similar to dynamic partitioning without a threshold, which makes load balancing easier between the cores but increases the exploration of the redundant OR-Tools nodes.

Figure 3 shows the variation in computation time according to the value of the threshold to solve the Naval battle problem (Sb_sb_13_13_5_1) [START_REF]Minizinc challenge[END_REF] using 12 cores on an Intel machine (12 cores and 48 GB of RAM). As a result, the computation time decreases while increasing the threshold value until an optimal threshold (value of 25) is reached. After this optimal value the computation time increases again.

Mixing Static and Dynamic Partitioning

In short, each of the two previous strategies has the following advantages and disadvantages:

Static Partitioning generates good sub-trees to be explored by the computing cores without adding an extra cost to the parallel search, but the disadvantages are:

The determination of the best number of sub-trees to generate The workload can be imbalanced It is developed in [START_REF] Régin | Embarrassingly parallel search[END_REF], to run only for a shard memory architecture Dynamic Partitioning gives a well-balanced work, but the problems are:

Each time a sub-tree migrates from one computing core to another, redundant nodes are explored and an extra cost is added to the parallel search It is also developed in [START_REF] Menouer | Anticipated dynamic load balancing strategy to parallelize constraint programming search[END_REF], to run only for a shard memory architecture

The following section presents a new partitioning strategy that performs in shared and distributed memory architectures. The aim of this new strategy is to mix static and dynamic partitioning in order to generate at the beginning good initial sub-trees which are explored without adding an extra cost to the parallel search. Then, in the second step, dynamic partitioning is used to have good load balancing, as presented in algorithm 1.

Figure 4 shows the variation in computation time according to the number of sub-trees generated during static partitioning and the value of the threshold used by dynamic partitioning to solve the Naval battle problem (Sb_sb_13_13_5_1). This experiment was realised using 12 cores on an Intel machine (12 cores and 48 GB of RAM).

Figure 4:a presents the variation in computing time in a 3D format. A rst remark is that the optimal number of sub-trees generated with static partitioning is 25.

In gure 4:b, the number of sub-trees generated by the static partitioning is xed at 25 and we present the computation time obtained by varying the threshold value used by the dynamic partitioning method. Coincidentally, the optimal threshold for the dynamic partitioning is also [START_REF] Michel | Transparent parallelization of constraint programming[END_REF].

Figure 4:c shows a table describing computation time values obtained by varying the number of sub-trees generated during static partitioning and the value of the threshold used by the dynamic partitioning. Figure 4:c is presented in order to explain gure 4:b in detail.

We note in gures 2, 3 and 4:b) that:

The computation time obtained in gure 2 by using an optimal number of sub-trees generated by the static partitioning is 95.46 seconds The computation time obtained in gure 3 by using the optimal dynamic partitioning threshold is 75.92 seconds The computation time obtained in gure 4:a by using the optimal number of sub-tree generated by the static partitioning and the optimal dynamic partitioning threshold is 46.89 seconds So, using a mixed partitioning strategy allows one to obtain a good computation time.

Mixed Partitioning in a Shared Memory Architecture

To explore the search tree on parallel computers, the primary issue is load balancing. The idea is to use the GPQ of the parallel Bobpp framework as a global pool of nodes (tasks) in which each computing core will pick up a node and perform a local search using a sequential CP solver.

As presented in gure 5, the mixed partitioning starts by inserting sub-trees generated using a static partitioning into the Bobpp GPQ. These sub-trees are represented as BOB-static-nodes. As the search tree generated by the OR-Tools solver is binary, we propose to x the number of the sub-trees generated by the static partitioning to 2×(Number of computing cores used in the search). The mixed partitioning algorithm does not require re-compilation for each new target machine or new execution context. For every new execution, the software checks the number of computing cores used in the search and generates the BOB-static-nodes. During the second step, in order to keep a good load balance between the dierent computing cores, we use dynamic partitioning with an automatic threshold. In order to accomplish this, the starting value of the threshold is xed, then increased each time a load imbalance is detected. This automatic threshold performs well, it is presented in [START_REF] Menouer | Anticipated dynamic load balancing strategy to parallelize constraint programming search[END_REF].

If a solution is found, it will be inserted into the Bobpp Goal, which stores all of the solutions.

Mixed Partitioning in a Distributed Memory Architecture

Parallel search on a distributed memory architecture relies on the same principle as a parallel search on a shared memory architecture. On a distributed Fig. 6 Mixed partitioning in a distributed memory architecture memory machine, the Bobpp GPQ has to be split among the number of processors used and we assign to each processor one Sub Priority Queue (SPQ). The main dierence between these two types of memory is the priority queue management.

On a shared memory, there is one priority queue shared between all cores. In a distributed memory, we use many SPQs and each SPQ will be shared between the dierent cores used by each processor. In order to obtain a good load balancing between the dierent BOB-static/dynamic-nodes used by each SPQ, we use the Work Stealing approach. This means that BOB-static/dynamicnodes are moved once a starvation risk is detected.

As soon as the distributed memory of the priority queue is used, Bobpp is able to execute a shared memory strategy on each processor using a hybrid parallel programming environment (Pthreads+MPI).

Figure 6 shows how a hybrid environment is used to perform the mixed partitioning.

Experimentation

In order to validate and compare the dierent approaches used in this study, experiments were performed using two Linux machines, M1 and M2. The two machines have the same conguration: each machine is a bi-processor Intel Xeon X5650 (2.67 GHz) computer with 12 cores and 48 GB of RAM. The network uses Ethernet technology with IPV6 protocol to obtain a speed of 188552 Kbit/s. The goal of this experimentation is to show the performances of our parallelization approach. We use for the implementation the OR-Tools solver (version: 2727). It is evident that all results depends on the OR-Tools solver because it is used as the main CP solver. All CP problems solved in this paper were proposed in the MiniZinc Challenge 2012 [START_REF]Minizinc challenge[END_REF] and modelled using the FlatZinc format [START_REF]Specication of zinc and minizinc[END_REF]. The goal of the MiniZinc Challenge is to compare the performances of solvers and various constraint solving technologies on a set of problems. FlatZinc is a low-level solver input language designed to specify problems at the level of an interface to CP solvers. The following computation

Solving Constraint Programming Problems using a Shared Memory Architecture

Figure 7 compares the three partitioning strategies -static, dynamic and mixed -for solving the two CP problems listed below. 12 cores were used in testing each strategy:

The Quasi Group problem (Quasigroup7_10) [START_REF]Minizinc challenge[END_REF], which is a Constraint Satisfaction Problem: labelled CSP in gure 7

The Level Packing problem (2DLevelPacking_Class8_20_9) [START_REF]Minizinc challenge[END_REF], which is a Constraint Optimization Problem: labelled COP in gure 7

The performance of static partitioning is limited, as shown by its low speedup compared to other partitioning strategies. The third partitioning (mixing static and dynamic) is clearly the best partitioning method for solving Constraint Satisfaction and Optimization Problems.

Figures 8 and9 show the average speedup obtained using each of the three partitioning strategies for solving 10 CP problems, 6 are Constraint Currently there are many available computing resources, such as data centers and the cloud computing, so the majority of parallel CP solvers proposed in the literature, such as Choco [START_REF]Choco solver[END_REF], CPHYDRA [START_REF] Hebrard | Using case-based reasoning in an algorithm portfolio for constraint solving[END_REF] and Numberjack solver [START_REF]Numberjack solver[END_REF] use a Portfolio parallelization [START_REF] Hurley | Proteus: A hierarchical portfolio of solvers and transformations[END_REF]. The idea of the Portfolio parallelization is to run dierent search strategies in parallel and the rst strategy to nd a solution or meet the needs of the user stops all other strategies. In our approach we propose an external parallelization of one search strategy instead of a Portfolio parallelization. Few CP solvers exist that oer a parallelization of one search strategy and solve problems modelled using FlatZinc format, such as the Gecode solver [START_REF] Schulte | Restart strategies in optimization: parallel and serial cases[END_REF]. Gecode [START_REF] Schulte | Restart strategies in optimization: parallel and serial cases[END_REF] is an open source parallel CP solver developed in C++. It proposes an internal parallelization of a search algorithm using the Work Stealing technique. The idea of this parallelization is described as follows: when a computing core has nothing to do, it steals work from other cores which have tasks to perform.

Figures 10 and11 show a comparison between the average speedup obtained using mixed partitioning, which is an external parallelization of the OR-Tools solver that is among the best CP solvers selected in the MiniZinc Challenge 2013 [START_REF]Minizinc challenge[END_REF], and the Gecode solver (version 4.2.1), which was selected as the best parallel CP solver from 2008 until 2012 in the MiniZinc Challenge [START_REF]Minizinc challenge[END_REF] for solving 6 Constraint Satisfaction Problems and 4 Constraint Optimization Problems.

Tables 1,2, 3 and 4 show absolute run time (giving in seconds) obtained using the mixed partitioning and Gecode CP solver for solving 6 Constraint Satisfaction Problems and 4 Constraint Optimization Problems.

The average speedup obtained using the mixed partitioning is better than the average speedup obtained using the Gecode solver. This result allows validation of the performance of the mixed partitioning.

Our approach has some benets, such as:

It proposes an external parallelization of the OR-Tools solver without changing the OR-Tools code, it is used directly with the next OR-Tools release As it is an external parallelization, it is possible to combine the mixed partitioning and the portfolio parallelization [START_REF] Menouer | Adaptive n to p portfolio for solving constraint programming problems on top of the parallel bobpp framework[END_REF] It is designed for both shared and distributed memory architectures, as opposed to the other parallel CP solvers which are designed for only one memory architecture.

The problems with our approach are:

The resolution of problems depend on the threshold of static and dynamic partitioning The parallel search algorithm is not deterministic Only solves problems modelled using FlatZinc format

Figure 12 shows the load balance for solving the Quasi Group problem (Quasigroup7_10) [START_REF]Minizinc challenge[END_REF], which is a Constraint Satisfaction Problem using 12 cores according to the partitioning strategies.

Figure 12:a is obtained using static partitioning. It is clear that this strategy gives a load imbalance between the computing cores. We observe that the computing time is 213.09 seconds.

Figure 12:b is obtained using dynamic partitioning. With this strategy, the computation time is 176.98 seconds.

Figure 12 :c is obtained using mixed partitioning. With this strategy, the load is good balanced and the computation time is 153.93 seconds.

Fig. 12 Load balancing for solving the Quasi Group problem (Quasigroup7_10) [START_REF]Minizinc challenge[END_REF], which is a Constraint Satisfaction Problem using 12 cores according to the partitioning strategies 13

Load balancing for solving the Level Packing problem (2DLevelPack-ing_Class8_20_9), which is a Constraint Optimization Problem using 12 cores according to the partitioning strategies Figure 13 shows the load balance for solving the Level Packing problem (2DLevelPacking_Class8_20_9) [START_REF]Minizinc challenge[END_REF], which is a Constraint Optimization Problem using 12 cores according to the partitioning strategies (static, dynamic and mixed).

As a result, for both problems (Constraint Satisfaction and Optimization Problems), the mixed partitioning allows all cores to work and wait for an equivalent time. The static and dynamic partitioning strategies are developed only for shared memory architectures. In the following section, we present some experiments on a distributed memory architecture with only the mixed partitioning strategy.

Solving Constraint

Tables 5 and6 show the average speedups for solving Constraint Satisfaction and Optimization Problems using a hybrid (Pthreads+MPI) parallel programming environment.

There are some studies which present distributed algorithms for solving CP problems, as in [START_REF] Pedro | Distributed work stealing for constraint solving[END_REF][START_REF] Yokoo | The distributed constraint satisfaction problem: Formalization and algorithms[END_REF][START_REF] Schulte | Parallel search made simple[END_REF][START_REF] Michel | Distributed constraint-based local search[END_REF][START_REF] Michel | Transparent parallelization of constraint programs on computer clusters[END_REF]. However, to our knowledge, there is no open source CP solver which oers a parallel search algorithm adapted for distributed memory architectures and solves our instances, which are modelled using FlatZinc format. This is why we can not compare our approach with other distributed CP solvers. This solution presents a new strategy that mixes static and dynamic partitioning. Static partitioning is used to generate the best sub-trees and start the search without adding an extra cost. Dynamic partitioning is used to perform dynamic partitioning of dierent sub-trees during the execution of the search algorithm with a good load balance between computing cores.

It would be good to always give the user the same solution for a specic problem. In a sequential resolution, this is easy because it is the rst solution obtained. However, in parallel, it is not necessarily the rst solution. In the future, this mixed partitioning algorithm used to parallelize the OR-Tools solver will be adapted to always give the same solution whether using a parallel or a sequential run if it is asked by the user.

Finally, to enrich and extend the set of problems solved by the Bobpp framework, it would be interesting to port on top of the Bobpp framework a boolean SATisability (SAT) solver such as Glucose [START_REF]Glucose sat solver[END_REF] solver.

Fig. 1

 1 Fig. 1 Bobpp Framework

 Fig.

Fig. 3

 3 Fig.3Variation of the computation time for solving the problem of Naval battle (Sb_sb_13_13_5_1)[START_REF]Minizinc challenge[END_REF] on 12 cores according to the value of the threshold

Algorithm 1

 1 Mixed Partitioning Require: N , the threshold of static partitioning Require: S, the threshold of dynamic partitioning Let K, represent the current number of sub-trees generated by static partitioning Let P , represent the depth of the current OR-Tools node if K < N then Generate a new sub-tree using static partitioning else if ∃ at least one waiting core AND P < S then Stop the search on the left branch Create a BOB-dynamic-node Insert the BOB-dynamic-node in the global queue Restart the search else Continue the sequential exploration of the search-space end if end if

Fig. 4

 4 Fig. 4 Variation of computation time for solving the Naval battle problem (Sb_sb_13_13_5_1) [27] on 12 cores according to the number of sub-trees generated by the static partitioning and threshold value of the dynamic partitioning

Fig. 5

 5 Fig. 5 Mixed partitioning in a shared memory architecture

Fig. 8

 8 Fig. 8 Average speedup obtained using static, dynamic and mixed partitioning for solving 6 Constraint Satisfaction Problems

Fig. 9

 9 Fig. 9 Average speedup obtained using static, dynamic and mixed partitioning for solving 4 Constraint Optimization Problems

Fig. 10

 10 Fig.[START_REF] Ferreira | Models for Parallel Algorithm Design: An Introduction[END_REF] Comparison between an average speedup obtained using mixed partitioning and Gecode CP solver for solving 6 Constraint Satisfaction Problems

 Fig.

Figures 14 and 15

 15 Figures 14 and 15 show the load balance when solving Constraint Satisfaction and Optimization Problems. The same result as in the shared memory architecture was obtained. All cores work and wait for an equivalent time.

Table 4

 4 Execution times obtained using Gecode CP solver for solving 4 Constraint Optimization Problems

			Speedup for Mixed Partitioning Speedup for Gecode Solver
		7.02		
	Speedup	4.3 5.27		
		3.47		
		2.72		
		1.89		
		1	4	8	12
			# Cores	
	Fig. 11 Comparison between an average speedup obtained using mixed partitioning and
	Gecode CP solver for solving 4 Constraint Optimization Problems
	Satisfaction Problems and 4 are Constraint Optimization Problems. Using
	mixed partitioning, an average speedup of 7.74 is reached in the resolution of
	6 Constraints Satisfaction Problems using 12 cores and an average speedup
	of 7.02 is obtained for solving 4 Constraint Optimization Problems using 12
	cores.			

 Programming Problems using a Distributed Memory Architecture

	Computer(s) Number of Number of cores/ Total number of speedup
		processors	processor	cores	
	M1	2	4	8	5.04
	M1	3	4	12	5.54
	M1&M2	4	4	16	5.93
	M1&M2	4	5	20	7.02
	M1&M2	2	12	24	10.04

Table 5

 5 Average speedup for solving 6 Constraint Satisfaction Problems using a hybrid environment

	Computer(s) Number of Number of cores/ Total number of speedup
		processors	processor	cores	
	M1	2	4	8	3.3
	M1	3	4	12	3.43
	M1&M2	4	4	16	3.6
	M1&M2	4	5	20	4.89
	M1&M2	2	12	24	7.78

Table 6

 6 Average speedup for solving 4 Constraint Optimization Problems using a hybrid environment

 [START_REF] Alfonso Ferreira | Solving Combinatorial Optimization Problems in Parallel Methods and Techniques[END_REF]This work is funded by PAJERO Bpifrance project