Jean-Charles Régin

Mohamed Rezgui

Arnaud Malapert

Improvement of the Embarrassingly Parallel Search for data centers

), but some issues arise when using more cores in a datacenter. Here, we identify the decomposition as the cause of the degradation and propose a parallel decomposition to address this issue. Thanks to it, EPS gives almost linear speedup and outperforms work stealing by orders of magnitude using the Gecode solver.

Introduction

Several methods for parallelizing the search in constraint programming (CP) have been proposed. The most famous one is the work stealing [START_REF] Perron | Search Procedures and Parallelism in Constraint Programming[END_REF][START_REF] Schulte | Parallel Search Made Simple[END_REF][START_REF] Jaffar | Scalable Distributed Depth-First Search with Greedy Work Stealing[END_REF][START_REF] Zoeteweij | A Component-Based Parallel Constraint Solver[END_REF][START_REF] Chu | Confidence-Based Work Stealing in Parallel Constraint Programming[END_REF][START_REF] Michel | Transparent Parallelization of Constraint Programming[END_REF]. This method uses the cooperation between computation units (workers) to divide the work dynamically during the resolution. Recently, [START_REF] Régin | Embarrassingly parallel search[END_REF] introduced a new approach named Embarrassingly Parallel Search (EPS), which has been shown competitive with the work stealing method.

The idea of EPS is to decompose statically the initial problem into a huge number of subproblems that are consistent with the propagation (i.e. running the propagation mechanism on them does not detect any inconsistency). These subproblems are added to a queue which is managed by a master. Then, each idle worker takes a subproblem from the queue and solves it. The process is repeated until all the subproblems have been solved. The assignment of the subproblems to workers is dynamic and there is no communication between the workers. EPS is based on the idea that if there is a large number of subproblems to solve then the resolution times of the workers will be balanced even if the resolution times of the subproblems are not.

In other words, load balancing is automatically obtained in a statistical sense. Interestingly, experiments of [START_REF] Régin | Embarrassingly parallel search[END_REF] have shown that the number of subproblems does not depend on the initial problem but rather on the number of workers. Moreover, they have shown that a good decomposition has to generate about 30 subproblems per worker. Experiments have shown good results on a multi-cores machine (40 cores/workers).

This work was granted access to the HPC and visualization resources of "Centre de Calcul Interactif" hosted by the University of Nice Sophia Antipolis. It was also partially supported by OSEO, with the project ISI "Pajero".

Preliminary experimental results of this method on a data center (512 cores/workers) have shown that the scalability of the overall resolution time without the decomposition is very good. However, the decomposition becomes more difficult and the relative part of the decomposition compared to the overall resolution time grows with the number of workers. There are several reasons for that. First, the number of subproblems that have to be generated grows linearly with the number of cores. Second, the overall resolution time diminishes when the number of workers is increased. At last, the decomposition of the EPS method as proposed in [START_REF] Régin | Embarrassingly parallel search[END_REF] is not efficiently parallelized. In this paper we propose to address this issue by designing an efficient parallel decomposition of the initial problem.

A naive decomposition in parallel has been proposed in [START_REF] Régin | Embarrassingly parallel search[END_REF]. It splits the initial problem into as many subproblems as there are workers and assigns a subproblem to each worker. Then, each worker decomposes its subproblem into 30 subproblems. This gains a factor of 2 or 3 in comparison with a sequential decomposition. This is enough when the number of workers is limited (40 for instance) but it is no longer an efficient method with hundreds of workers. The gain is limited because there is no reason to have equivalent subproblems to decompose. However, from this naive algorithm we learn several things:

1. the difference of total work (i.e. activity time in EPS) made by the workers decreases when the number of subproblems increases. This is not a linear relation.

There is a huge difference between the activity time of the workers when there are less than 5 subproblems per worker. These differences decrease when there are more than 5 subproblems per worker. 2. a simple decomposition into subproblems that may be inconsistent causes quickly some issues because inconsistencies are detected very quickly. 3. splitting an initial problem into a small set of subproblems is fast compared to the overall decomposition time and compared to the overall resolution time.

From these observations we understand that we will have to find a compromise and we propose an iterative process decomposing the initial problem in 3 phases. In the first phase, we want to decompose it into only few subproblems because the relative cost is small even if we have an unbalanced workload. However, we should be careful with the first phase (i.e. starting with probably inconsistent subproblems) because it can have an impact on the performance. At last, the most important thing seems to generate 5 subproblems because we could restart from these subproblems to decompose more and such a decomposition should be reasonably well balanced.

Thus, we propose a method which has 3 main phases:

-An initial phase where we generate as quickly as possible one subproblem per worker. -A main phase which aims at generating 5 subproblems per worker. Each subproblem is consistent with the propagation. This phase can be divided into several steps for reaching that goal while balancing the work among the workers. -A final phase which consists of generating 30 subproblems per worker from the set of subproblems computed by the main phase.

The paper is organized as follows. First we recall some preliminaries. Next, we describe the existing decomposition and we present an efficient parallelization of the decomposition. Then, we give some experimental results. At last, we conclude.

Preliminaries

A worker is a computation unit. Most of the time, it corresponds to a core. We will consider that there are w workers. We present the two methods that we will compare.

Work stealing

The work stealing method was originally proposed in [START_REF] Burton | Executing functional programs on a virtual tree of processors[END_REF] and was first implemented in Lisp parallel machines [START_REF] Robert | Implementation of multilisp: Lisp on a multiprocessor[END_REF]. It splits the problem dynamically during the resolution. The workers solve the subproblems and when a worker finishes a subproblem, it asks the other workers for more work. In general, it is carried out as follows: when a worker W does not have work, it asks another worker V to get some work. If V agrees to give some of its work, then its splits the current subproblem into two subproblems and gives one to W . We say that W "steals" some work of V . If V does not agree to give some work to W , then W asks another worker U for some work until it gets some work or all workers have been solicited.

This method has been implemented in a lot of solvers (Comet [START_REF] Michel | Transparent Parallelization of Constraint Programming[END_REF] or ILOG Solver [START_REF] Perron | Search Procedures and Parallelism in Constraint Programming[END_REF] for instance), and into several manners [START_REF] Schulte | Parallel Search Made Simple[END_REF][START_REF] Jaffar | Scalable Distributed Depth-First Search with Greedy Work Stealing[END_REF][START_REF] Zoeteweij | A Component-Based Parallel Constraint Solver[END_REF][START_REF] Chu | Confidence-Based Work Stealing in Parallel Constraint Programming[END_REF] depending on whether the work to be done is centralized or not, on the way the search tree is split, or on the communication method between workers. Work stealing attempts to solve partially the balancing issue of the workload by decomposing dynamically the subproblems. When a worker is starving, it should not steal easy problems, because it would ask work again almost instantly. It happens frequently at the end of the search when many workers have no subproblems to solve. Thus, there are a lot of unnecessary communications. [START_REF] Pedro | Distributed Work Stealing for Constraint Solving[END_REF] proposes to use a threshold to avoid these unnecessary communications but its efficiency depends on the search space. Generally, this method scales well for a few workers but it is difficult to keep a linear speedup with a huge number of workers.

Some methods [START_REF] Xie | Massively Parallel Constraint Programming for Supercomputers: Challenges and Initial Results[END_REF][START_REF] Jaffar | Scalable Distributed Depth-First Search with Greedy Work Stealing[END_REF] attempt to increase the scalability. In [START_REF] Xie | Massively Parallel Constraint Programming for Supercomputers: Challenges and Initial Results[END_REF], the authors propose a masters/workers approach. Each master has its own workers. The search space is divided between the different masters, then each master puts its attributed sub-trees in a work pool to dispatch to the workers. When a node of the sub-tree is detected that is a root of large sub-tree, the workers generate a large number of sub-trees and put them in a the work pool in order to have a better load balancing.

In [START_REF] Jaffar | Scalable Distributed Depth-First Search with Greedy Work Stealing[END_REF], the authors experiment with up to 64 cores using a work stealing strategy. A master centralizes all pieces of information (bounds, solutions and requests). The master estimates which worker has the largest amount of work in order to give some work to an idle worker.

Another drawback is that the implementation of the work stealing is intrusive and is strongly dependent of the solver which requires to have a very good knowledge of the CP solver and to access to some internal functions. Some methods try to address this issue [START_REF] Menouer | Partitioning methods to parallelize constraint programming solver using the parallel framework bobpp[END_REF].

EPS

The Embarassingly Paralell Search (EPS) method has been defined in [START_REF] Régin | Embarrassingly parallel search[END_REF]. This method splits statically the initial problem into a large number of subproblems that are consistent with the propagation and puts them in a queue. Once this decomposition is over, the workers take dynamically the subproblems from the queue when they are idle. Precisely, EPS relies on the following steps:

• it splits a problem into p subproblems such as p ≥ w and pushes them into the queue.

• each worker takes dynamically a subproblem in the queue and solves it.

• a master monitors the concurrent access of the queue.

• the resolution ends when all subproblems are solved.

For optimization problems, the master manages the value of the objective. When a worker takes a subproblem from the queue, it also takes the best objective value computed so far. And when a worker solves a subproblem it communicates to the worker the value of the objective function. Note that there is no other communication, that is when a worker finds a better solution, the other workers that are running cannot use it for improving their current resolution.

The reduction of communication is an advantage over the work stealing. Furthermore, a resolution in parallel can be replayed by saving the order in which the subproblems have been executed. This costs almost nothing and helps a lot the debugging of applications.

Definitions

A constraint network CN = (X , D, C) is defined by: • a set of n variables X = {x 1 , x 2 , . . . , x n } • a set of n finite domains D = {D(x 1), D(x 2), . . . , D(x n)} with D(x i) the set of possible values for the variable x i ,
• a set of constraints between the variables

C = {C 1 , C 2 , . . . , C e }. A constraint C i is defined on a subset of variables X Ci = {x i1 , x i2 , . . . , x ij } of X with a subset of Cartesian product D(x i1) × D(x i2) × . . . × D(x ij), that states which combinations of values of variables {x i1 , x i2 , . . . , x ij } are compatible.
Each constraint C i is associated with a filtering algorithm that removes values of the domains of its variables that are not consistent with it. The propagation mechanism applies filtering algorithms of C to reduce the domains of variables in turn until no reduction can be done. For convenience, we will use the word "problem" for designing a constraint network when it is used to represent the constraint network and not the search for a solution. We say that a problem P is consistent with the propagation if and only if running the propagation mechanism on P does not trigger a failure.

Notation 1 Let Q be a problem, we will denote by D(Q, x) the resulting domain of the variable x when the propagation mechanism has been applied to Q 3 Decomposition algorithms 3.1 Sequential decomposition EPS method is based on the decomposition of the initial problem into p subproblems consistent with the propagation. It has been shown in [START_REF] Régin | Embarrassingly parallel search[END_REF] that it is essential to generate subproblems consistent with the propagation, because the parallel version of search must not consider problems that would have not been considered by the sequential version of the serach. If we aim at generating p subproblems then we can apply the simple following algorithm, called SIMPLEDECOMPOSITIONMETHOD.

• we use any variable ordering1 x 1 , ..., x n .

• we compute the value k such that |D(x 1)| × . . . × |D(x k-1)| < p ≤ |D(x 1)| × . . . × |D(x k-1)| × |D(x k)|.
• we generate all the assignments of the variables from x 1 to x k and we regroup them if we have too many assignments.

Algorithm 1: Some useful functions GENERATESUBPROBLEMS(CN , S, d) runs a search for solution based on a DBDFS with d as depth limit on the constraint network formed by CN and the table constraint defined from the elements of S. returns the set of leaves that are not a failure.

SIMPLEDECOMPOSITION(CN , p) computes the value k such that |D(x1)| × . . . × |D(x k-1)| < p ≤ |D(x1)| × . . . × |D(x k-1)| × |D(x k)|
Generating subproblems consistent with the propagation is a more complex task. In [START_REF] Régin | Embarrassingly parallel search[END_REF], a depth bounded depth first search (DBDFS) is used for computing such problems. More precisely, this decomposition method is defined as follows. First, a static ordering of the variable is considered: x 1 , x 2 , . . . , x n . Usually the variables are sorted by non decreasingly domain sizes. Then, the main step of the algorithm is applied: define a depth d and perform a search procedure based on a DBDFS with d as limit. This search triggers the propagation mechanism each time a modification occurs. For each leaf of this search which is not a failure, the variables x 1 , ..., x d are assigned and so the subproblem defined by this assignment is consistent with the propagation. Thus the set of leaves defines a set S of subproblems. Next, if S is large enough, then the decomposition is finished. Otherwise, we apply again the main step until we reach the expected number of subproblems. However, we do not restart the main step from scratch and we use the previous set for improving the next computations in two ways. We use the cardinal of S for computing the new depth and we define a table constraint from the elements of S to avoid recomputations at the beginning of the search. Algorithm 1 gives some useful functions. Algorithm 2 is a possible implementation of the sequential decomposition.

A naive parallel decomposition

A parallelization of the decomposition is given in [START_REF] Régin | Embarrassingly parallel search[END_REF]. The initial problem is split into w subproblems by domain splitting. Each worker receives one of these subproblems and decomposes it into p/w subproblems consistent with the propagation. The master gathers all computed subproblems. If a worker is not able to generate p/w subproblems because it is not possible, the master asks the other workers to decompose their subproblems into smaller ones until reaching the right number of subproblems.

The new parallel decomposition

The method we propose has 3 main phases. A fast initial stating the process, a main phase, which is the core of the decomposition and a final phase ensuring that 30 subproblems per worker are generated. In the main phase, we try to progress in the decomposition and to manage the imbalance of the work load between workers, because we cannot avoid this imbalance. We progress by small steps of decomposition that are followed by synchronization of the workers and by merging the set of subproblems computing by each worker in order to correct the imbalance in the future. In other words, we ask the workers to decompose any subproblems into a small number of subproblems, then we merge all these subproblems (the union of subproblems lists computed by each worker) and ask again to decompose each subproblem into a small number of subproblems. When the number of generated subproblems is close to 5 subproblems per worker we know that we will have less problem with the load balancing. Thus, we can move on and trigger the last phase: the decomposition of the subproblems until we reach 30 subproblems per workers. Precisely, the phases are defined as follows:

-An initial phase where we decompose as quickly as possible the problem into as many subproblems as we have workers -A main phase which aims at generating 5 subproblems per worker. Each subproblem is consistent with the propagation. This phase is divided into several steps in order to balance the work among the workers. -A final phase which consists of generating 30 subproblems per worker from the set of subproblems computed by the main phase.

Algorithm 3 is a possible implementation of this new parallel decomposition.

The remaining question is the definition of the number of steps and the number of subproblems per worker that have to be generated for each step of the second phase. Clearly the decomposition of the first phase is not good and we have to stop the work for redistributing the subproblems to the worker as quickly as possible. The experiments have shown that we have to stop when 1 subproblem consistent with the propagation per worker have been generated. Then, a stop at 5 subproblems per worker will be enough for the second phase.

Experiments

Execution environment All the experiments have been made on the data center "Centre de Calcul Interactif" hosted by the University of Nice Sophia Antipolis. It has 1152 cores, spread over 144 Intel E5-2670 processors, with a 4,608GB memory and runs under Linux (http://calculs.unice.fr/fr). We were allowed to use to up to 512 cores simultaneously for our experiments. The data center uses a scheduler (OAR) that manages jobs (submissions, executions, failures).

Implementation details EPS is implemented on the top of the solver gecode 4.0.0 [1]. We use MPI (Message Passing Interface), a standardized and portable message-passing system to exchange information between processes. Master and workers are MPI processes. Each process reads a FlatZinc model to init the problem and only jobs are exchanged through messages between master and workers.

Benchmark Instances

We report results for the twenty most significant instances we found. Two types of problems are used: enumeration problems and optimization problems. Some of them are from CSPLib and have been modeled by Håkan Kjellerstrand (see [START_REF] Kjellerstrand | [END_REF]). The others come from the minizinc distribution (see [9]).

To study the decomposition, we select hard instances (i.e. more than 500s and less than 1h) with the Gecode solver.

Tests It is important to point out that the decomposition must finish in order to begin the resolution of the generated subproblems. We use the following definitions:

• t dec and t res denote respectively the total decomposition time (by the master and the workers) and the parallel solving time of the subproblems. So, the overall resolution time t is equal to t dec + t res • t 0 is the resolution time of the instance in sequential • su = t0 t is the speedup of the overall resolution time compared with the sequential resolution time

• su res = t0
tres is the speedup of the overall resolution time without taking account the decomposition time compared with the sequential resolution time

• part dec = t dec
t is the ratio in % between the decomposition time and the overall resolution time

Sensitivity analysis

Depth of the decomposition Figure 1 shows the evolution of the depth depending on the number of workers. As expected, the depth of the decomposition grows with the number of workers. Sometimes, the depth is very high for some instances like ghoulomb 3-7-20 or talent scheduling alt film117 (see table 3). The reason is that the depth estimation we made is based on the Cartesian product of the domains which is sometimes wrong because there are many subproblems that are not consistent with the propagation, so the decomposition goes to a higher depth than the number of considered domains to generate 30 subproblems per worker consistent with the propagation. 1 gives the part of the sequential decomposition according to the overall resolution time with 16 workers and 512 workers. For 16 workers, the sequential decomposition takes a small part of the overall resolution time (an average of 3.5%) because it generates few subproblems (16 * 30 = 480 subproblems). Since the number of subproblems to generate is greater with 512 workers than 16 workers (16*30 vs 512*30), the sequential decomposition takes a significant time compared to the overall resolution time (an average of 72.5%). Thus, it takes more time to generate and impacts on the global performances. Fixing the parallel decomposition parameters Now, we must choose the number of subproblems to generate for the main phase. We select some representative instances to fix a good number of subproblems per worker. Table 2 shows the total decomposition time for some instance to choose the number of subproblems for the main phase. We notice that 5 is a good choice. Starting from 7 subproblems per worker, the performances begin to drop. Comparison of the decomposition algorithms We denote Dec seq , Dec //1 and Dec //2 respectively the sequential decomposition, the naive parallel decomposition and the new parallel decomposition. Table 3 compares the decomposition time between different decomposition methods with 512 workers and the speedup su of each decomposition algorithm. On the first hand, we observe that the average speedup of the resolution time without the decomposition time is closed to a linear factor (347.1). On the other hand, we notice that Dec //1 improves Dec seq by a factor of 3.4 and Dec //2 improves Dec //1 by a factor of 2.4. So, the new parallel decomposition method improves the decomposition. Consequently, the new parallel decomposition Dec //2 improves the overall speedup su from 66.4 with the sequential decomposition Dec seq to 223.9.

Sequential decomposition issue Table

Scaling analysis

We test the scalability of EPS for different numbers of workers. Table 4 describes the details of the speedups. We notice that the resolution of Golomb-ruler and the market-split instances scales very well with EPS (speedups su reach around 400 for 512 workers). Instances cc base mzn rnd test.11 and ghoulomb 3-7-20 give the worst results with all workers. In general, we observe an average speedup near to w/2. Figure 2 describes the speedup obtained by EPS for the decomposition phase, the resolution phase without taking account the decomposition phase and the overall resolution with all instances (by a geometric average) as a function of the number of workers. EPS scales very well with a near-linear factor of gain for the resolution phase. Thanks to the parallelization of decomposition, EPS obtains good results for the overall resolution.

Comparison with work stealing

Table 5 shows a comparison between EPS and a work stealing implementation with 512 workers. The work stealing used in the datacenter is an MPI implementation based on [START_REF] Nielsen | Parallel search in gecode[END_REF]. In our experiments, the work stealing obtains good speedup until 64 workers but for more workers, the performances drop dramatically. With 512 workers, the average speedup of work stealing is 5.4. Many instances are not solved with 512 workers whereas they are solved by the sequential resolution. However, the average speedup of EPS is 223.9. Note that EPS is better than the work stealing on all selected instances.

Conclusion

The previous decomposition algorithms of the Embarrassingly Parallel Search are acceptable methods when there is only a few number of workers. These methods limit the performance of EPS on a data center, that is on a system with hundreds of cores. In this paper, we described an efficient parallel version of the decomposition. With parallelizing the problem decomposition and fixing 2 phases during the process, EPS gets a better workload during the decomposition. Consequently, EPS reaches the scalability with a data center and gives an average speedup at 223.9 with gecode for a set of benchmarks on a machine with 512 cores. This clearly improves the work stealing approach which does not scale well with hundred cores. EPS is more efficient by one or two orders of magnitude.

 generates all the assignments of the variables from x1 to x k regroups them and put the resulting subproblems into S returns the tuple (S, k) COMPUTEDEPTH(CN , cardS, δ, p) returns d such as cardS × |D(x δ+1)| × . . . × |D(x d-1)| < p ≤ cardS × |D(x δ+1)| × . . . × |D(x d-1)| × |D(x d)| GETDOMAINS(S) returns the set of domains of D = {D(S, x1), D(S, x2), . . . , D(S, xn)} such that ∀x ∈ X D(S, x) = ∪P ∈S D(P, x)

Algorithm 2 :

 2 SEQUENTIALDECOMPOSITION SEQUENTIALDECOMPOSITION(CN , p)// CN is a constraint network; p the number of subproblems to be generatedS ← ∅; d ← 0 while |S| < p do d ←COMPUTEDEPTH(CN , |S|, d, p) S ←GENERATESUBPROBLEMS(CN , S, d) if S = ∅ then return ∅ CN ← (X ,GETDOMAINS(S), C) return SAn important part of this method is the computation of the next depth. Currently it is simply estimated from the current number of subproblems that have been computed at the previous depth and the size of the domain. If we computed |S| subproblems at the depth δ and if we want to have p subproblems then we search for the value d such that |S|×|D(x δ+1)|×. . .×|D(x d-1)| < p ≤ |S|×|D(x δ+1)|×. . .×|D(x d-1)|×|D(x d)|

Fig. 1 .

 1 Fig. 1. Depth to reach 30 subproblems per worker related to the number of workers.

Fig. 2 .

 2 Fig. 2. Geometric Speedup (all instances) for each number of workers with EPS.

Table 1 .

 1 Part of the sequential decomposition according to the overall resolution time to generate 30 subproblems per worker for 16 workers and 512 workers.

	Instance	partdec f or 16 workers	partdec f or 512 workers
		16 * 30 = 480 subproblems	512 * 30 = 15360 subproblems
		%	%
	market split s5-02	0.7%	33.5%
	market split u5-09	0.6%	29.4%
	market split s5-06	0.6%	37.6%
	prop stress 0600	4.7%	81.0%
	nmseq 400	4.0%	85.3%
	prop stress 0500	3.5%	81.7%
	fillomino 18	6.2%	88.7%
	steiner-triples 09	3.1%	70.5%
	nmseq 300	8.1%	91.2%
	golombruler 13	1.7%	78.0%
	cc base mzn rnd test.11	6.1%	83.4%
	ghoulomb 3-7-20	6.9%	91.3%
	pattern set mining k1 yeast	4.9%	83.6%
	still life free 8x8	8.8%	90.6%
	bacp-6	2.8%	69.7%
	depot placement st70 6	3.8%	79.5%
	open stacks 01 wbp 20 20 1	7.1%	86.7%
	bacp-27	3.8%	76.5%
	still life still life 9	6.0%	88.5%
	talent scheduling alt film117	5.3%	91.1%
	geometric average(%)	3.5%	72.5%

Table 2 .

 2 Decomposition time comparison (in seconds) depending on the fixed number of subproblems in the second phase with 512 workers.

	Instance		numPbforStep[1]
		3	4	5	6	7
	prop stress 0600	10.5 8.6 7.5 9.1 13.0
	cc base mzn rnd test.11	21.5 12.1 10.1 14.5 17.8
	ghoulomb 3-7-20	16.4 13.3 12.1 16.5 18.1
	pattern set mining k1 yeast 8.5 6.9 5.6 9.2 13.4
	still life free 8x8	11.5 8.1 8.3 12.7 14.6
	total decomposition time(s)	68.4 49.0 43.6 62.0 76.9

Table 3 .

 3 Comparison of the decomposition algorithms with 512 workers.

	Instance	Seq.		Decseq	Dec //1	Dec //2
		t0	sures t dec su t dec su t dec su
		s	r	s	r	s	r	s	r
	market split s5-02	3314.4 459.5 3.6 305.5 1.3 388.7 1.0 405.9
	market split u5-09	3266.6 455.0 3.0 321.2 1.1 394.7 0.8 411.8
	market split s5-06	3183.9 436.0 4.4 272.0 2.2 334.8 1.0 384.0
	prop stress 0600	2729.2 213.9 54.4 40.7 21.3 80.0 7.5 193.1
	nmseq 400	2505.8 429.7 33.7 63.3 14.9 120.9 4.6 240.4
	prop stress 0500	1350.6 265.2 22.7 48.6 9.3 93.7 3.3 161.6
	fillomino 18	763.9 301.9 19.8 34.2 6.4 85.7 2.5 150.7
	steiner-triples 09	604.9 443.8 3.3 130.8 1.8 191.5 0.5 332.0
	nmseq 300	555.3 309.0 18.7 27.1 7.9 57.1 2.4 131.7
	golombruler 13	1303.9 492.0 9.4 92.7 1.4 322.9 0.4 427.9
	cc base mzn rnd test.11	3279.5 196.5 83.8 32.6 35.5 62.8 10.1 122.6
	ghoulomb 3-7-20	2993.8 279.2 112.6 24.3 50.0 49.3 12.1 131.1
	pattern set mining k1 yeast	2871.3 285.5 51.3 46.8 21.0 92.4 5.6 183.2
	still life free 8x8	2808.9 331.0 82.0 31.1 33.2 67.4 8.3 166.9
	bacp-6	2763.3 473.1 13.4 143.5 5.4 245.0 1.5 378.9
	depot placement st70 6	2665.1 345.6 29.9 70.9 12.5 131.8 3.6 235.1
	open stacks 01 wbp 20 20 1	1523.2 280.7 35.4 37.3 15.6 72.3 4.0 160.8
	bacp-27	1499.7 445.3 11.0 104.5 4.4 193.8 1.2 326.5
	still life still life 9	1145.1 347.9 25.2 40.1 9.4 90.4 3.0 182.9
	talent scheduling alt film117 566.1 386.4 15.0 34.4 6.0 75.8 1.8 175.8
	total(s) and geom. average(r)	41694.5 347.1 632.6 66.4 260.8 124.8 75.0 223.9

Table 4 .

 4 Speedup detailed for each instance and for each number of workers with EPS.

	Instance		number of workers
		t0(s)	su
		1w 8w 16w 32w 64w 96w 128w 256w 512w
	market split s5-02	3314.4 7.3 14.2 25.4 50.7 69.7 101.5 201.7 405.9
	market split u5-09	3266.6 7.3 14.3 25.7 51.5 68.6 103.0 207.4 411.8
	market split s5-06	3183.9 6.4 12.7 24.0 48.0 64.0 96.0 197.5 384.0
	prop stress 0600	2729.2 3.8 6.7 16.1 24.1 32.2 48.3 104.2 193.1
	nmseq 400	2505.8 4.1 7.2 15.0 30.1 40.1 60.1 117.7 240.4
	prop stress 0500	1350.6 2.5 4.4 13.1 20.2 26.9 40.4 81.8 161.6
	fillomino 18	763.9 2.4 5.1 11.4 18.8 25.1 37.7 72.4 150.7
	steiner-triples 09	604.9 5.7 12.3 21.7 41.5 55.3 83.0 143.2 332.0
	nmseq 300	555.3 2.4 5.1 8.2 16.5 21.9 32.9 69.3 131.7
	golombruler 13	1303.9 7.3 14.7 27.3 53.7 89.5 117.4 213.1 427.9
	cc base mzn rnd test.11	3279.5 1.7 5.1 8.9 14.3 20.4 30.6 59.7 122.6
	ghoulomb 3-7-20	2993.8 2.3 3.9 8.2 17.4 21.8 32.8 76.3 131.1
	pattern set mining k1 yeast	2871.3 2.9 5.8 11.5 23.9 30.5 45.8 91.6 183.2
	still life free 8x8	2808.9 2.6 6.4 10.4 20.9 27.8 41.7 83.5 166.9
	bacp-6	2763.3 6.7 12.1 23.7 47.4 63.1 94.7 212.4 378.9
	depot placement st70 6	2665.1 3.4 7.3 14.7 29.4 39.2 58.8 147.6 235.1
	open stacks 01 wbp 20 20 1	1523.2 3.1 6.5 10.0 23.1 26.8 40.2 95.4 160.8
	bacp-27	1499.7 5.6 11.2 20.4 43.8 54.4 81.6 214.3 326.5
	still life still life 9	1145.1 3.1 6.1 11.4 22.9 30.5 45.7 89.4 182.9
	talent scheduling alt film117 566.1 2.4 4.3 11.0 22.0 31.3 51.7 95.9 175.8
	total (t0) or geometric average (su)	41694.5 3.7 7.5 14.7 28.3 37.9 56.7 117.3 223.9

Table 5 .

 5 Comparison between work stealing and EPS with 512 workers.

	Instance	Seq.	Work stealing		EPS
		time(s) time(s) su time(s) su
	market split s5-02	3314.4	-	-	8.2 405.9
	market split u5-09	3266.6	-	-	7.9 411.8
	market split s5-06	3183.9	-	-	8.3 384.0
	prop stress 0600	2729.2	1426.4 1.9	14.1 193.1
	nmseq 400	2505.8	-	-	10.4 240.4
	prop stress 0500	1350.6	670.0 2.0	8.4 161.6
	fillomino 18	763.9	-	-	5.1 150.7
	steiner-triples 09	604.9	79.0 7.7	1.8 332.0
	nmseq 300	555.3	-	-	4.2 131.7
	golombruler 13	1303.9	15.5 83.9	3.0 427.9
	cc base mzn rnd test.11	3279.5	-	-	26.8 122.6
	ghoulomb 3-7-20	2993.8	575.4 5.2	22.8 131.1
	pattern set mining k1 yeast	2871.3	299.8 9.6	15.7 183.2
	still life free 8x8	2808.9	1672.8 1.7	16.8 166.9
	bacp-6	2763.3	330.1 8.4	7.3 378.9
	depot placement st70 6	2665.1	1902.9 1.4	11.3 235.1
	open stacks 01 wbp 20 20 1	1523.2	153.9 9.9	9.5 160.8
	bacp-27	1499.7	579.6 2.6	4.6 326.5
	still life still life 9	1145.1	140.1 8.2	6.3 182.9
	talent scheduling alt film117	566.1	95.5 5.9	3.2 175.8
	total (time) or geometric average (su)	41694.5	7941 5.4	195.7 223.9

In this paper, we do not study the influence of any specific ordering.