
Generating all Possible Palindromes from Ngram Corpora

Alexandre Papadopoulos1,2 and Pierre Roy1 and Jean-Charles Régin3 and François Pachet1,2
1SONY CSL, 6 rue Amyot, 75005 Paris

2Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
3Université Nice-Sophia Antipolis, I3S UMR 6070, CNRS, France

alexandre.papadopoulos@lip6.fr, roy@csl.sony.fr, jcregin@gmail.com, pachetcsl@gmail.com

Abstract
We address the problem of generating all possi-
ble palindromes from a corpus of Ngrams. Palin-
dromes are texts that read the same both ways.
Short palindromes (“race car”) usually carry pre-
cise, significant meanings. Long palindromes are
often less meaningful, but even harder to gener-
ate. The palindrome generation problem has never
been addressed, to our knowledge, from a strictly
combinatorial point of view. The main difficulty
is that generating palindromes require the simulta-
neous consideration of two inter-related levels in
a sequence: the “character” and the “word” lev-
els. Although the problem seems very combina-
torial, we propose an elegant yet non-trivial graph
structure that can be used to generate all possi-
ble palindromes from a given corpus of Ngrams,
with a linear complexity. We illustrate our ap-
proach with short and long palindromes obtained
from the Google Ngram corpus. We show how we
can control the semantics, to some extent, by us-
ing arbitrary text corpora to bias the probabilities
of certain sets of words. More generally this work
addresses the issue of modelling human virtuosity
from a combinatorial viewpoint, as a means to un-
derstand human creativity.

1 Introduction
Virtuosity is a device commonly used by artists to attract the
attention of an audience. There is indeed a natural fascina-
tion for contemplating objects that are obviously difficult to
create or design. It is therefore natural to study human vir-
tuosity as its understanding may produce interesting insights
on human creative processes. Virtuosity has so far been ad-
dressed from the physiological viewpoint (e.g. by Furuya and
Altenmüller [2013]) but has not been addressed in Artificial
Intelligence, i.e. from a problem solving viewpoint.

This paper addresses a specific form of virtuosity in text:
palindromes, i.e. texts that read the same forward and back-
ward, such as “race car”, or “A man, a plan, a canal:
Panama”. Palindromes have always appealed to humans to
the extent of being used in religious contexts. For instance,
a famous Byzantine Greek palindrome (Νίψον ἀνομήματα,

μὴ μόναν ὄψιν) appears above several religious fountains and
churches. Palindromes are also found in many religious texts,
from ancient Egyptian papyri to the Quran. For example, an
amulet recently discovered in Paphos, Cyprus, bears the in-
scription of a palindrome written in Egyptian, containing a
reference to both the Jewish God and Egyptian deities [Śliwa,
2013]: ΙΑΕW ΒΑΦΡΕΝΕΜ ΟΥΝΟΘΙΛΑΡΙ ΚΝΙΦΙΑ-

ΕΥΕ ΑΙΦΙΝΚΙΡΑΛ ΙΘΟΝΥΟΜΕ ΝΕΡΦΑΒW ΕΑΙ.
These ancient palindromes are usually short, highly signif-

icant sentences. Another, more recent trend in palindrome
invention is to create very long palindromes, which increase
the combinatorial complexity, usually at the expense of se-
mantic consistency. Competitions are organised to get the
longest palindromes that look as natural as possible. Partic-
ularly impressive long palindromes in that line were written
in French by Georges Perec in 1969 (1,247 words, 5,556 let-
ters) in the form of a short story. Later, in English, a full
palindromic novel, Satire: Veritas, by David Stephens, was
written in 1980 (58,795 letters), and an even longer, Dr. Awk-
ward & Olson in Oslo, by Lawrence Levine, in 1986 (31,954
words). Those are, to our knowledge, the longest existing
palindromes in English (or, indeed, in any language).

Two kinds of palindromes can be considered: short,
highly significant palindromes such as “Madam, in Eden,
I’m Adam”, and very long palindromes which usually do not
carry precise meanings but emphasise the combinatorial di-
mension of the process. In both cases, virtuosity is at stake.

From the modelling viewpoint, the main issue is that palin-
dromes constrain both the character and word levels of a se-
quence. In a purely character-based generation, we have to
ensure that the sequence can be segmented, using spaces,
into valid words, a non-trivial combinatorial problem. With
a word-based approach, we face a large combinatorial space:
in practice, the Google Books Ngram Corpus [Michel et al.,
2011], which contains all Ngrams occurring in the set of En-
glish books digitised by Google from 1800 to 2012, contains
4.4M unique words and more than 400M unique 2-grams, i.e.
contiguous sequences of two words occurring in a book.

As a consequence of this dual view, it is difficult to apply
standard general modelling techniques, such as mixed integer
programming, constraint programming or boolean satisfiabil-
ity solvers. If we fix the number of characters, the number of
words remains unknown, and vice-versa. Furthermore, we do
not know in advance the position of the centre of the palin-

drome. Moreover, the language of all palindromic words is
not a regular language [Hopcroft et al., 1979], and therefore,
automata theory is of no help in finding a greedy algorithm
for generating palindromes. Still, we propose a method that
generates palindromes of any arbitrary length.

This paper addresses the palindrome generation problem
from a combinatorial viewpoint. To our knowledge, this is
the first algorithmic solution to a properly formalised com-
binatorial problem. We propose a method that provides an
efficient way of generating all palindromes of arbitrary sizes
from a given Ngram corpus. The method is based on a sim-
ple yet non-trivial graph structure, which somehow compiles
away the inherent difficulty of handling both the character and
word levels. As an additional benefit, this method can also be
used in a constraint programming setting, enabling the use
of extra constraints, such as cardinality constraints to impose
semantic clusters.

2 Constrained Text Generation
Markov processes have often be used to automatically gener-
ate text. A Markov process is a random process with a lim-
ited memory: it produces a state with a probability depending
only on the last state, or a fixed number of them. If we ap-
ply this to text generation, a state can represent a word, and
such a process will generate sequences of words, or phrases.
When the Markov model, i.e. the model defining the proba-
bility distribution for choosing the next word, is trained on a
particular corpus, this process generates sequences imitating
the statistical properties of the corpus. As it has been repeat-
edly observed, those sequences not only contain a semblance
of meaning, but also imitate the style of the corpus [Jurafsky
and Martin, 2009]. For short, we will say that such a phrase
is based on the input corpus.

A Markov process can be modelled as a directed graph,
encoding the dependency between the previous state and the
next state. Then, a random walk, i.e. a walk in this graph
where the probability for choosing each successor has been
given by the Markov model, will correspond to a new phrase.
Often, additional control constraints are desired, which can-
not be added to the Markov model because they involve long-
range dependencies. One approach to deal with control con-
straints is to generate a vast amount of sequences for lit-
tle cost, and keep the satisfactory ones. However, this will
clearly not be enough for constraints that are hard to satisfy,
such as forming a palindrome. Alternatively, we can incor-
porate the control constraints into the stochastic process, by
performing random walk on a more refined, adequately de-
fined, graph. For example, in earlier work [Papadopoulos et
al., 2014], we defined a graph in which any walk produces
a sequence of words that contains no subsequence belonging
to the corpus, longer than a given threshold, in order to limit
plagiarism.

We propose a similar approach, which we first illustrate on
the simple problem of generating sequences complying with
a syntactic pattern.

2.1 A Motivating Example: Syntactic Patterns
Suppose we want to generate sequences of words based on
a given corpus, following a specific syntactic pattern, i.e. a

sequence of part-of-speech elements (such as nouns, verbs,
etc.). Given such a pattern, we can traverse the corpus graph,
i.e. the graph corresponding to a Markov model on this cor-
pus, and check that the pattern of the generated sequence
matches the imposed syntactic pattern. Better, we can simul-
taneously walk the corpus graph and the syntactic pattern, en-
suring both walks match.

An alternative method for doing this “simultaneous walk”
consists in building a new graph, encoding a type of conjunc-
tion between the corpus graph and the syntactic pattern graph,
in which a walk is a phrase based on the corpus that also sat-
isfies the syntactic pattern.
Example 1. Consider a simple corpus, composed of the three
phrases “John sees Mary.”, “Mary sees Mary.”, “Mary sees
John.”. The graph of a Markov model estimated on this cor-
pus is shown on Figure 1(a), along with the transition proba-
bilities. Suppose we want to impose the pattern Subject Verb
Object (SVO, for short). This defines the graph shown on Fig-
ure 1(b). We can build a graph in which vertices are tagged
by their part of speech, shown on Figure 1(c). A walk in this
graph following the SVO pattern will produce a valid sen-
tence from the Markov model, with the right pattern.

0.3

1 0.6

1

John sees Mary

(a) Corpus graph

VS O

(b) SVO pat-
tern graph

1

0.3

0.6

1

S

O S

V

O

sees

John

John

Mary

Mary

(c) Corpus graph with pattern SVO

Figure 1: The graphs for the example corpus

2.2 Conjunction of Graphs
The tensor product of graphs is an interesting operation for
combining graphs and expressing some common properties.
It was introduced by Principia Mathematica [Whitehead and
Russell, 1912] and is equivalent to the Kronecker product of
the adjacency matrices of the graphs [Weichsel, 1962].
Definition 1. The tensor product G1 ×G2 of graphs G1 and
G2 is a graph such that the vertex set of G1×G2 is the Carte-
sian product V (G1)× V (G2); and any two vertices (u1, u2)
and (v1, v2) are adjacent in G1 × G2 if and only if u1 is ad-
jacent with v1 and u2 is adjacent with v2.

We propose a natural extension for labeled graph, which
we name graph conjunction, where we only associate vertices
that have compatible labels, according to a given relation.
Definition 2. The conjunction graph G1 ⊗r G2 of two la-
beled graphs (G1, l1) and (G2, l2), associated with a Boolean
binary relation r on labels, is a labeled graph defined as fol-
lows:

1. the vertex set of G1 ⊗r G2 is the set of vertices
(u1, u2) such that u1 ∈ V (G1), u2 ∈ V (G2) and
r(l1(u1), l2(u2)) is true; vertex (u1, u2) is labeled
(l1(u1), l2(u2));

2. there is an edge between (u1, u2) and (v1, v2) in G1 ⊗r

G2 if and only if (u1, v1) ∈ E(G1) and (u2, v2) ∈
E(G2).

Example 2. The graph of Figure 1(c) is actually the conjunc-
tion of the graphs of the two other graphs, where vertices John
and Mary are compatible with either S or O (they are either
the subject or the object of a sentence in the given corpus),
and vertex sees is compatible with vertex V.

3 Application to Palindromes
We now present our approach for generating palindromes. It
consists in computing the conjunction of carefully defined
graphs representing a corpus.

3.1 Definitions
A palindrome is a phrase such that the character sequence
obtained after removing white space, punctuation, ignoring
case, is symmetrical. We give an alternative, less intuitive
definition, but which is the direct inspiration for the technique
we propose. A sequence of characters forms a palindromic
phrase if and only if:

1. it can be segmented, by inserting white spaces, into a
sequence of valid words, when read from left to right
(the forward way);

2. it can also be segmented into a sequence of words, when
read from right to left (the backward way);

3. at least one forward segmentation and one backward
segmentation produces the same sequence of words.

Note that the third point is not redundant: for example,
the sequence of characters IMADAM forms a phrase in both
ways: we can read “I’m Adam.” from left to right, and “Mad
am I.” from right to left. However, this is not a palindrome
because those two phrases are not the same. Additionally,
when the third condition holds, the characters are pairwise
equal around a central symmetry. For example, the characters
RACECAR can be read as “Race car.” in both directions, and
is therefore a palindrome. This means that the word “Race”
appears at the beginning of the character sequence, and also,
in reverse, at the end of the character sequence, which im-
plies the first letter is equal to the last letter, the second to the
second last, etc.
Definition 3 (Palindrome Generation Problem). Given a cor-
pus, the palindrome generation problem is the problem of
generating the palindrome phrases based on this corpus.

Introducing a corpus has two benefits. The first, as we men-
tioned earlier, is that it allows us to constraint the generation
of palindromes in a way that improves the meaningfulness of
the palindromes. This implies a second, combinatorial, bene-
fit. By drastically reducing the number of words that can fol-
low a given word, we greatly reduce the search space at each
step of the text generation process. For a dictionary-based ap-
proach, where any word can follow any other word, the size

of this space is equal to the square of the dictionary size. For
a corpus-based approach, this reduces to a size which is lin-
early bounded by the size of corpus.

3.2 Algorithms
We now present the main algorithms for building palindrome
phrases based on a corpus. Our algorithm consists in defining
two corpus graphs, one corresponding in a forward traversal
of words, and from a word to its possible successors in the
corpus, and another for the reverse traversal of words, and
from a word to its predecessors in the corpus. The palindrome
graph is the conjunction of those two graphs, where vertices
are compatible if they agree on their character.

More precisely, from the transition model and from the let-
ters of all the words, we define a graph with a finer granular-
ity. For convenience we denote by |w| the number of letters
contained in the word w. We define the so-called forward
letter-corpus graph, or simply forward graph, as follows:

Definition 4 (Forward Graph). Given a corpus, and tran-
sition model M on this corpus, the forward graph Gf =
(Vf , Af , lf) is a labelled directed graph, such that:

1. The vertex set Vf corresponds all possible positions in
each word of the corpus. Formally, for each pair (w, p),
where w is a word of the corpus, and p a position in the
word (counting from 1 to |w|), we define vertex nwp,
labelled lf (nwp) = (w, p).

2. The edge set is defined from the model transitions and
from the succession of letters in a word. More precisely,

• for each word w of the corpus and for each position
p, 1 ≤ p < |w|, there is an arc from nwp to nwp′

with p′ = p+ 1;
• for each non-zero probability transition from w to

w′, there is an arc from vertex nw|w|, corresponding
to the last position of the word w, to vertex nw′1,
corresponding to the first position of the word w′.

Example 3. Suppose we have the corpus with the phrases
“Madam Im mad.”, “Im Adam.”. The full forward graph Gf

for this corpus is shown on Figure 2. Note that vertices rep-
resent positions in a word, and not characters: character m
appears on five vertices (since there are five occurrences of m
in the corpus).

madam,2madam,1 madam,3 madam,4 madam,5

im,1 im,2

adam,1 adam,2 adam,3 adam,4

mad,3mad,2mad,1

Figure 2: The forward graph for Example 3

Similarly, we define the backward graph, which represents
the corpus when read in the reverse direction. It is simply
defined by inverting the direction of each arc of the forward
graph.

Definition 5 (Backward Graph). Given a corpus, and tran-
sition model M on this corpus, the backward graph Gb =

(Vb, Ab, lb) is the graph with the same vertices as the forward
graph Gf , with the same labels, and with all arcs inverted.

Algorithm 1 builds the forward graph Gf and the backward
graph Gb.

Algorithm 1: Forward and backward graph creation
Data: Word-based transition model M
Result: Gf = (Vf , Af , lf) the forward graph based on

M , Gb = (Vb, Ab, lb) the backward graph based
on M

Vf ← ∅, Af ← ∅
for w ∈ words(M) do

Add vertex v to Vf

lf (v)← (w, 1)
for i← 2, . . . , |w| do

Add vertex v′ to Vf

lf (v
′)← (w, i)

Add arc to Af from v to v′

v ← v′

for w ∈ words(M) do
for w′ ∈ words(M) |M(w → w′) > 0 do

Add arc to Af from vw|w| to vw′1

Vb ← Vf

Ab ← {(v2, v1) | (v1, v2) ∈ Af}
lb = lf

Our goal is to produce phrases that are a succession of the
same, valid, words in both directions. In order to achieve
this, we propose to combine the forward graph Gf and the
backward graph Gb. In other words, we define the conjunc-
tion graph Gf ⊗r Gb, where the relation r matches vertices
that agree on a character. More precisely, two vertices nwp

and nw′p′ are compatible iff w[p] = w′[p′], where w[p] de-
notes the character of word w at position p. The resulting ver-
tex in the conjunction graph is labelled with both (w, p) and
(w′, p′). We call palindrome graph this conjunction graph.

Intuitively, a vertex of the palindrome graph corresponds
to a position in a word of the forward corpus graph and a
position in another word of the backward corpus graph. A
path in the palindrome graph thus corresponds to a simulta-
neous advancement in the forward graph and in the backward
graph, always staying on vertices supporting the same char-
acter. Advancing in the forward graph corresponds to build-
ing words from left to right, while advancing in the backward
graph corresponds to building words in reverse, from right
to left. Therefore, advancing in the palindrome graph corre-
sponds to building a palindrome from its extremities towards
its centre. In other words, there is a mapping between the
palindromes of a given corpus, and paths of the palindrome
graph.

Example 4. The palindrome graph of the corpus in Exam-
ple 3 is shown on Figure 3.

Let us formalise this relationship. Let Gp = (Vp, Ap) =
Gf ⊗rGb be the palindrome graph. The initial vertices of Gp

Algorithm 2: Odd Palindrome Graph
Data: Gf , Gb, forward and backward graphs
Result: Gp the palindrome graph of Gf and Gb

VI = {(vf , vb) ∈ Vf × Vb | lf (vf) = (w, 1)
and lb(vb) = (w′, |w′|)}

Q← EmptyQueue
for (vf , vb) ∈ VI do

if ConsistentVertex(vf , vb) then
Add vertex (vf , vb) to Vp

Q.enqueue((vf , vb))
lp(vf , vb)← (lf (vf), lb(vb))

// Build graph
while ¬Q.IsEmpty do

(vf , vb)← Q.dequeue
for (vf , v

′
f) ∈ Af do

for (vb, v
′
b) ∈ Ab do

if ConsistentVertex(v′f , v′b) then
if (v′f , v′b) 6∈ Vp then

Add vertex (v′f , v
′
b) to Vp

Q.enqueue((v′f , v
′
b))

lp(v
′
f , v

′
b)← (lf (v

′
f), lb(v

′
b))

Add arc to Ap from (vf , vb) to (v′f , v
′
b)

// Remove vertices not reaching VT

Trim(Gp)
return Gp = (Vp, Ap, lp)

function ConsistentVertex(vf , vb)
(wf , if)← lf (vf)
(wb, ib)← lb(vb)
wordf ← wf [if . . . |wf |]
wordb ← −wb[1 . . . ib] // Reversed string
return wordf ⊆ wordb ∨ wordb ⊆ wordf

are the vertices that simultaneously start a word in the forward
corpus graph and finish a word in the backward corpus graph:

VI = {v ∈ Vp | lf (v) = (w, 1) and lb(v) = (w′, |w′|)}
For terminal vertices, we need to distinguish between odd-

length and even-length palindromes (in terms of number of
characters). For odd-length palindromes, the terminal ver-
tices of Gp are the vertices that correspond to the same word
at the same position both in the forward and the backward
corpus graph. The character at this position is the centre of
the palindrome:

VT = {v ∈ Vp | lf (v) = lb(v)}
For even-length palindromes, it is slightly more compli-

cated, since the centre of the palindrome does not fall on a
character, but between two characters. As a consequence, the
definition of terminal vertices involves a property on edges:

VT = {v ∈ Vp | (v, v′) ∈ Ap and lf (v) = lb(v
′)}

F

madam,3 madam,2 madam,1madam,4im,1 madam,5

adam,3adam,4 adam,2 adam,1 im,2
madam,1 madam,2 madam,3 madam,4 madam,5

madam,4madam,5 madam,3 madam,2 madam,1
madam,1 madam,2 madam,3 madam,4 madam,5

im,1 im,2 adam,1 adam,2 adam,4adam,3

I

I

F

Figure 3: The palindrome graph for Example 3

Property 1. Every path in the palindrome graph from a ver-
tex in VI to a vertex in VT corresponds to a palindrome, and
all palindromes correspond to such a path.

Intuitively, when traversing a path from VI to VT , we gen-
erate the first half of a palindrome by reading the labels com-
ing from the forward graph. Then, by going back to the be-
ginning of the path, we generate the second half of the palin-
drome by reading the labels coming from the backward graph.

Example 5. In the graph at Figure 3, there are two initial ver-
tices, marked with a red I, and two terminal vertices, marked
with a red F. There are two paths from an I vertex to a
T vertex, corresponding to the palindromes “Madam.” and
“Madam Im Adam.”.

Note that a path from a vertex in VI to a vertex in VT

continues to a path that contains the same palindrome (in re-
verse). However, we do not need to continue past the vertex
in VT . Not only would this be redundant, but it could actually
be wrong: a vertex in VT could have several successors, only
one of which starts a path that generates the same palindrome
as the one that reached VT .

3.3 Building the Palindrome Graph
Building the palindrome graph involves more than a straight-
forward implementation of the conjunction operator, since
we need to limit the explosion in size of the conjunction
graph, which could grow as the product of the sizes of the
input graphs. We define pruning rules to significantly reduce
the size of the conjunction graph and make this approach
tractable in practice. From a computational point of view,
we avoid considering the whole cartesian product of the set
of vertices of the input graphs. Furthermore, we remove all
vertices that are part of no valid path, i.e. a path starting in
VI and ending in VT . Clearly, a vertex that is not in VT and
that has no successor can be removed. Removals are repeated
until any vertex is in VT or has a successor. We call such a
graph trimmed. In order to limit memory and running times,
we can define pruning rules, to prevent the algorithm from
considering vertices that will necessarily lead to parts of the
graph that will be eventually trimmed. Algorithm 2 builds
the palindrome graph by implementing the conjunction oper-
ator following those ideas. It builds the conjunction using
a breadth-first search, and then trims unnecessary parts of
the graph. The breadth-first search queue is initialised with
vertices in VI that are compatible. Note that compatibility
checking is performed using the ConsistentVertex()
function. This checks that not only do the labels agree on

their character, but that the rest of words agree too. For ex-
ample a vertex with forward label (adamant,2) is compatible
with vertex with backward label (mad,3), since the forward
substring starting at index 2 (“damant”) is compatible with
the reversed backward substring ending at index 3 (“dam”):
one is a substring of the other. If this condition does not hold
for a vertex, this algorithm does not need to expand on this
vertex, since with will necessarily result in a subgraph that
will be trimmed. Finally, the algorithm trims the graph by
doing a reverse breadth-first search starting from vertices that
do not satisfy the accepting condition and have no successor.

3.4 Adding Syntactic Patterns
Thanks to the declarative nature of our approach, we can eas-
ily constrain the syntactic patterns of generated palindromes.
We need to modify the graph shown on Figure 1(b), by adding
a loop from every vertex to itself. By applying the con-
junction between this modified pattern graph and the forward
graph, we obtain a graph representing all phrases based on
the corpus that satisfy the syntactic pattern. Then, we com-
pute the palindrome graph as before, using the unmodified
backward graph.

4 Evaluation
We applied our algorithm on several text corpora, and tried to
discover interesting palindromes. To improve the entertain-
ing value of palindromes, we tried to generate palindromes
alluding to a certain topic. To achieve this, we chose corpora
with a very distinctive topic. In order to counterbalance the
drastic effect of the palindrome constraint, we enriched the
Markov model with 2-grams from the Google Ngram Corpus,
with a frequency of occurrence higher than 50,000 (2.4M in
total). However, we bias the resulting model to favour corpus
2-grams over Google 2-grams by multiplying corresponding
probabilities by a very high factor and renormalise.

In order to randomly generate palindromes, we associate
a probability to each starting vertex, and to each edge. The
probability of v ∈ VI is equal to the prior probability of the
forward word w, where lf (v) = (w, 0). The forward proba-
bility of an edge depends on whether this edge falls between
a word, or links the end of a word to the start of another one.
It is equal, respectively, to 1 or to the transition probability.
The backward probability of an arc from u to v is similarly
defined, except it takes into account the transition from the
word of v to the word of u. The probability for using an edge
is defined simply by the product of these two probabilities.

For example, we generated several palindromes using the
King James Bible (the English language translation of the Old
and New Testament from 1611), which has 868,866 words,
18,295 unique words and 180,651 2-grams. The vast majority
of palindromes thus generated had a clear allusion to religion.
From a combinatorial point of view, our approach has proved
to be very tractable. It takes less than 3 seconds to build the
palindrome graph, which has 2,459 vertices, and we can gen-
erate 10,000 palindromes in less than a second. It is very easy
to generate an arbitrarily long palindrome. For example, we
generated a palindrome with 84,541 words, 200,001 charac-
ters, longer, to our knowledge, than any palindrome, even a

computer generated one. This palindrome starts with “Did I
say, lo, he behold I, a sin, a man, are holy” and ends with “I
say, lo, he ran a man. I said, lo, he be holy. As I did.”. Al-
though it mimics the corpus well, this excessively long palin-
drome has very little meaning. A higher level of meaning can
be achieved on very short palindromes, such as: “Evil on an
olive.”, “To lay a lot.”, “Born a man, rob.”, “Till i kill it.”,
“God all I had, I hid: a hill a dog.”, “God, a sin: a man is a
dog.”, “Sworn in us at a sun in rows.” etc., or slightly longer
but less meaningful, such as: “Evil to no God. I say: do by
my body as I do. Go not live.”.

We also generated palindromes on another corpus, com-
posed of ten books on “military art” downloaded from Project
Gutenberg1. This corpus has 1.4M words, 50,793 unique
words and 443,846 2-grams. The palindrome graph has
294,518 vertices, and is generated in 17s. Here again, the mil-
itary theme is well evident, in palindromes such as: “Drawn
in war, died. I set a gate side, I, drawn in ward.”, “Army by
a war, a front, so lost nor far away, by Mr. A.”, “Army be I
do to go to die by Mr. A.”,“Never a way. By a war even.”.
Other interesting palindromes were found: “Tied a minimum
in. I made it.”, “Did I?, said I as I did.”, “To no demand, a
bad name do not.”, “Name not one man.”, etc. Again, longer
palindromes tend to be less meaningful: “Main action was in,
or if one, most so late war. On no it is open or prone position,
nor a wet, a lost, so men of iron. I saw, no it can, I am.”.

To illustrate the flexibility of our method, which is not
limited to generating palindromes, we generated ambigrams,
i.e. sentences that have a different meaning when read back-
wards. To achieve this, we computed the forward and back-
ward graph on two different corpora, and obtained sentences
such as “Dogs in oil.” (in reverse “Lion is god.”), or “Sun is
alive.” (in reverse “Evil as in us.”), which have a religious
meaning when read in reverse. The forward and backward
graphs can even be based on corpora in a different language,
resulting in sentences such as “Él a Roma se dedica.” (in re-
verse “Acide de sa morale.”) or “Es un otro mal.” (in reverse
“La mort on use.”), which can be read in Spanish from left to
right, and French from right to left.

5 Discussion
We are aware of very few attempts at automatic palindrome
generation. Norvig [2002] builds palindromes on the pattern
of “A man, a plan, a canal: Panama”, by growing it using
unique words from a dictionary. This is an ad hoc algorithm
that uses two complex interleaved searches. It offers no back-
tracking, or indeed termination, guarantee, and it is hard to
add further control. Interestingly, it can be seen as a depth-
first search of our palindrome graph.

We have fully solved the problem of generating palin-
dromes as a combinatorial problem. However, the quality of
the generated palindromes is on average low as some palin-
dromes barely carry any meaning or lack beauty. This now
opens a new problem, the problem of generating good palin-
dromes, which should have both meaning and beauty.

Based on our observations, we believe that the beauty of
a palindrome may be assessed, at least partially, by objec-

1https://www.gutenberg.org

tive features. For instance, part of the magic of a palindrome
comes from the ingenuity in the way a particular word, espe-
cially a long one, appears in reverse order. When the back-
ward copy comprises several shorter words, the palindromic
nature is somewhat hidden as in “Had I a stone, he not said
ah!”, where “stone” appears inverted in “he not said”. On
the contrary, symmetrical palindromes, such as “refer, poor
troop, refer!”, are obvious, and appear as a mere trick that
anyone could have discovered by chance.

We suggest a brief list of features that could capture the
quality (correctness and beauty) of a palindrome. Concern-
ing the correctness, the average Markov order of the palin-
drome, seen as a sequence of words, in the corpus, should
be a good indication of the syntactical coherence. One could
also check that the part-of-speech (PoS) pattern of the palin-
drome is acceptable. A sensible measure of the beauty of a
palindrome could be given by computing a score with respect
to three features: L, the length of the longest word; R, the
proportion of repeated words, S, the proportion of words ap-
pearing in both directions (such as “part”,“trap”), where L is
to be maximised and R and S minimised. This measure can
be refined by taking into account the thematic consistency of
the palindrome by, e.g., counting the proportion of words that
belong to a specific semantic cluster.

This could be implemented directly within the algorithm,
as filters or additional constraints. Alternatively, since our
algorithm is very fast, it could be embedded in an evolution-
ary search procedure, using the above features and evaluation
methods, in order to maximise the quality of the output.

6 Conclusion
We have introduced the problem of generating palindromes
from a given corpus of Ngrams, and formulate it as a satisfac-
tion problem. We propose a solution based on the introduc-
tion of a specific graph structure that combines several cru-
cial properties needed to generate palindromes. This structure
yields an efficient algorithm for generating all possible palin-
dromes of any size. This algorithm is notably simple, since
we managed to displace the complexity of search procedures
to the representational richness of the conjunction graph.

We have applied our solution to actual corpora, and we
have exhibited several palindromes pertaining to specific top-
ics. We have also generated palindromes longer than known
palindromes produced manually. Our algorithm solves the
combinatorial dimension of palindrome generation. By do-
ing so, it also opens a new problem: how to define what is
a “nice” or “interesting” palindrome. Thanks to its flexibil-
ity and efficiency, we believe our algorithm can be used for
testing various aesthetic theories, by incorporating this aspect
into the algorithm, or by embedding the algorithm in another
optimisation procedure. This fascinating problem, however,
is probably not of a combinatorial nature.

Acknowledgements
This research is conducted within the Flow Machines project
which received funding from the European Research Council
under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n. 291156.

References
[Furuya and Altenmüller, 2013] Shinichi Furuya and Eckart

Altenmüller. Flexibility of movement organization in pi-
ano performance. Frontiers in human neuroscience, 7,
2013.

[Hopcroft et al., 1979] J.E. Hopcroft, R. Motwani, and J.D.
Ullman. Introduction to automata theory, languages, and
computation, volume 3. Addison-wesley Reading, MA,
1979.

[Jurafsky and Martin, 2009] Daniel Jurafsky and James H.
Martin. Speech and Language Processing (2Nd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2009.

[Michel et al., 2011] J. Michel, Y. Shen, A. Aiden, A. Veres,
M. Gray, J. Pickett, D. Hoiberg, D. Clancy, P. Norvig,
J. Orwant, and et al. Quantitative Analysis of Culture Us-
ing Millions of Digitized Books. Science, 331(6014):176–
182, 2011.

[Norvig, 2002] Peter Norvig. World’s longest palindrome
sentence. http://norvig.com/palindrome.
html, 2002. [Online; accessed 9-February-2015].

[Papadopoulos et al., 2014] Alexandre Papadopoulos, Pierre
Roy, and François Pachet. Avoiding Plagiarism in Markov
Sequence Generation. In Carla E. Brodley and Peter Stone,
editors, AAAI. AAAI Press, 2014.

[Weichsel, 1962] Weichsel. Proc. American Mathematical
Society, 13:47–52, 1962.

[Whitehead and Russell, 1912] Alfred North Whitehead and
Bertrand Russell. Principia Mathematica. 1912.

[Śliwa, 2013] Joachim Śliwa. Magical amulet from Paphos
with the ιαεω- palindrome. Studies in Ancient Art and Civ-
ilization, 17:293–301, 2013.

