
Efficient Operations On MDDs For Building Constraint Programming Models

Guillaume Perez and Jean-Charles Régin
Université Nice-Sophia Antipolis, I3S UMR 7271, CNRS, France

guillaume.perez06@gmail.com; jcregin@gmail.com

Abstract

We propose improved algorithms for defining the
most common operations on Multi-Valued Deci-
sion Diagrams (MDDs): creation, reduction, com-
plement, intersection, union, difference, symmetric
difference, complement of union and complement
of intersection. Then, we show that with these algo-
rithms and thanks to the recent development of an
efficient algorithm establishing arc consistency for
MDD based constraints (MDD4R), we can simply
solve some problems by modeling them as a set of
operations between MDDs. We apply our approach
to the regular constraint and obtain competitive re-
sults with dedicated algorithms. We also experi-
ment our technique on a large scale problem: the
phrase generation problem and we show that our
approach gives equivalent results to those of a spe-
cific algorithm computing a complex automaton.

1 Introduction
MDDs become more and more used in constraint program-
ming. The recent development of MDD4R, an efficient and
fully incremental arc consistency algorithm [Perez and Régin,
2014], seems to show that MDD constraints are competitive
with Table constraints. We can see a table constraint as a set
of disjoint paths (each path corresponding to a tuple) that are
preceded by an initial node and whose last node is linked to a
terminal node, that is as a particular MDD which is not com-
pressed. The compression process may dramatically reduce
the size of the underlying graph and so the complexity of the
arc consistency algorithm maintaining it.

In this paper, we aim at showing that we can expect to di-
rectly use MDDs with the help of MDD4R for establishing
arc consistency of some complex constraints like the regu-
lar constraint or constraints based on dynamic programming
like the knapsack constraint. We propose to explicitly create
and work with MDDs instead of dedicated algorithms associ-
ated with the constraints. The advantage of dealing directly
with MDDs is that they are always reduced after their creation
so MDD4R may outperform dedicated algorithms, which do
not perform this operation. Currently, the complexity of the
existing algorithms prevents us from using them for solving

some problems. For instance, phrase generation problem in-
volves domains having more than d = 10, 000 values. Thus,
we cannot use an algorithm whose time or space complexity
is mainly based on Ω(nd), where n is the number of nodes
of the MDDs. Therefore, we need to improve the algorithms
performing the main operations on MDDs: creation, reduc-
tion and combinations.

The new creation algorithm we propose, exploits the origin
of the definition of the MDD. If the MDD represents an au-
tomaton (like with a regular constraint) or a repeated pattern
(like with dynamic programming), then its creation may be
sped-up.

Then, we introduce PREDUCE a new algorithm for reduc-
ing an MDD, i.e. eliminating nodes that are not lying on a
path from the initial node to the terminal node. Our algorithm
proceeds by layers and uses a simple an original procedure for
gathering equivalent nodes in order to keep the time complex-
ity in the size of the neighborhood of nodes instead of being
bounded by Ω(d). This new algorithm improves the Cheng
and Yap’s one [Cheng and Yap, 2010]. It is also conceptually
simpler.

At last, we present a generic algorithm for computing basic
combinations of MDDs. Our algorithm is based on graph op-
erations that are made on the underlined graph of the MDDs.
Each combination, such as intersection, union, difference,
symmetric difference, is defined by applying a specific op-
eration for each node of the MDDs depending on the fact that
two nodes have an arc labeled by a value or not. In that way,
we obtain a really short and powerful algorithm. Then by
defining some operations for each node of each layer we in-
stantiate our generic algorithm and compute the desired com-
bination.

Before concluding, we present some experiments showing
some strong improvements brought by our algorithms. In par-
ticular, we show that we can gain orders of magnitude for the
reduction of MDDs and that we are able to compute a dozen
of intersections of MDDs having millions of nodes, hundreds
millions of arcs and ten thousand values. Then, the appli-
cation of MDD4R on MDDs leads to computational times
equivalent to those of dedicated algorithms.

2 Background
Multi-valued decision diagram (MDD) is a method for rep-
resenting discrete functions. It is a multiple-valued exten-

Mdd before reduction Mdd after reduction

Figure 1: Reduction of an MDD. Nodes without successors
are deleted (e.g. node 4). Equivalent nodes are merged (e.g.
nodes 3 and w2).

sion of BDDs [Bryant, 1986]. An MDD, as used in CP [An-
dersen et al., 2007; Hadzic et al., 2008; Hoda et al., 2010;
Bergman et al., 2011; Gange et al., 2011], is a rooted di-
rected acyclic graph (DAG) used to represent some multi-
valued function f : {0...d − 1}r → {true, false}, based
on a given integer d (See Figure 1.). Given the r input vari-
ables, the DAG representation is designed to contain r layers
of nodes, such that each variable is represented at a specific
layer of the graph. Each node on a given layer has at most d
outgoing arcs to nodes in the next layer of the graph. Each
arc is labeled by its corresponding integer. The final layer
is represented by the true terminal node (the false terminal
node is typically omitted). There is an equivalence between
f(v1, ..., vr) = true and the existence of a path from the
root node to the true terminal node whose arcs are labeled
v1, ..., vr. Nodes without any outgoing arc or without any
incoming arc are removed.

In an MDD constraint, the MDD models the set of tuples
satisfying the constraint, such that every path from the root to
the true terminal node corresponds to an allowed tuple. Each
variable of the MDD corresponds to a variable of the con-
straint. An arc associated with an MDD variable corresponds
to a value of the corresponding variable of the constraint.

We will denote by L[i] the nodes in layer i and by ω+(x)
the set of outgoing arcs of the node x.

3 Creation
Some constraints like table, regular or knapsack may be ex-
plicitly represented by an MDD. The advantage of this ap-
proach is that the MDD is reduced after its creation and arc
consistency algorithms may benefit from its reduction. The
drawbacks are the time for creating the MDD and the com-
plexity of the filtering algorithm. We will present later some
experiments showing that MDD4R is competitive with dedi-
cated algorithms. Now, we propose to show how the creation
may be accelerated.

Cheng and Yap [Cheng and Yap, 2010] have proposed an
algorithm for creating an MDD from a table contraint. In this
case, a trie data structure is created and it is reduced in order
to obtain an MDD. We introduce two new ways for creating

an MDD: from an automaton and from a pattern.
Creation from an automaton. The regular constraint [Pe-

sant, 2004] deals with an automaton from which it deduces
the allowed tuples. It corresponds to a set of ternary transi-
tion constraints [Beldiceanu et al., 2004]: T (δ,Qi, xi, Qi+1),
where δ is a common transition function, Qi and Qi+1 two
state variables and xi a variable. A transition constraint de-
fines for which values of xi we can go from a state q to a state
q′. Note that δ is a function, so there is only one value of q′
for a couple (v, q) with v ∈ xi and q ∈ Qi. First, we create
the nodes. Each layer i is associated with the variable Qi and
has as many nodes as there are possible states. Each node of
the layer i corresponds to a pair (Qi, q) where q is a possible
state. Thus, for each tuple (q1, v, q2) satisfying the transi-
tion constraint we create for each layer i, an arc from node
(Qi, q1) to node (Qi+1, q2) labeled by v. If i = r then all
nodes (Qi+1, q2) represent the true terminal node. Note that
we do not need to know all tuples before creating the MDD.

It is important to remark that each layer of the MDD cannot
have more arcs than the number of tuples in the transition
constraint. So, using explicitly an MDD does not introduce
any additional cost if the arc consistency algorithms of the
ternary constraints do not share a global transition table.

Creation from a pattern. In some cases, the transition
constraint depends on the variables it involves and Function
δ is not globally shared. Precisely we have a δi function for
each layer i. The layers are built successively by applying
the transition constraint. Each node of the MDD is associ-
ated with an information that depends on the layer. For in-
stance for the knapsack constraint [Trick, 2003], the informa-
tion corresponds to the current value of the sum from the root
to the current node (every path to the node leads to the same
value). This information can be a scalar but also be more
complex. Note that we may have an exponential number of
nodes. However, only one layer in memory is sufficient for
building the MDD.

4 Reduction
The reduction of an MDD is one of the most important op-
erations. It consists of merging equivalent nodes, i.e. nodes
having the same set of outgoing neighbors associated with the
same labels. Figure 1 gives an example of reduction.

A reduction algorithm for BDDs has been given by Bryant
[Bryant, 1986]. It proceeds by layer from the bottom to the
top, considers each node x successively and tries to find an-
other node x′ that can be merged with it. It has a time com-
plexity in O(n log(n)) for a BDD having n nodes. We could
adapt it for MDDs by associating with each node its list of
neighbors. Note that the neighbor of a node can be seen as a
couple (node, label). Then, by ordering the neighbors lists,
we can maintain an ordered list of nodes. At the beginning
the list of nodes contains all nodes and then we reduce it
by merging nodes having the same list of neighbors. If we
have n nodes then the complexity of this algorithm will be
in O(n log(n)d) because the comparison is in O(d) for an
MDD.

Cheng and Yap [Cheng and Yap, 2010] have proposed an-
other algorithm (mddify) that also considers the nodes suc-

cessively and searches for merging nodes. However, it pro-
ceeds differently than Bryant’s algorithm in order to improve
the complexity. It uses a dictionary for speeding up the search
for a similar node of a given node. Chang and Yap do not
detail their algorithm and claim that the search for a similar
node can be computed in O(d). There are two ways for im-
plementing such a dictionary that deserves some attention: by
a radix tree or by an hash table.

First, consider a radix tree and that l is the length of a string
and k the size of the alphabet. If we want an O(l) complexity
then we need to be able to traverse the tree from the root to
a leaf in O(l). Since the tree may have a depth equal to l it
means that we need a random access to any child of a node.
This can be achieved by associating an array of size k with
each node of the radix tree. Thus, the space complexity for
such a tree having p nodes is in O(pk). It is not straightfor-
ward to use a radix tree for our problem because the neighbor
of a node is defined by a couple (v, y) where v is the label
(i.e. the value) and y the other extremity of the arc. For in-
stance, the arcs (x1, v, y1) and (x2, w, y1) prevent the nodes
x1 and x2 from being merged. Similarly, we have the same
result for the arcs (x1, v, y1) and (x2, v, y2). A workaround
consists of associating an array of d values with each node of
the MDD. An entry v of this array corresponds to the node
that can be reached with an arc labeled by v, or to nil if there
is none. This array defines the string of a node. The number
of possible letters becomes the number of nodes of the con-
sidered layer. Thus, by using a radix tree we can search for
a similar node in O(d) with an O(pr) space complexity, if
the radix tree has p nodes. Unfortunately, this can prevent us
from using this algorithm because the search is in Ω(d) and
not in the number of neighbors.

The second possibility is to use an hash table. In this case
we cannot ensure to reach an O(d) time complexity but we
can expect the search in the table to be close to O(1) once the
hash code of the key has been computed, which is in O(d).
Such a result can be obtained by using a table whose size is
greater than n when n elements are involved. The drawback
of this approach in practice is that it may be time consuming
to compute an efficient hash code or we need a large table.

4.1 pReduce Algorithm
We propose PREDUCE, a new algorithm whose time com-
plexity per node is bounded by its number of neighbors and
not by the number of values per domain. In addition, it does
not increase the memory consumption of the MDD. Instead
of checking for each node whether it can be merged or not,
we propose to consider all nodes of a layer as a whole and
to build a general data structure. Then, we will compute the
nodes of that layer that can be merged together. We assume
that we want to merge the nodes of given layer i. Let L[i]
be this node set. The main idea is to consider the neighbors
of nodes in L[i] by their order of appearance in the neighbor-
hood list. We will denote by neigh[x][k] the kth neighbor
of node x, that is a couple (v, y) where v is a value and y a
node. We will also denote by node(c) (resp. value(c)), the
node (resp. the value) of the couple c. Then, we work by
considering the positions in the neighborhood list and build
the sets of nodes having a common prefix (i.e. ordered neigh-

bors) and we split them until a set becomes a singleton or all
the neighbors have been considered.

Algorithm 1 pReduce of an MDD.
PREDUCE(L)

define VA, NA, Vlist, Nlist

for each i from r − 1 to 0 do
REDUCELAYER(L[i], VA, NA, Vlist, Nlist)

REDUCELAYER(Layer, VA, NA, Vlist, Nlist)
delete nodes without outgoing neighbors
define the pack p with Layer, ∅, 0
Q← ∅
REDUCEPACK(p, VA, NA, Vlist, Nlist, Q)
while Q 6= ∅ do

pick and remove p from Q
REDUCEPACK(p, VA, NA, Vlist, Nlist, Q)

REDUCEPACK(p, VA, NA, Vlist, Nlist, Q)
i← pos(p)
for each x ∈ p do

v ← value(neigh[x][i+ 1])
if VA[v] = ∅ then add v to Vlist
add x to VA[v]

for each v ∈ Vlist do
for each x ∈ VA[v] do

y ← node(neigh[x][i+ 1])
if NA[y] = ∅ then add (v, y) to Nlist

add x to NA[y]

VA[v]← ∅
for each (v, y) ∈ Nlist do

if |NA[y]| > 1 then
define a pack p′ with ∅, (v, y), i+ 1
M ← {x ∈ NA[y]/|N(x)| = i+ 1}
merge all elements of M together
add NA[y]−M to p′; add p′ to Q

NA[y]← ∅
Nlist ← ∅

Vlist ← ∅

We introduce the notion of pack. Intuitively, a pack
contains all the nodes having the same k first neighbors (i.e.
prefix). Formally, a pack p is the set of nodes of the layer l
associated with a position, denoted by pos(p) and a set of
pos(p) couples (node,value), denoted by couple(p, i) with
i = 1..pos(p) such that
x ∈ p⇔ ∀i = 1..pos(p) : neigh[x][i] =couple(p, i).

Then, we immediately have:

Property 1 Given x1, x2 ∈ L with |N(x1)| = |N(x2)|.
Then, x1 and x2 can be merged if and only if ∃ pack p with
x1 ∈ p, x2 ∈ p and pos(p) = |N(x1)|

We can also note that if a pack contains only one node then
this node cannot be merged with any node. We will denote
by |p| the number of nodes contained in p.

Figure 2: MDD operands. mdd1 ∩mdd2 is given in Fig 1.

The computation of packs can be done by splitting other
packs. A pack p can be divided into a set S(p) of disjoint
packs. Let i be the position of p, we will build a new pack
for each different value of neigh[x][i + 1] with x ∈ p and
we will add a node y ∈ p to the pack p′ with neigh[y][i +
1] =couple(p′, i+ 1).

Algorithm 1 is a possible implementation of this operation.
It uses VA and NA two arrays of sets in order to perform the
split operation on a pack p in O(|p|). Array VA is indexed by
the values and array NA is indexed by the nodes. Note that
these two arrays contain only empty sets at the beginning and
at the end of the operation. It also uses Vlist and Nlist two
lists of elements that are used to save the entries that are not
empty in the arrays. At the end of the algorithm the lists are
empty. Algorithm 1 has two phases. First, it splits the current
pack p into the array of sets VA according to the value label-
ing the neighbor at position pos(p) + 1. The second phase
considers each set computed in the first phase and splits its el-
ements into the array of sets NA according to the terminating
node of the arcs. The algorithm also modifies the computed
sets in order to detect nodes that can be merged and to define
packs and put them into the queue Q. The time complexity
of this algorithm depends only on the number of neighbors of
a node, because thanks to the lists we never reach an empty
array. In addition each arc is traversed only twice: one for
the value and one for the node. The space complexity is in
O(n+ d).

The reduction of the whole MDD is made by applying a
BFS from the bottom to the top and by calling Function RE-
DUCELAYER for each layer with L the list of nodes to merge
as parameter.

5 A Generic Apply Function
In a way similar as Bryant in his paper about BDDs we pro-
pose to define efficient algorithms for combining MDDs. An
algorithm for computing the intersection of two MDD has
been proposed in [Bergman et al., 2014].

We present a general algorithm defining several opera-
tors. From the MDDs mdd1 and mdd2 it computes mddr =
mdd1 ⊕ mdd2, where ⊕ is union, intersection, difference,
symmetric difference, complementary of union and comple-
mentary of intersection. In addition, we give an efficient al-
gorithm for computing the complementary of an MDD.

Our algorithm is generic and mainly based on the possi-
ble combinations of labeled arcs. It proceeds by associat-
ing nodes of the two MDDs. Each node x of the resulting
MDD is associated with a node x1 of the first MDD and a
node x2 of the second MDD. So, each node of the result-
ing MDD can be represented either by an index, or by a pair
(x1, x2). First, the root is created from the two roots. Then,
we build successively the layers. From the nodes of layer
i− 1 we build the nodes of layer i as follows. For each node
x = (x1, x2) of layer i − 1, we consider the arcs outgoing
from nodes x1 and x2 and labeled by the same value v. We
recall that there is only one arc leaving a node x with a given
label. Thus, there are four possibilities depending on whether
there are y1 and y2 such that (x1, v, y1) and (x2, v, y2) exist
or not. The action that we perform for each of these pos-
sibilities will define the operation we perform for the given
layer. For instance, a union is defined by creating a node
y = (y1, y2) and an arc (x, v, y) each time one of the arcs
(x1, v, y1) or (x2, v, y2) exists. An intersection is defined by
creating a node y = (y1, y2) and an arc (x, v, y) when both
arcs (x1, v, y1) and (x2, v, y2) exist. Thus, these operations
can be simply defined by expressing the condition for creat-
ing a node and an arc.

Algorithm 2 Complementary Operation.
COMPLEMENTARY(L,mdd1, V)

// L[i] is the set of nodes in layer i.
root← CREATENODE(root(mdd1))
L[0]← {root}
for each i ∈ 1..r − 1 do

L[i]← ∅
for each node x ∈ L[i− 1] do

get x1 from x = (x1, nil)
for each v ∈ V [i] do

if ∃(x1, v, y1) ∈ ω+(x1) then
ADDARCANDNODE(L, i, x, v, y1, nil)

else
MANAGEWILDCARDPATH(i, w)
CREATEARC(L, i, x, v, w[i])

L[r]← t
for each node x ∈ L[r − 1] do

get x1 from x = (x1, nil)
for each v ∈ V [r] do

if 6 ∃(x1, v, y1) ∈ ω+(x1) then
CREATEARC(L, i, x, v, t)

PREDUCE(L)
return root

In order to define more operations we need to extend this
idea in two ways. First, we need to be able to deal with the
absence of both arcs and, then, we need to make a special
treatment for the last layer. A good example for understand-
ing these needs is the definition of the complementary of a
set. In this case, we need to create an arc in mddr when there
is no arc in mdd1. Consider a node x1. If there is no arc

labeled by v outgoing from x1 then such an arc must be in
mddr the complementary of mdd1. How can we define this
arc, because it has no terminating node? For answering this
question we create a single particular node for each layer i:
the wild-card node denoted byw[i] and we use it when a node
is needed. This means that when there is no arc (x1, v, y1) for
the couple (x1, v) then we create the arc (x, v, w[i]) inmddr.
In addition we link together wild-card nodes of consecutive
layers with all possible values by creating arcs of the form
(w[i], v, w[i+ 1]) for each value v. Consider for instance the
MDD defined from the tuples (a, a, a), (b, b, b) and (c, c, c).
The complementary MDD contains the tuples (a, {b, c}, ∗)
which belong to the complement of (a, a, a). Thus, we have
a link from xa, the node reached from the root by the arc
labeled a, to the wild-card node w[2] with b and c as label.
However, tuple (a, a, {b, c}) is also in mddr. Thus, we also
need to represent the arc (x1, a, y1) ofmdd1 inmddr. There-
fore, if there is an arc in mdd1, then mddr must also contain
the same arc. However, this cannot be true for the last layer;
otherwise mdd1 would be included in mddr. For this layer
we should not represent an arc belonging to the initial MDD.
Therefore, specific rules of arc creations must be applied for
the last layer. Algorithm 2 is a possible implementation of
this operation.

The generic algorithm we propose is defined by the
application or not of a procedure adding a node and creating
an arc for the four possible cases of arc existence. Function
APPLY, given in Algorithm 3 takes as parameters the two
MDDs and two arrays op and V having as many elements
as layers. For each layer i, op[i] contains 4 entries, each
one representing the fact that we create an arc or not for
a combination of arc existence in the two MDDs and V [i]
represents the set of values needed by the complementary
set. If it is equal to nil then V [i] will be equal to the union
of the values of the neighbors of the considered nodes. The
values of op[i] defining the binary operations are defined as
follows for the different combinations:

op[0] op[1] op[2] op[3]
¬a1 ∧ ¬a2 ¬a1 ∧ a2 a1 ∧ ¬a2 a1 ∧ a2

layer [1..r-1] r [1..r-1] r [1..r-1] r [1..r-1] r
A ∩B F F F F F F T T
A ∪B F F T T T T T T
A−B F F F F T T T F
A∆B F F T T T T T F
A ∪B T T T F T F T F
A ∩B T T T T T T T F

Function MANAGEWILDCARDPATH creates a wild-card
node and the arcs between wild-card nodes when at least one
wild-card node is needed in mddr.

6 Experiments
The experiments have been made on a 6 cores server (Intel
3930) having 64GB of memory and running under Windows
7. The algorithms have been implemented on the top of or-
tools solver from Google [Perron, 2013] version 3158.
Motivating Example. This work has been mainly motivated
by some phrase generation problems and notably the one de-

Algorithm 3 Generic Apply Function.
APPLY(mdd1,mdd2, op, V): MDD

// L[i] is the set of nodes in layer i.
root← CREATENODE(root(mdd1), root(mdd2))
L[0]← {root}
for each i ∈ 1..r do

L[i]← ∅
for each node x ∈ L[i− 1] do

get x1 and x2 from x = (x1, x2)
if V [i] = nil then

V [i]← VALUES(ω+(x1) ∪ ω+(x2))

for each v ∈ V [i] do
if 6 ∃(x1, v, y1) ∈ ω+(x1) then

if 6 ∃(x2, v, y2) ∈ ω+(x2) ∧ op[0] then
MANAGEWILDCARDPATH(i, w)
CREATEARC(L, i, x, v, w[i])

if ∃(x2, v, y2) ∈ ω+(x2) ∧ op[1] then
ADDARCANDNODE(L, i, x, v, nil, y2)

else
if 6 ∃(x2, v, y2) ∈ ω+(x2) ∧ op[2] then

ADDARCANDNODE(L, i, x, v, y1, nil)

if ∃(x2, v, y2) ∈ ω+(x2) ∧ op[3] then
ADDARCANDNODE(L, i, x, v, y1, y2)

merge all nodes of L[r] into t
PREDUCE(L)
return root

ADDARCANDNODE(L, i, x, y1, v, y2)
if 6 ∃y ∈ L[i] s.t. y = (y1, y2) then

y← CREATENODE(y1, y2)
add y to L[i]

CREATEARC(L, i, x, v, y)

fined in [Papadopoulos et al., 2014]. This problem deals with
Markov Sequence Generation on corpus having more than
10,000 words. The goal is to generate phrases having 24
words where all successions of 4 words come from the corpus
and where there is no sequence of more than 8 words coming
from the corpus. By replacing the corpus by sequences of 4
words of the corpus and by linking them together when two
sequences have 3 words in common, we define the contracted
corpus and we can reduce the size of the problem because we
can only consider forbidden sequences of 8 − 4 = 4 words.
We propose to model this problem by MDDs expressing se-
quences of words. Values of variables are words of the cor-
pus, so we have a huge number of values. From an initial
MDD representing allowed sequence of 4 words we perform
some intersections of MDD until obtaining an MDD of size
20.

More precisely, first we define mdd4 the MDD containing
all the sequences of 4 words from the contracted corpus, that
is sequence of 8 words in the initial corpus. Then, we define
an MDD having 4 variables from all the sequences of 2 words

from the contracted corpus (Markov MDD) and we substract
mdd4 from it in order to obtain mdda the MDD containing
allowed sequences of 4 words that can be made from the con-
tracted corpus, and forbidding plagiarism sequences. Then,
we repeatedly define mdda for each sequence of 4 variables
in the ordered set: x1, ...x20. That is we define 16 MDDs.
Next, we successively intersect the MDDs. This means that
we intersect the MDD defined on x1, .., xi with the MDD
defined on xi−2, ..., xi+1 for obtaining the MDD defined on
x1, .., xi+1. For intersecting a pair of MDDs defined on dif-
ferent variables we modify them by adding variables accept-
ing all the possibles values. More precisely, the MDD de-
fined on x1, .., xi is transformed into the MDD defined on
x1, .., xi+1 where each values of xi+1 is compatible with any
path of the first MDD. This corresponds to a duplication of
the last layer. Similarly, we will duplicate several times the
first layer of the MDD defined on xi−2, ..., xi+1 to add vari-
ables from x1 to xi into it. After these operations, mddr
is the final MDD corresponding exactly to the automaton of
the dedicated method defined in [Papadopoulos et al., 2014].
Note that all MDDs are reduced.

The main issue with this approach is the size of the MDDs.
The contracted corpus has 10,785 words. Markov MDD has
15,950 nodes and 129,465 arcs, mdd4 has 56,225 nodes and
127,786 arcs, mddr has 1,208,219 nodes and 188,035,203
arcs. The reduction is efficient, for instance for mdd4 the
number of nodes go from 123,025 to 56,225 and mddr has
2.2 times fewer node than the automaton.

With the new algorithms we propose it needs 425s to
build mddr, and finding the 50 first solutions takes 26.8s.
The whole process requires 7min 31s. The building time is
slightly more (about 20%) than the dedicated algorithm given
in [Papadopoulos et al., 2014] but the solving time is similar
[Papadopoulos,].

Algorithms like mddc of Cheng and Yap cannot be used
for making the intersections and applying the reduction
operations, because the memory consumption exceeded
quickly 64GB whereas it is kept below 10 GB with our
algorithms. Thus, we tried a different approach based only
on the set of MDDs for each sequence without intersecting
them. For a set of 9 variables (instead of 20) it takes more
than 50 min with mddc to find the 50 first solutions whereas
it took 6 seconds for MDD4R with mddr. It is a gain factor
of 500.

Now, we propose to detail some different improvements
obtained by our algorithms.

Comparison of Reduce Functions. We select some prob-
lems from the Solver Competition archive [Lecoutre, 2009].
For each type of problem we compute the geometric mean of
the reduction times of all the instances for the pReduce al-
gorithm and mddify the algorithm of Cheng and Yap. We
obtain the following results which clearly show the advantage
of our method.

type of problem pReduce mddify
rand-5-12-12-200-p12442 8.2 46.7
rand-8-20-5-18-800 74.5 191.8
crossword-m1c-uk-vg 50.2 668.2
crossword-m1c-ogd-vg 103.5 724.6
crossword-m1c-lex-vg 5.0 97.0
bdd-21-133-18-78 110.9 244.0

We also compare the two methods on random table con-
straints. The following tables show the gain factor of our ap-
proach.

1000 tuples
arity

d 6 8 10 12
12 11 20.6 26.7 29.8
30 32.3 47.5 57.8 54.7
60 80.6 84.6 76.1 79.1

arity = 12
tuples

d 1K 10K 100K
4 8.2 5.3 5.9
8 20 18.7 18.6
12 29.8 25,8 38.6
30 54.7 40.1 110.6
60 79.1 55.1 150.0

Comparison of Creations from Regular Constraints We
use all the regular constraints defined from the pentominoes-
int problems of the 2014 Minizinc Challenge, because an ef-
ficient algorithm is required to solve them. We compare the
creation from a regular constraint that we propose versus the
creation of the graph (which is a kind of MDD) performed by
Pesant. The following table show the gain factors we obtain:

min max average
gain factor 2.0 5.3 4.1

Ternary decomposition vs MDD + MDD4R
It is often considered (See [Beldiceanu et al., 2004; Quim-

per and Walsh, 2006a; 2006b]) that the best way for maintain-
ing arc consistency for regular constraint is to decompose the
constraint into a set of ternary transition constraints and to di-
rectly deal with them. We propose to compare this model with
the explicit use of the MDD corresponding to the automaton
of the regular constraint in conjunction with MDD4R algo-
rithm. The MDD is reduced.

We use constraints defined by transition constraints involv-
ing 8,000 tuples. The following figure gives the factor of
gains of the use of a MDD + MDDR4 in comparison with
transition constraints + GAC4R and clearly shows the advan-
tage of our approach.

We also compare the two approaches on a problem with
5 random constraints and one knapsack constraint imposing
that the sum of all variables must be greater than a value k
(usually defined as the mean of the domains). The results
given in the following table should a gain factor of 1.4:

Arity dom size 1 sol all sol
Ternary MDD4R Ternary MDD4R

8 6 0.7 0.3 18.4 12.2
8 8 0.8 0.5 25.1 17.2
10 8 0.9 0.4 44.3 31.8
10 10 1.3 0.7 58.4 41.3
12 10 2.3 1.5 89.2 66.4
12 12 4.2 2.8 109.6 82.5

7 Conclusion
We have proposed new efficient algorithms for creating and
reducing Multi-Valued Decision Diagrams (MDDs). The new
reduction algorithm has anO(n+m+d) space and time com-
plexity and so may be used for huge MDDs. We have also in-
troduced a generic apply function from which we can define
the most common operations on MDDs: intersection, union,
difference, symmetric difference, complement of union and
complement of intersection. We experiment our approach
against the previous ones and on a complex phrase genera-
tion problem and we show that a model using our algorithms
and MDD4R is competitive with dedicated algorithms defin-
ing complex automata. Some other experiments demonstrate
the improvements brought by our algorithms.

References
[Andersen et al., 2007] Henrik Reif Andersen, Tarik Hadzic,

John N. Hooker, and Peter Tiedemann. A constraint store
based on multivalued decision diagrams. In CP, pages
118–132, 2007.

[Beldiceanu et al., 2004] N. Beldiceanu, M. Carlsson, and
T. Petit. Deriving filtering algorithms from constraint
checkers. In CP’04, pages 107–122, 2004.

[Bergman et al., 2011] David Bergman, Willem Jan van Ho-
eve, and John N. Hooker. Manipulating mdd relaxations
for combinatorial optimization. In CPAIOR, pages 20–35,
2011.

[Bergman et al., 2014] D. Bergman, A. Cire, and W-J. van
Hoeve. Mdd propagation for sequence constraints. Journal
of Artificial Intelligence Research, 50:697–722, 2014.

[Bryant, 1986] Randal E. Bryant. Graph-based algorithms
for boolean function manipulation. IEEE Transactions on
Computers, C35(8):677–691, 1986.

[Cheng and Yap, 2010] K. Cheng and R. Yap. An mdd-based
generalized arc consistency algorithm for positive and neg-
ative table constraints and some global constraints. Con-
straints, 15, 2010.

[Gange et al., 2011] G. Gange, P. Stuckey, and Radoslaw
Szymanek. Mdd propagators with explanation. Con-
straints, 16:407–429, 2011.

[Hadzic et al., 2008] Tarik Hadzic, John N. Hooker, Barry
O’Sullivan, and Peter Tiedemann. Approximate compi-
lation of constraints into multivalued decision diagrams.
In CP, pages 448–462, 2008.

[Hoda et al., 2010] Samid Hoda, Willem Jan van Hoeve, and
John N. Hooker. A systematic approach to mdd-based con-
straint programming. In CP, pages 266–280, 2010.

[Lecoutre, 2009] Christophe Lecoutre. Csp/maxcsp/wcsp
solver competitions. In http://www.cril.univ-
artois.fr/ lecoutre/benchmarks.html, 2009.

[Papadopoulos,] A. Papadopoulos. Personnal communica-
tion.

[Papadopoulos et al., 2014] A. Papadopoulos, P. Roy, and
F. Pachet. Avoiding plagiarism in markov sequence gener-
ation. In Proceeding of the Twenty-Eight AAAI Conference
on Artificial Intelligence, pages 2731–2737, 2014.

[Perez and Régin, 2014] G. Perez and J-C. Régin. Improv-
ing GAC-4 for table and MDD constraints. In Principles
and Practice of Constraint Programming - 20th Interna-
tional Conference, CP 2014, Lyon, France, September 8-
12, 2014. Proceedings, pages 606–621, 2014.

[Perron, 2013] L. Perron. Or-tools. In Workshop "CP
Solvers: Modeling, Applications, Integration, and Stan-
dardization", 2013.

[Pesant, 2004] G. Pesant. A regular language membership
constraint for finite sequences of variables. In Proc.
CP’04, pages 482–495, 2004.

[Quimper and Walsh, 2006a] C-G. Quimper and T. Walsh.
Global grammar constraints. In CP’06, pages 751–755,
2006.

[Quimper and Walsh, 2006b] C-G. Quimper and T. Walsh.
Global grammar constraints. Technical report, Waterloo
University, 2006.

[Trick, 2003] M. Trick. A dynamic programming approach
for consistency and propagation for knapsack constraints.
Annals of Operations Research, 118:73 – 84, 2003.

