
HAL Id: hal-01344087
https://hal.science/hal-01344087v1

Submitted on 11 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constructions and In-Place Operations for MDDs Based
Constraints

Guillaume Perez, Jean-Charles Régin

To cite this version:
Guillaume Perez, Jean-Charles Régin. Constructions and In-Place Operations for MDDs Based Con-
straints. CPAIOR 2016, May 2016, Banff, Canada. �10.1007/978-3-319-33954-2_20�. �hal-01344087�

https://hal.science/hal-01344087v1
https://hal.archives-ouvertes.fr

Constructions and In-place Operations For MDDs
Based Constraints

Guillaume Perez and Jean-Charles Régin

Université Nice-Sophia Antipolis, CNRS, I3S UMR 7271, 06900 Sophia Antipolis, France
guillaume.perez06@gmail.com, jcregin@gmail.com

Abstract. This papers extends in three ways our previous work about efficient
operations on Multi-valued Decision Diagrams (MDD) for building Constraint
Programming models. First, we improve the existing methods for transforming
a set of tuples, Global Cut Seeds or sequences of tuples into MDDs. Then, we
present in-place algorithms for adding and deleting tuples from an MDD. Finally,
we describe an incremental version of an algorithm which reduces an MDD.
We show on a real-life application that in-place operations on MDDs combined
with this incremental algorithm outperform classical operations. Furthermore, we
give some experimental results showing that the creation algorithms we propose
strongly improve upon existing ones.

1 Introduction

Table constraints are useful constraints for modeling and solving many real-world prob-
lems. They are explicitly defined by the set of elements of the Cartesian product of the
variables, also called tuples, that are allowed. The complexity of arc consistency algo-
rithm associated with table constraints mainly depends on the number of involved tu-
ples. Thus, Cheng and Yap proposed to compress the tuple set of the constraint by using
Multi-valued Decision Diagrams (MDD) leading to MDD-based constraints. They de-
signed mddc, one of the first filtering algorithms establishing arc consistency for them
[8,7]. Recently, we have presented MDD-4R, a new algorithm which improves mddc
[17]. MDD-4R proceeds like GAC-4R (an efficient arc consistency algorithm for table
constraints) and, unlike mddc, maintains the MDD during the search for a solution.
MDD-4R outperforms table constraints when the compression is effective.

MDDs can also be directly used to express complex constraints that cannot be rep-
resented by Table constraints because the number of tuples would be exponential. We
have introduced efficient algorithms for creating and reducing an MDD and some pow-
erful algorithms for combining MDDs [18]. Thanks to these new algorithms, some ex-
periments based on real-life applications have shown that the MDD approach becomes
competitive with ad-hoc approaches like the filtering algorithms associated with the
regular or the knapsack constraints. More precisely we have shown that modeling a
complex problem by a succession of operations between MDDs may be a competitive
approach with the design of a complex ad-hoc algorithm.

In this paper, we extends our work by showing that MDDs can also be used to
efficiently implement partially compressed table constraints like the ones defined by

Global Cut Seeds (GCS) or tuple sequences and by proposing some in-place algorithms
for combining MDDs in order to avoid using intermediate MDDs, and by introducing
an incremental reduction algorithm.

Table constraints can be specified either directly, by input from the user, or indirectly
by synthesizing other constraints or subproblems [15,14]. They have been reinforced in
order to deal either from tuple sets or from sequences of tuples [10,12,19]. This has two
advantages: it improves their expressiveness and it reduces the number of tuples that
are explicitly used and so decreases the practical complexity of the filtering algorithms
because they mainly depends on that number.

GCSs and tuple sequences are partial compression of table constraints. This com-
pression can be improved by transforming tables defined by GCS or tuple sequences
into MDDs. In the first part of this paper we propose such transformations and we show
that the obtained MDDs always uses less space than a set of GCS or tuple sequence for
representing the same table. We will also present the first linear algorithm for building
an MDD from a list of tuples.

Next, we consider in-place deletion and addition operations, that is operations that
do not create a new MDD. Instead they directly modify the current MDD. In-place
operations have three advantages: it avoids some memory consumption, it decreases
the computation time, and it allows the design of more efficient reduction algorithms
because they can be incremental. In this part, we show that the addition and the deletion
of one tuple from an MDD can be efficiently done by using the method which consists
of isolating the path of the MDD corresponding to the tuple in case of deletion and to the
common prefix of the tuple in case of addition. These operations make addition/deletion
operations easier on MDDs. Then, we generalize the algorithm for the addition/deletion
of a set of tuples.

After each modification of an MDD the reduction operation must be applied and
since the deletion or the addition of tuples may modify only a few nodes, we introduce
IPREDUCE an incremental version of the reduction operation which allows us to reduce
the complexity of the pair of operations formed by the modification and the reduction.

Before concluding, we present some experiments on a real life application showing
some strong improvements brought by our algorithms notably compared to the ones
previously proposed. We also empirically establish the advantages of the new creation
algorithms we propose.

2 Background

MDD. Multi-valued decision diagram (MDD) is a data structure for representing dis-
crete functions. It is a multiple-valued extension of BDDs [6]. An MDD, as used in CP
[1,13,14,3,11], is a rooted directed acyclic graph (DAG) used to represent some multi-
valued function f : {0...d − 1}r → {true, false}, based on a given integer d. Given
the r input variables, the DAG representation is designed to contain r layers of nodes,
such that each variable is represented at a specific layer of the graph. Each node on a
given layer has at most d outgoing arcs to nodes in the next layer of the graph (i.e. one
per value). We will denote by L[i] the nodes in layer i and by ω+(x) the set of outgo-
ing arcs of the node x. Each arc is labeled by its corresponding value. The final layer

is represented by the true terminal node (the false terminal node is typically omitted).
There is an equivalence between f(v1, ..., vr) = true and the existence of a path from
the root node to the true terminal node whose arcs are labeled v1, ..., vr. Nodes without
any outgoing arc or without any incoming arc are removed.

MDD constraint. In an MDD constraint, the MDD models the set of tuples satis-
fying the constraint, such that every path from the root to the true terminal node cor-
responds to an allowed tuple. Each variable of the MDD corresponds to a variable of
the constraint. An arc associated with an MDD variable corresponds to a value of the
corresponding variable of the constraint. Fig. 1 gives the MDD representing the tuples
{a,a}, {a,b}, {c,a}, {c,b} and {c,c}. For each tuple, there is a path from the root node
(node 0) to the terminal node (node tt) which is labeled by the tuple values.

Fig. 1. An MDD (left graph) and a trie (right graph) representing the tuple set
{{a,a},{a,b},{c,a},{c,b},{c,c}}

MDD reduction. The reduction of an MDD is one of the most important opera-
tions. It consists of merging equivalent nodes, i.e. nodes having the same set of outgo-
ing neighbors associated with the same labels. Usually, a reduction algorithm merges
nodes until there is no more equivalent nodes. Most of the time, only reduced MDDs
are considered mainly because they are smaller. Fig. 5 exhibits an MDD having two
equivalent nodes: b and e. These nodes will be merged by the reduction operation. Note
that the reduction operation cannot increase the number of nodes or arcs. Recently, a
new reduction algorithm with a linear space and time complexity has been proposed
[18].

For convenience, we will denote by d the maximum number of values in the domain
of a variable; and by (x, v, y) an arc from x to y labeled by v.

3 Transformations

In this section, we improve existing algorithms for building MDDs from tuple sets and
we introduce new algorithms for building MDDs from compressed tuple sets.

3.1 From trie to MDD
A trie is a data structure used by Gent et al. for compressing tuple sets [12]. Each path
from the root to a leaf represents an allowed tuple. A trie representing a set of T tuples

will have |T | leaves. Each variable corresponds to a layer of the trie. A node has a
maximum of d children, where d is the size of the domain of the corresponding variable
of the node. An example of trie is given in Fig. 1. A trie can be transformed into an
MDD by merging all the leaves into the terminal node tt and by applying the reduction
operation [7].

3.2 From table to MDD

A table is a data structure where each row represents a tuple and where each column
corresponds to a value of a variable.

Cheng and Yap build an MDD from a table by defining a trie. Tuples are succes-
sively added to the trie. First, a common node is created: the root of the trie. Then paths
starting from the root are created. The rooted subpaths common to several tuples are
merged together in order to be represented only once. Afterwards, all the leaves are
merged and the MDD is reduced. The drawback of this approach is the addition of a
tuple, because we need to compute the common subpath of the tuple and the MDD.
This operation can be performed in linear time only if we have d entries per node, so
we increase the space complexity. Alternatively, we can keep a linear space complexity
if we accept to increase the time complexity.

We propose a simple method with a linear time and space complexity: we lexico-
graphically sort the table and we build the trie from the sorted table. Here is an example:

table sorted table trie
a a c a a a a b a b a a b a b
a b a b b a a b a c c
a a b a c a a c a a c a a
a a b a b a b a a b b a a b
a b a a b a b a b b b b

This can be done efficiently because all tuples are consecutive and so there is no
need to search for any position for a tuple: the last one is always the correct one. So we
do not need the random access to children and this step can be achieved in linear time.
In addition, the sort can be performed in linear time because a tuple can be viewed as
numbers having r digits where a digit can take on up to d values. Thus we can sort a
table containing t tuples in O(r(t+ d)) by using a radix sort, which is linear in its size.
Since, the merge of the leaves and the reduction can be performed in linear time, we
obtain a linear time algorithm.

3.3 From GCS and Tuple Sequence to MDD.

Compressed tuples improve the expressiveness of table constraints and reduce the com-
plexity of the filtering algorithms. Therefore, it is interesting to represent them by
MDDs in order to reinforce the compression.

A GCS (Global Cut Seed), is a compact representation of a tuple set [10]. A GCS is
defined by a set of value sets: {{v1,1, v1,2, ..., v1,k1

}, ..., {vn,1, vn,2, ..., vn,kn
}}, where

each value set corresponds to a variable. The Cartesian product of these sets defines the

represented tuples. For instance, given D ={1,2,3,4}, the GCS c = {D,D,D,D} rep-
resents the tuple set { {1,1,1,1}, {1,1,1,2},..., {4,4,4,3}, {4,4,4,4}}. One GCS may rep-
resent an exponential number of tuples. However all the tuples cannot be compressed by
only one GCS. Two tuples can be represented by the same GCS if they have a Hamming
distance equals to 1. For instance, the tuples {1,1,1} and {1,1,2} may be compressed
into {1,1,{1,2}}. By contrast the tuples {1,1,1} and {1,2,2} have an Hamming distance
equals to 2 and so cannot be represented by only one GCS. So, the compression of a
table by a set of GCSs may require a huge number of GCSs. In order to remedy this
problem, tuple sequences have been introduced [19]. They generalize GCSs.

A tuple sequence encapsulates a GCS and two tuples: tmin a minimum tuple, and
tmax a maximum tuple. It bounds the lexicographic enumeration of the tuples of the
GCS by these two tuples. For instance, let D = {1, 2, 3, 4} then the tuple sequence s =
{{D,D,D,D}, {1, 2, 2, 2}, {3, 1, 3, 2}} represents the tuple set {{1,2,2,2}, {1,2,2,3},
..., {3,1,3,1}, {3,1,3,2}}.

Since a tuple sequence is a generalization of a GCS, a method transforming a tuple
sequence into an MDD could also be used for transforming a GCS into an MDD.

First, we propose an algorithm for representing one tuple sequence by an MDD.
Then, we will show how we can deal with several tuple sequences. Let s = (g, tmin, tmax)
be a tuple sequence. For transforming s into an MDD we introduce special nodes: wild
card nodes. There is at most one wild card node per layer i which is denoted by w[i].
The wild card nodes are linked together. All the arcs outgoing from w[i] are incoming
arcs of node w[i+ 1] and all arcs outgoing w[n− 1] are incoming arcs of tt.

The MDD representing s is built in three steps:

1. The paths corresponding to tmin and tmax are created.
2. Arcs from the nodes of the paths previously created to wild card nodes are created

as follows. Consider the path created for tmin. For each layer i, let val[i] be the
value set of g for the layer i. For each value a ∈ val[i] such that a > tmin[i]
we create an arc from the node ni of the path representing tmin to the wild card
node w[i + 1]. We repeat this process for the path created for tmax. In addition,
we add a particular treatment when a node is shared by the two initial paths: in-
stead of considering all values of val[i], we consider only the values in the interval
val[i]∩]tmin[i], tmax[i][.

3. From nodes w[i] to node w[i + 1] we add as many arcs as there are values in
val[i+ 1].

Fig. 2 shows the resulting MDD. The left graph contains the two paths representing
the minimum and maximum tuples. The right graph represents with dashed lines the
added arcs to wild card nodes. For instance, for node a each value in {1,2,3,4} greater
than 2 labels an arc to node w2. Arcs joining wild card nodes together and with tt are
represented by dotted lines.

Let r be the the number of involved variables. The number of nodes of the obtained
MDD is bounded by 3(r−1)+2. There are 2r arcs for the paths corresponding to tmin

and tmax. There are at most |val[i]| arcs from nodes of the tmin (resp. tmax) path to
wild card nodes; There are |val[i+1]| arcs from node w[i] to node w[i+1]. Thus, there
are at most 2

∑r
i=1 |val[i]| + 2r arcs in the MDD. This is equivalent to the number of

values of the tuple sequence.

Fig. 2. Creation of an MDD from a tuple sequence

Now, suppose that we have a set of tuple sequences. We can consider successively
each tuple sequence and build for each sequence an MDD with the previous algorithm.
Then, there are two possibilities. Either the tuple sequences are disjoint or not. The
former case arises frequently (for instance when the tuple sequences represent a set of
forbidden tuples). We just have to make the union of MDDs. This can be easily done
because they are disjoint. The resulting MDD has a space complexity equivalent to the
set of tuple sequences and we have:

Property 1 A set of disjoint tuple sequences can be represented by an MDD having an
equivalent space complexity.

The latter case is more complex. A set of disjoint tuple sequences may be computed
from a set of non disjoint tuple sequences and each disjoint tuple sequence can be
represented by an MDD. Nevertheless, it may create an exponential number of tuple
sequences [19] so an exponential number of MDDs.

4 Addition and Deletions of tuples from an MDD

In this section, we define in-place algorithms for the addition/deletion of tuples from
an MDD. Some work have been carried out for performing operations on BDDs. For
instance, Bryant define some algorithms for applying different operators [6,5]. How-
ever, the described algorithms are not in-place (i.e. there is the creation of a resulting
BDD) and it is not easy to generalize some algorithms designed for BDDs to MDDs
mainly because some Booleans rules are no longer true when we have d values in the
domain and because the complexity of some algorithms is multiplied by O(d) when
dealing with d values. Some generic algorithms have been proposed for applying oper-
ators on MDDs [2,18], but they are not in-place. An in-place algorithm has been given
by Ciré and Hooker [9] but it only deal with partial assignments and has no incremental
reduction.

4.1 Deletion of tuples from an MDD

First, we give an algorithm for deleting one tuple from an MDD. Then, we generalize it
for a set of tuples.

Fig. 3. Tuple {0,0,0} is removed from the left MDD. The isolation of the path corresponding to
the tuple is performed (middle MDD) and then the reduction is applied (right MDD). Nodes aI
and bI are created from nodes a and b during the path isolation.

The deletion of a tuple τ from an MDD is based on an operation named path isola-
tion, which is a kind of local decompression. The idea is to build a specific path whose
arcs are labeled by the values of τ . Furthermore, arcs equivalent to the ones of the iso-
lated path are deleted from the MDD. After the isolation process, the MDD is reduced.
Let τ [i] be the value for the variable x[i]. The isolation is performed in 3 steps:
Step 1. We identify a1 = (root, τ [1], n1) the arc of the first layer labeled by τ [1] the
first value of the tuple. We create the node ne1, the arc (root, τ [1], ne1) and we delete
the arc a1. We set xmdd (a node of the MDD) to n1 and xpath (an isolated node) to ne1.
Step 2. For each layer i from 2 to r − 1 we repeat the following operation. We iden-
tify ai = (xmdd, τ [i], ni+1) the outgoing arc from xmdd labeled with τ [i]. We create
the node nei+1 and the arc (xpath, τ [i], nei+1). For each arc (xmdd, w, y) such that
w 6= τ [i] we create the arc (xpath, w, y). We set xmdd to ni+1 and xpath to nei+1.
Step 3. For each arc (xmdd, w, tt) such that w 6= τ [r] we create the arc (xpath, w, tt).

If at any moment we cannot identify an arc then it means that τ does not belong to
the MDD. Fig. 3 shows the application of this algorithm. The complexity of the deletion
of a tuple is bounded by O(rd) because for each isolated node we need to recreate its
arcs. However, in practice it is often close to O(d).

Deletion of a set of tuples. We propose a better method than repeating the previous al-
gorithm for each tuple. We transform the set of tuples into an MDD and we subtract this
new MDD from the initial one by following the same steps of the previous algorithm.
We isolate nodes having a common path in both MDDs, then we remove the common
arcs to the isolated nodes of the second last layer. At last, we call the incremental re-
duction algorithm.

Fig. 4. The left MDD represents all the possible tuples for the values {0,1,2,3}. The right MDD
represents the deletion of the GCS {1,{0,1,2,3},1} from the left MDD.

Fig. 4 shows the subtraction of the GCS {1,{0,1,2,3},1} from the MDD representing
all the tuples possible for the values {0,1,2,3}. The GCS is isolated from the MDD.
Then, the deletion of the arc labeled 1 of node d correspond to the deletion of only the
tuples contained in the GCS. It is difficult to bound the complexity of the deletion of T
tuples, because the MDD created from them may compress the information.

4.2 Addition of tuples to an MDD

The addition of tuples into MDD follows the same principles as for the deletion. In
this case, the isolated path contains arcs labeled by the values of the tuple that must be
added. It is performed by applying the same steps as for the deletion.

First, we consider the addition of one tuple τ . The two first steps are very similar to
the ones of the deletion. Excepted that at a point, there will be no more path in the MDD
having the same subpath as τ . Otherwise, it would mean that τ is already in the MDD.
Thus, at a certain moment we will not be able to identify any arc (xmdd, τ [i], ni+1) as
in step 2 in the deletion algorithm. When this case arises we can stop step 2 and directly
create the path from the current isolated node to the terminal node. This path will be
labeled by the values of τ for the remaining layers. Step 3 can be skipped. At last, we
call the incremental reduction algorithm. The complexity of the addition of a tuple is in
O(rd) because for each isolated node we need to recreate its arcs.

Addition of a set of tuples. Let mdd1 be the initial MDD. We transform the set of
tuples into an MDD, named mdd2. We add mdd2 to mdd1 by following the same steps
as for the previous algorithm. We isolate nodes having a common path in both MDDs.
When an arc belongs tomdd2, we create an isolated node and we create an arc from the
current isolated node to it. When an arc belongs only to mdd1, we create an arc from
the current isolated node to the node in mdd1.

Fig. 5 shows the effect of the addition of the tuple {1,2,1} in the MDD given in
Fig. 4. We can see the usefulness of the path isolation for avoiding the addition of the

Fig. 5. The right MDD represents the addition of the tuple {1,2,1} to the left MDD, before the
reduction.

tuples {1,{0,1,3},1}. The right MDD shows the impact of the reduction on the MDD:
nodes e and b are merged because they have the same outgoing arcs. It is difficult to
bound the complexity of the addition of T tuples, because the MDD created from them
may compress the information.

Algorithm 1 is a possible implementation of the in-place deletion and addition op-
erations.

4.3 Incremental Reduction

A reduction step is needed after the deletion/addition of tuples. Using a generic al-
gorithm is costly because it will traverse all the nodes of the MDD and merge the
equivalent ones. Since we consider that we add/delete tuples from an MDD which is
reduced we can save some computations for the reduction applied after the operation.
Only certain nodes have to be considered:

Property 2 After the application of an in-place operator, if two nodes are merged then
one of these nodes must be an isolated node.

proof: Two nodes are merged if and only if they have the same set of outgoing neigh-
bors associated with the same labels. Before the operation the MDD is reduced, so no
two pairs of nodes can be merged. By induction from the terminal node to the root we
prove the property: it is obvious for two nodes of the last layer. Then, from the defini-
tion of the path isolation, if a merge exists then it necessarily involved an isolated node
because it was not possible to merge nodes of the MDD existing before the operation. �

Thus, we can easily adapt PREDUCE algorithm [18] by rejecting a pack of nodes if
it does not involve any isolated node. In addition, it is easy to identify isolated nodes
because they belong to the list L of the in-place algorithms. The advantage of this
approach is that the reduction step does not increase the complexity of the addition or
deletion operations. This new algorithm is named IPREDUCE.

Algorithm 1: In-place Deletion and Addition Algorithms
DELETION(L,mdd1,mdd2)

for each (root(mdd1), v, y1) ∈ ω+(root(mdd1)) do
if ∃(root(mdd2), v, y2) ∈ ω+(root(mdd2)) then

ADDARCANDNODE(L, 1, root(mdd1), v, y1, y2)
DELETEARC(root(mdd1), v, y1)

for each i ∈ 1..r − 2 do
L[i]← ∅
for each node x ∈ L[i− 1] do

get x1 and x2 from x = (x1, x2)
for each (x1, v, y1) ∈ ω+(x1) do

if ∃(x2, v, y2) ∈ ω+(x2) then
ADDARCANDNODE(L, i, x, v, y1, y2)

else CREATEARC(L, i, x, v, y1)

for each node x ∈ L[r − 1] do
get x1 and x2 from x = (x1, x2)
for each (x1, v, tt) ∈ ω+(x1) do

if 6 ∃(x2, v, y2) ∈ ω+(x2) then
CREATEARC(L, r, x, v, tt)

IPREDUCE(L)

ADDITION(L,mdd1,mdd2)
for each v ∈ ω+(root(mdd1)) ∪ ω+(root(mdd2)) do

if ∃ (root(mdd1), v, y1) ∈ ω+(root(mdd1)) then
if ∃ (root(mdd2), v, y2) ∈ ω+(root(mdd2)) then

ADDARCANDNODE(L, 1, root(mdd1), v, y1, y2)
DELETEARC(L, i, root(mdd1), v, y1)

else ADDARCANDNODE(L, 1, root(mdd1), v, nil, y2)

for each i ∈ 1..r − 2 do
L[i]← ∅ for each node x ∈ L[i− 1] do

get x1 and x2 from x = (x1, x2)
// If x1 is nil then ω+(x1) is empty
for each v ∈ ω+(x1) ∪ ω+(x2) do

if ∃ (x1, v, y1) ω+(x1) then
if ∃ (x2, v, y2) ∈ ω+(x2) then

ADDARCANDNODE(L, i, x, v, y1, y2)

else CREATEARC(L, i, x, v, y1)

else ADDARCANDNODE(L, i, x, v, nil, y2)

for each node x ∈ L[r − 1] do
// If x1 is nil then ω+(x1) is empty
for each v ∈ ω+(x1) ∪ ω+(x2) do

CREATEARC(L, i, x, v, tt)

IPREDUCE(L)

ADDARCANDNODE(L, i, x, y1, v, y2)
if 6 ∃y ∈ L[i] s.t. y = (y1, y2) then

y← CREATENODE(y1, y2)
add y to L[i]

CREATEARC(x, v, y)

5 Experiments

The algorithms have been developed on top of or-tools 3158, a constraint programming
solver developed by Google. The experiments have been executed on a MacBook Pro
(Intel Core I7, 2.3GHz, 8GB memory).

Real life application. We consider the problem given in [16] which deals with Markov
Sequence Generations on corpus having more than 10,000 words. The goal is to gen-
erate phrases having 24 words where all successions of 4 words come from the corpus
and where there is no sequence of more than 8 words coming from the corpus. This
problem can be modeled by using MDDs expressing sequences of words [18]. Values
of variables are words of the corpus, so we have a huge number of values. From an
initial MDD representing allowed sequences of 4 words, 20 intersections of MDDs are
performed until obtaining mddr the final MDD. The main issue with this approach is
the size of the MDDs because mddr has 1,208,219 nodes and 188,035,203 arcs. With
the operators given in [18] were able to computemddr in 425s. This requires to perform
20 intersections and 20 reductions of huge MDDs.

In this problem, twice a deletion followed by a reduction of the MDD are made. The
results are given in the table below. Times are expressed in seconds. In the “Classic”
columns, the algorithms given in [18] are used whereas the algorithm proposed in this
paper are used in the “In-place” columns. These results clearly show the advantage of
using the new algorithms. Using in-place algorithms instead of building intermediate
MDDs reduces the memory consumption of the resolution of the whole problem from
52GB to 32GB.

Classic In-place
deletion reduction total deletion reduction total

First Operation 2 1.7 3.7 1.3 0.9 2.2
Second Operation 23.9 14.6 38.5 1.5 6.3 7.8

Operations and Reduction We propose to compare the performance of the classical
and the in-place algorithms and the performance of the classical and the incremental
reduction algorithms. We use random instances obtained from the real life instances.
The first number corresponds to the number of the tuples represented by the MDD
whereas the second number is the number of tuples that are removed from the MDD.
Table 1 gives the results we obtain. Our algorithms clearly improve the previous ones.

Classic In-place
instances deletion reduction deletion reduction
30*300K-300K 35,4 4.2 24.8 1.8
300K - 1K 5.3 0.7 1.2 0.6
90K-30K 2.1 0.2 1.6 0.2
300K-10 4.7 0.6 0.002 0.2

Table 1. Arity 12, domain size 10. Average deletion time (s) for random instances.

We also proposes a table summarizing the advantages of the different algorithms.
We add results for the BDD and MDD packages proposed in [20,4] (See column Bryant).
“P&R15” represents the results we previously obtained and “in-place” column cor-
responds to the new algorithms. Table 2 gives some resultats for MDD representing
10,000s tuples. Note that huge MDD are not tractable with some old methods.

#tuples #deleted Bryant P&R15 in-place
20000 1000 159 11.5 6
40000 2000 291 40 21
40000 20000 663 51 33
80000 40000 2643 174 114
40000 10 466 185 19

Table 2. Arity 12, domain size 10. Average deletion time (ms) for random instances.

From tables to MDDs We study the performance of the new creation algorithms. The
times for sorting the elements are included into our results. First, we tested our al-
gorithm on the instances of the XCSP competition. We give the results for the most
representative ones. Sorted creation corresponds to our algorithm, unsorted creation is
the classical creation.

instances creation
sorted (ms) unsorted (ms)

crossword-m1c-ogd 31.5 66.2
crossword-m1c-uk-vg 9.6 23.1
nonogram-gp 25.1 34.5
rand-10-60-20-30 70.9 179.9
bdd-21-2713 8.1 11.6
bdd-21-133 98.23 122.3

These experiments show that it is always better to sort the table and use our creation
algorithm.

On the other hand, we tested both algorithms on random instances. We have tested
instances having 22 variables, 1,000 tuples and we increased the domain size. The re-
sults given in Fig. 6 show that the domain size does not influence the creation time. We
can see that even if we increase the number of tuples or the number of variables, our
creation algorithm outperforms the existing one. We have also tested instances for all
the combinations with domain size in the set {2, 4, 8, 12, 20, 25, 30, 45, 60}, arity in the
set {6, 10, 14, 18, 22, 25, 30} and number of tuples in the set{30, 100, 150, 200, 250,
300, 500, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 7500, 10000, 12500, 15000,
17500, 20000, 24000, 28000, 30000}. For all these cases, our method was better.

Fig. 6. Sorted vs unsorted creation

6 Acknowledgments.

We would like to thank very much Laurent Perron and Christophe Lecoutre for their
useful comments which helped to improve the paper

7 Conclusion

We have given an algorithm for transforming tuple sets, GCS and tuple sequences into
an MDD. Then, we have described efficient in-place algorithms for adding or delet-
ing tuples from an MDD. These algorithms are based on the idea of path isolation.
Furthermore, we have introduced a simple modification of the PREDUCE algorithm for
improving the reduction of an MDD when it is used after an in place operation. We have
experimentally shown on a real life application, on a set of benchmarks and on random
problems that the algorithms we propose outperform the existing ones.

References

1. Henrik Reif Andersen, Tarik Hadzic, John N. Hooker, and Peter Tiedemann. A constraint
store based on multivalued decision diagrams. In CP, pages 118–132, 2007.

2. D. Bergman, A. Cire, and W-J. van Hoeve. Mdd propagation for sequence constraints. Jour-
nal of Artificial Intelligence Research, 50:697–722, 2014.

3. David Bergman, Willem Jan van Hoeve, and John N. Hooker. Manipulating mdd relaxations
for combinatorial optimization. In CPAIOR, pages 20–35, 2011.

4. Karl S Brace, Richard L Rudell, and Randal E Bryant. Efficient implementation of a bdd
package. In Proceedings of the 27th ACM/IEEE design automation conference, pages 40–45.
ACM, 1991.

5. R. E. Bryant. Symbolic boolean manipulation with ordered binary decision diagrams. ACM
Computing Surveys, 24(3):293–318, 1992.

6. Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, C35(8):677–691, 1986.

7. K. Cheng and R. Yap. An mdd-based generalized arc consistency algorithm for positive and
negative table constraints and some global constraints. Constraints, 15:265–304, 2010.

8. Kenil C. K. Cheng and Roland H. C. Yap. Maintaining generalized arc consistency on ad
hoc r-ary constraints. In CP, pages 509–523, 2008.

9. André A. Ciré and John N. Hooker. The separation problem for binary decision diagrams.
In International Symposium on Artificial Intelligence and Mathematics, ISAIM 2014, Fort
Lauderdale, FL, USA, January 6-8, 2014, 2014.

10. F. Focacci and M. Milano. Global cut framework for removing symmetries. In Proc. CP’01,
pages 77–92, Paphos, Cyprus, 2001.

11. G. Gange, P. Stuckey, and Radoslaw Szymanek. Mdd propagators with explanation. Con-
straints, 16:407–429, 2011.

12. I. Gent, C. Jefferson, I. Miguel, and P. Nightingale. Data structures for generalised arc con-
sistency for extensional constraints. In Proc. AAAI’07, pages 191–197, Vancouver, Canada,
2007.

13. Tarik Hadzic, John N. Hooker, Barry O’Sullivan, and Peter Tiedemann. Approximate com-
pilation of constraints into multivalued decision diagrams. In CP, pages 448–462, 2008.

14. Samid Hoda, Willem Jan van Hoeve, and John N. Hooker. A systematic approach to mdd-
based constraint programming. In CP, pages 266–280, 2010.

15. Olivier Lhomme. Practical reformulations with table constraints. In ECAI, pages 911–912,
2012.

16. A. Papadopoulos, P. Roy, and F. Pachet. Avoiding plagiarism in markov sequence generation.
In Proceeding of the Twenty-Eight AAAI Conference on Artificial Intelligence, pages 2731–
2737, 2014.

17. G. Perez and J-C. Régin. Improving GAC-4 for table and MDD constraints. In Principles
and Practice of Constraint Programming - 20th International Conference, CP 2014, Lyon,
France, September 8-12, 2014. Proceedings, pages 606–621, 2014.

18. G. Perez and J-C. Régin. Efficient operations on mdds for building constraint programming
models. In International Joint Conference on Artificial Intelligence, IJCAI-15, pages 374–
380, Argentina, 2015.

19. J-C. Régin. Improving the expressiveness of table constraints. In CP’11, proceedings work-
shop ModRef’11, 2011.

20. Arvind Srinivasan, Timothy Ham, Sharad Malik, and Robert K Brayton. Algorithms for
discrete function manipulation. In Computer-Aided Design, 1990. ICCAD-90. Digest of
Technical Papers., 1990 IEEE International Conference on, pages 92–95. IEEE, 1990.

	Constructions and In-place Operations For MDDs Based Constraints

