
HAL Id: hal-01344076
https://hal.science/hal-01344076

Submitted on 11 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting the Cardinality Reasoning for BinPacking
Constraint

François Pelsser, Pierre Schaus, Jean-Charles Régin

To cite this version:
François Pelsser, Pierre Schaus, Jean-Charles Régin. Revisiting the Cardinality Reasoning for Bin-
Packing Constraint. CP 2013, Sep 2013, Uppsala, Sweden. �10.1007/978-3-642-40627-0_43�. �hal-
01344076�

https://hal.science/hal-01344076
https://hal.archives-ouvertes.fr

Revisiting the cardinality reasoning for
BinPacking constraint

François Pelsser1, Pierre Schaus1, Jean-Charles Régin2

1 UCLouvain, ICTEAM,
Place Sainte-Barbe 2,

1348 Louvain-la-Neuve (Belgium),
pierre.schaus@uclouvain.be

2 University of Nice-Sophia Antipolis,
I3S UMR 6070, CNRS, (France)

jcregin@gmail.com

Abstract. In a previous work, we introduced a filtering for the Bin-
Packing constraint based on a cardinality reasoning for each bin com-
bined with a global cardinality constraint. We improve this filtering with
an algorithm providing tighter bounds on the cardinality variables. We
experiment it on the Balanced Academic Curriculum Problems demon-
strating the benefits of the cardinality reasoning for such bin-packing
problems.

Keywords: Constraint Programming, Global Constraints, Bin-Packing

1 Introduction

The BinPacking([X1, ..., Xn], [w1, ..., wn], [L1, ..., Lm]) global constraint captures
the situation of allocating n indivisible weighted items to m capacitated bins:

– Xi is an integer variable representing the bin where item i, with strictly pos-
itive integer weight wi, is placed. Every item must be placed i.e. Dom(Xi) ⊆
[1..m].

– Lj is an integer variable representing the sum of items weights placed into
that bin.

The constraint enforces the following relations:

∀j ∈ [1..m] :
∑

i|Xi=j

wi = Lj

The initial filtering algorithm proposed for this constraint in [8] essentially
filters the domains of the Xi using a knapsack-like reasoning to detect if forcing
an item into a particular bin j would make it impossible to reach a load Lj for
that bin. This procedure is very efficient but can say that an item is OK for a
particular bin while it is not. A failure detection algorithm was also introduced
in [8] computing a lower bound on the number of bins necessary to complete the

2

partial solution. This last consistency check has been extended in [2]. Cambazard
and O’Sullivan [1] propose to filter the domains using an LP arc-flow formulation.

In classical bin-packing problems, the capacity of the bins Lj are constrained
while the lower bounds Lj are usually set to 0 in the model. This is why existing

filtering algorithms use the upper bounds of the load variables Lj (i.e. capacity
of the bins) and do not focus much on the lower bounds of these variables Lj .

Recently [7] introduced an additional cardinality based filtering counting the
number of items in each bin. We can view this extension as a generalization
BinPacking([X1, ..., Xn], [w1, ..., wn], [L1, ..., Lm], [C1, ..., Cm]) of the constraint
where Cj are counting variables, that is defined by ∀j ∈ [1..m] : Cj = |{i|Xi =
j}|. This formulation for the BinPacking constraint is well suited when

– the lower bounds on load variables are also constrained initially Lj > 0,

– the items to be placed are approximately equivalent in weight (the bin-
packing is dominated by an assignment problem), or

– there are cardinality constraints on the number of items in each bin.

The idea of [7] is to introduce a redundant global cardinality constraint [5]:

BinPacking([X1, ..., Xn], [w1, ..., wn], [L1, ..., Lm], [C1, ..., Cm]) ≡
BinPacking([X1, ..., Xn], [w1, ..., wn], [L1, ..., Lm])∧

GCC([X1, . . . , Xn], [C1, . . . , Cm])

(1)

with a specialized algorithm used to adjust the upper and lower bounds of the
Cj variables when the bounds of the Lj ’s and/or the domains of the Xi’s change.
Naturally the tighter are the bounds computed on the cardinality variables, the
stronger will be the filtering induced by the GCC constraint.

We first introduce some definitions, then we recall the greedy algorithm in-
troduced in [7] to update the cardinality variables.

Definition 1. We denote by packj the set of items already packed in bin j :
packj = {i|Dom(Xi) = {j}} and by candj the candidate items available to go in
bin j: candj = {i|j ∈ Dom(Xi) ∧ |Dom(Xi)| > 1} . The sum of the weights of a
set of items S is sum(S) =

∑
i∈S wi.

As explained in [7], a lower bound on the number of items that can be
additionally packed into bin j can be obtained by finding the size of the smallest
cardinality set Aj ⊆ candj such as sum(Aj) ≥ Lj − sum(packj). Then we have

Cj ≥ |packj |+ |Aj |. Thus we can filter the lower bound of the cardinality Cj as
follows:

Cj ← max(Cj , |packj |+ |Aj |).

This set Aj is obtained in [7] by scanning greedily elements in candj with
decreasing weights until an accumulated weight of Lj − sum(packj) is reached.
It can be done in linear time assuming the items are sorted initially by weight.

3

Example 1. Five items with weights 3, 3, 4, 5, 7 can be placed into bin 1 having
a possible load L1 ∈ [20..22]. Two other items are already packed into that bin
with weights 3 and 7 (|pack1| = 2 and l1 = 10). Clearly we have that |A1| = 2
obtained with weights 5, 7. The minimum value of the domain of the cardinality
variable C1 is thus set to 4.

A similar reasoning can be used to filter the upper bound of the cardinality
variable Cj .

This paper further improves the cardinality based filtering, introducing

1. In Section 2, an algorithm computing tighter lower/upper bounds on the
cardinality variables Cj of each bin j, and

2. In Section 3, an algorithm to update the load variables Lj based on the
cardinality information.

The new filtering is experimented on the Balanced Academic Curriculum Prob-
lem in Section 4.

2 Filtering the cardinality variables

The lower (upper) bound computation on the cardinality Cj introduced in [7]
only considers the possible items candj and the minimum (maximum) load value
to reach i.e. Lj (Lj). Stronger bounds can possibly be computed by also consid-
ering the cardinality variables of other bins. Indeed, an item which is used for
reaching the minimum cardinality or minimum load for a bin j, may not be us-
able again for computing the minimum cardinality of another bin k as illustrated
on next example:

Example 2. A bin j can accept items having weights 3, 3, 3 with a minimum
load of 6 and thus a minimum cardinality of 2 items. A bin k with a minimum
load of 5 can accept the same items plus two items of weight 1. Clearly, the bin
k can not take more than one item with weight 3 for computing its minimum
cardinality because it would prevent the bin j to reach its minimum cardinality
of 2. Thus the minimum cardinality of bin k should be 3 and not 2 as would be
computed with the lower bound of [7].

Minimum Cardinality of bin j Algorithm 1 computes a stronger lower bound
also taking into account the cardinality variables of other bins Ck ∀k 6= j. The
intuition is that it prevents to reuse again an item if it is required for reaching a
minimum cardinality in another bin. This is achieved by maintaining for every
other bin k the number of items this bin is ready to give without preventing it
to fulfill its own minimum cardinality requirement Ck.

Clearly if a bin k must pack at least Ck items and has already packed |packk|
items, this bin can not give more than |candk| − (Ck − |packk|) items to bin
j. This information is maintained into the variables availableForOtherBinsk
initialized at line 5.

4

Example 3. Continuing on Example 2, bin j will have availableForOtherBinsj =
3− (2− 0) = 1 because this bin can give at most one of its item to another bin.

Since items are iterated in decreasing weight order at line 7, the other bins
accept to give first their ”heaviest” candidate items. This is an optimistic sit-
uation from the point of view of bin j, justifying why the algorithm computes
a valid lower bound on the cardinality variable Cj . Each time an item is used
by bin j, the other bins (where this item was candidate) reduce their quantities
availableForOtherBinsk since they ”consume” their flexibility to give items.
If at least one other bin k absolutely needs the current item i to fulfill its own
minimum cardinality (detected at line 13), available is set to false meaning
that this item can not be used in the computation of the cardinality of bin j to
reach the minimum load.

On the other hand, if the current item can be used (available=true), then
other bins which agreed to give this item have one item less available. The
availableForOtherBinsk numbers are decremented at line 22.

Finally notice that the algorithm may detect unfeasible situations when it is
not able to reach the minimum load at line 28.

Maximum Cardinality The algorithm to compute the maximum cardinality is
similar. The changes to bring to Algorithm 1 are:

1. The variable binMinCard should be named binMaxCard
2. The items are considered in increasing weight order at line 7, and
3. The stopping criteria at line 8 becomes binLoad + wi > Lj .
4. There is no feasibility test at lines 27 - 29.

Complexity Assuming the items are sorted initially in decreasing weights, this
algorithm runs in O(n·m) with n the number of items and m the number of bins.
Hence adjusting the cardinality of every bins takes O(n · m2). This algorithm
has no guarantee to be idempotent. Indeed the bin j may consider an item i as
available, but the later adjustment of the minimum cardinality of another bin k
may cause this item to be unavailable if bin j is considered again.

Example 4. The instance considered - depicted in Figure 1 (a) - is the following:

BinPacking([X1, . . . , X4], [w1, . . . , w4], [L1, . . . , L3])

X1 ∈ {1, 2}, X2 ∈ {1, 2}, X3 ∈ {2, 3}, X4 ∈ {2, 3},
w1 = 1, w2 = 1, w3 = 3, w4 = 3

L1 ∈ {1, 2}, L2 ∈ {2, 3}, L3 ∈ {2, 4}

(2)

We consider first the computation of the cardinality of bin 2. This bin must
have at least one item to reach its minimum load. We now consider the maximum
cardinality of this bin. Items 1 and 2 can both be packed into bin 2 but doing

5

Algorithm 1: Computes a lower bound on the cardinality of bin j

Data: j a bin index
Result: binMinCard a lower bound on the min cardinality for the bin j

1 binLoad← sum(packj) ;
2 binMinCard← |packj | ;
3 othersBins← {1, . . . ,m} \ j ;
4 foreach k ∈ otherBins do
5 availableForOtherBinsk ← |candk| − (Ck − |packk|);
6 end
7 foreach i ∈ candj in decreasing weight order do
8 if binLoad ≥ Lj then

9 break ;
10 end
11 available ← true;
12 for k ∈ othersBins do
13 if k ∈ Dom(Xi) ∧ availableForOtherBinsk = 0 then
14 available ← false ;
15 end

16 end
17 if available then
18 binLoad← binLoad + wi ;
19 binMinCard← binMinCard + 1 ;
20 for k ∈ othersBins do
21 if k ∈ Dom(Xi) then
22 availableForOtherBinsk ← availableForOtherBinsk − 1 ;
23 end

24 end

25 end

26 end
27 if binLoad < Lj then

28 The constraint is unfeasible ;
29 end

so would prevent bin 1 to achieve its minimum load requirement of 1. Hence
only one of these items can be used during the computation of the maximum
cardinality for bin 2. Assuming that item 1 is used, the next item considered
is item 3 having a weight of 3. But Adding this item together with item 1
would exceed the maximum load (4 > 3) (stopping criteria for the maximum
cardinality computation). Hence the final maximum cardinality for bin 2 is one.
The cardinality reasoning also deduces that bin 1 must have between one and
two items and bin 3 must have exactly one item. Based on these cardinalities,
the global cardinality constraint (GCC) is able to deduce that item 1 and 2 must
be packed into bin 1. This filtering is illustrated on Figure 1 (b).

The algorithm from [7] deduces that bin 2 must have between one and two
items (not exactly one as the new filtering). The upper bound of two items is
obtained with the two lightest items 1 and 2. As for the new algorithm, it deduces

6

3

1 2

4

Bin 1

Bin 2

Bin 3

3

1

2

4

Bin 1

Bin 2

Bin 3
(a) (b)

Fig. 1: (a) BinPacking instance with 3 bins and 4 items. The arcs represent for
each item, the possible bins. (b) Domains resulting from the filtering induced
with the tighter computation of the cardinalities. The grey in a bin stands for
the minimum level to reach.

that bin 1 must have between one and two items and bin 3 must have exactly
one item. Unfortunately, the GCC is not able to remove any bin from the item’s
domains based on these cardinality bounds. Thus, this algorithm is less powerful
than the new one.

3 Filtering the load variables

We introduce a filtering of the load variable taking the cardinality information
into account. No such filtering was proposed in [7]. Algorithm 2 is similar to
Algorithm 1 except that we try to reach the minimum cardinality requirements
by choosing first the ”lightest” items until the minimum cardinality Cj is reached

(line 8). Again a similar reasoning can be done to compute an upper bound on
the maximum load.

4 Experiments

The Balanced Academic Curriculum Problem (BACP) is recurrent in Univer-
sities. The goal is to schedule the courses that a student must follow in order
to respect the prerequisite constraints between courses and to balance as much
as possible the workload of each period. Each period also has a minimum and
maximum number of courses. The largest of the three instances available on
CSPLIB (http://www.csplib.org) with 12 periods, 66 courses having a weight

7

Algorithm 2: Computes a lower bound on load of bin j

Data: j a bin index
Result: binMinLoad a lower bound on the load of bin j

1 binCard← |packj | ;
2 binMinLoad← sum(packj) ;
3 othersBins← {1, . . . ,m} \ j ;
4 foreach k ∈ otherBins do
5 availableForOtherBinsk ← |candk| − (Ck − |packk|);
6 end
7 foreach i ∈ candj in increasing weight order do
8 if binCard ≥ (Cj) then

9 break ;
10 end
11 available ← true;
12 for k ∈ othersBins do
13 if k ∈ Dom(Xi) ∧ availableForOtherBinsk = 0 then
14 available ← false ;
15 end

16 end
17 if available then
18 binMinLoad← binLoad + wi ;
19 binCard← binCard + 1 ;
20 for k ∈ othersBins do
21 if k ∈ Dom(Xi) then
22 availableForOtherBinsk ← availableForOtherBinsk − 1 ;
23 end

24 end

25 end

26 end
27 if binCard < Cj then

28 The constraint is unfeasible ;
29 end

limit(s) A B C

15 13 27 41

30 18 34 46

60 21 37 51

120 25 43 57

1800 37 62 69

Table 1: Number of instances for which is was possible to prove optimality within
the time limit.

between 1 and 5 (credits) and 65 prerequisites relations, was modified in [6] to
generate 100 new instances3 by giving each course a random weight between

3 Available at http://becool.info.ucl.ac.be/resources/bacp

8

1 and 5 and by randomly keeping 50 out of the 65 prerequisites. Each period
must have between 5 and 7 courses. As shown in [3], a better balance property
is obtained by minimizing the variance instead of the maximum load. For each
instance, we test three different filtering configurations for bin-packing:

– A: The BinPacking constraint from [8] + a GCC constraint,

– B: A + the cardinality filtering from [7],

– C: A + the cardinality filtering introduced in this paper.

time (ms) best bound number of failures

instance A B C A B C A B C

inst2.txt timeout timeout 679 3243 3247 3237 835459 1064862 829
inst14.txt timeout 45625 6925 3107 3105 3105 1043251 228294 8530
inst22.txt timeout 13971 281 3045 3041 3041 811852 48482 353
inst30.txt timeout 118964 192 3416 3402 3402 795913 707487 129
inst36.txt timeout timeout 337 2685 2685 2671 847641 915849 364
inst47.txt timeout timeout 112 3309 3309 3303 2561038 3812512 269
inst65.txt timeout timeout 222 3416 3414 3402 921694 1091396 168
inst70.txt timeout timeout 101060 3043 3043 3041 1917729 1516627 125270
inst87.txt 16275 15089 251 3643 3643 3643 109173 65493 207
inst98.txt timeout timeout 48 2987 2987 2979 7023383 8261509 261

Table 2: Detailed statistics obtained on some significant instances.

The experiments were conducted on a Macbook Pro 2.3 Ghz, I7. The solver
used is OscaR [4] running on JVM 1.7 of Oracle and implemented with Scala
2.10. The source code of the constraint is available on OscaR repository.

Table 1 gives the number of solved instances for increasing timeout values.
Table 2 illustrates the detailed numbers (time, best bound, number of failures) for
some instances with a 30 minutes timeout. As can be seen, the new filtering allows
to solve more instances sometimes cutting the number of failures by several order
of magnitudes.

5 Conclusion

We introduced stronger cardinality bounds on the BinPacking constraint by also
integrating the cardinality requirements of other bins during the computation.
These stronger bounds have a direct impact on the filtering of placement vari-
ables through the GCC constraint. The improved filtering was experimented on
the BACP allowing to solve more instances and reducing drastically the number
of failures on some instances.

9

References

1. Hadrien Cambazard and Barry O’Sullivan. Propagating the bin packing constraint
using linear programming. In David Cohen, editor, CP, volume 6308 of Lecture
Notes in Computer Science, pages 129–136. Springer, 2010.

2. Julien Dupuis, Pierre Schaus, and Yves Deville. Consistency check for the bin
packing constraint revisited. In Andrea Lodi, Michela Milano, and Paolo Toth,
editors, CPAIOR, volume 6140 of Lecture Notes in Computer Science, pages 117–
122. Springer, 2010.

3. Jean-Noël Monette, Pierre Schaus, Stéphane Zampelli, Yves Deville, and Pierre
Dupont. A CP approach to the balanced academic curriculum problem. In Sev-
enth International Workshop on Symmetry and Constraint Satisfaction Problems,
volume 7, 2007.

4. OscaR Team. OscaR: Scala in OR, 2012. Available from
https://bitbucket.org/oscarlib/oscar.

5. Jean-Charles Régin. Generalized arc consistency for global cardinality constraint.
In Proceedings of the thirteenth national conference on Artificial intelligence-Volume
1, pages 209–215. AAAI Press, 1996.

6. Pierre Schaus et al. Solving balancing and bin-packing problems with constraint
programming. PhD thesis, PhD thesis, Universit catholique de Louvain Louvain-la-
Neuve, 2009.

7. Pierre Schaus, Jean-Charles Régin, Rowan Van Schaeren, Wout Dullaert, and Birger
Raa. Cardinality reasoning for bin-packing constraint: Application to a tank allo-
cation problem. In Michela Milano, editor, CP, volume 7514 of Lecture Notes in
Computer Science, pages 815–822. Springer, 2012.

8. Paul Shaw. A constraint for bin packing. In Principles and Practice of Constraint
Programming–CP 2004, pages 648–662. Springer, 2004.

