François Pelsser 
  
Pierre Schaus 
email: pierre.schaus@uclouvain.be
  
Jean-Charles Régin 
email: jcregin@gmail.com
  
Revisiting the cardinality reasoning for BinPacking constraint

Keywords: Constraint Programming, Global Constraints, Bin-Packing

In a previous work, we introduced a filtering for the Bin-Packing constraint based on a cardinality reasoning for each bin combined with a global cardinality constraint. We improve this filtering with an algorithm providing tighter bounds on the cardinality variables. We experiment it on the Balanced Academic Curriculum Problems demonstrating the benefits of the cardinality reasoning for such bin-packing problems.

Introduction

The BinPacking([X 1 , ..., X n ], [w 1 , ..., w n ], [L 1 , ..., L m ]) global constraint captures the situation of allocating n indivisible weighted items to m capacitated bins:

-X i is an integer variable representing the bin where item i, with strictly positive integer weight w i , is placed. Every item must be placed i.e. Dom(X i ) ⊆ [1..m]. -L j is an integer variable representing the sum of items weights placed into that bin.

The constraint enforces the following relations:

∀j ∈ [1.
.m] :

i|Xi=j w i = L j
The initial filtering algorithm proposed for this constraint in [START_REF] Shaw | A constraint for bin packing[END_REF] essentially filters the domains of the X i using a knapsack-like reasoning to detect if forcing an item into a particular bin j would make it impossible to reach a load L j for that bin. This procedure is very efficient but can say that an item is OK for a particular bin while it is not. A failure detection algorithm was also introduced in [START_REF] Shaw | A constraint for bin packing[END_REF] computing a lower bound on the number of bins necessary to complete the partial solution. This last consistency check has been extended in [START_REF] Dupuis | Consistency check for the bin packing constraint revisited[END_REF]. Cambazard and O'Sullivan [START_REF] Cambazard | Propagating the bin packing constraint using linear programming[END_REF] propose to filter the domains using an LP arc-flow formulation.

In classical bin-packing problems, the capacity of the bins L j are constrained while the lower bounds L j are usually set to 0 in the model. This is why existing filtering algorithms use the upper bounds of the load variables L j (i.e. capacity of the bins) and do not focus much on the lower bounds of these variables L j .

Recently [START_REF] Schaus | Cardinality reasoning for bin-packing constraint: Application to a tank allocation problem[END_REF] introduced an additional cardinality based filtering counting the number of items in each bin. We can view this extension as a generalization

BinPacking([X 1 , ..., X n ], [w 1 , ..., w n ], [L 1 , ..., L m ], [C 1 , ..., C m ]
) of the constraint where C j are counting variables, that is defined by ∀j ∈ [1..m] : C j = |{i|X i = j}|. This formulation for the BinPacking constraint is well suited when the lower bounds on load variables are also constrained initially L j > 0, the items to be placed are approximately equivalent in weight (the binpacking is dominated by an assignment problem), or there are cardinality constraints on the number of items in each bin.

The idea of [START_REF] Schaus | Cardinality reasoning for bin-packing constraint: Application to a tank allocation problem[END_REF] is to introduce a redundant global cardinality constraint [START_REF] Régin | Generalized arc consistency for global cardinality constraint[END_REF]:

BinPacking([X 1 , ..., X n ], [w 1 , ..., w n ], [L 1 , ..., L m ], [C 1 , ..., C m ]) ≡ BinPacking([X 1 , ..., X n ], [w 1 , ..., w n ], [L 1 , ..., L m ])∧ GCC([X 1 , . . . , X n ], [C 1 , . . . , C m ]) (1) 
with a specialized algorithm used to adjust the upper and lower bounds of the C j variables when the bounds of the L j 's and/or the domains of the X i 's change. Naturally the tighter are the bounds computed on the cardinality variables, the stronger will be the filtering induced by the GCC constraint.

We first introduce some definitions, then we recall the greedy algorithm introduced in [START_REF] Schaus | Cardinality reasoning for bin-packing constraint: Application to a tank allocation problem[END_REF] to update the cardinality variables. Definition 1. We denote by pack j the set of items already packed in bin j : pack j = {i|Dom(X i ) = {j}} and by cand j the candidate items available to go in bin j: cand j = {i|j ∈ Dom(X i ) ∧ |Dom(X i )| > 1} . The sum of the weights of a set of items S is sum(S) = i∈S w i .

As explained in [START_REF] Schaus | Cardinality reasoning for bin-packing constraint: Application to a tank allocation problem[END_REF], a lower bound on the number of items that can be additionally packed into bin j can be obtained by finding the size of the smallest cardinality set A j ⊆ cand j such as sum(A j ) ≥ L j -sum(pack j ). Then we have C j ≥ |pack j | + |A j |. Thus we can filter the lower bound of the cardinality C j as follows:

C j ← max(C j , |pack j | + |A j |).
This set A j is obtained in [START_REF] Schaus | Cardinality reasoning for bin-packing constraint: Application to a tank allocation problem[END_REF] by scanning greedily elements in cand j with decreasing weights until an accumulated weight of L j -sum(pack j ) is reached. It can be done in linear time assuming the items are sorted initially by weight. A similar reasoning can be used to filter the upper bound of the cardinality variable C j .

This paper further improves the cardinality based filtering, introducing 1. In Section 2, an algorithm computing tighter lower/upper bounds on the cardinality variables C j of each bin j, and 2. In Section 3, an algorithm to update the load variables L j based on the cardinality information.

The new filtering is experimented on the Balanced Academic Curriculum Problem in Section 4.

Filtering the cardinality variables

The lower (upper) bound computation on the cardinality C j introduced in [START_REF] Schaus | Cardinality reasoning for bin-packing constraint: Application to a tank allocation problem[END_REF] only considers the possible items cand j and the minimum (maximum) load value to reach i.e. L j (L j ). Stronger bounds can possibly be computed by also considering the cardinality variables of other bins. Indeed, an item which is used for reaching the minimum cardinality or minimum load for a bin j, may not be usable again for computing the minimum cardinality of another bin k as illustrated on next example:

Example 2. A bin j can accept items having weights 3, 3, 3 with a minimum load of 6 and thus a minimum cardinality of 2 items. A bin k with a minimum load of 5 can accept the same items plus two items of weight 1. Clearly, the bin k can not take more than one item with weight 3 for computing its minimum cardinality because it would prevent the bin j to reach its minimum cardinality of 2. Thus the minimum cardinality of bin k should be 3 and not 2 as would be computed with the lower bound of [START_REF] Schaus | Cardinality reasoning for bin-packing constraint: Application to a tank allocation problem[END_REF].

Minimum Cardinality of bin j Algorithm 1 computes a stronger lower bound also taking into account the cardinality variables of other bins C k ∀k = j. The intuition is that it prevents to reuse again an item if it is required for reaching a minimum cardinality in another bin. This is achieved by maintaining for every other bin k the number of items this bin is ready to give without preventing it to fulfill its own minimum cardinality requirement C k .

Clearly if a bin k must pack at least C k items and has already packed |pack k | items, this bin can not give more than |cand k | -(C k -|pack k |) items to bin j. This information is maintained into the variables availableF orOtherBins k initialized at line 5.

Example 3. Continuing on Example 2, bin j will have availableF orOtherBins j = 3 -(2 -0) = 1 because this bin can give at most one of its item to another bin.

Since items are iterated in decreasing weight order at line 7, the other bins accept to give first their "heaviest" candidate items. This is an optimistic situation from the point of view of bin j, justifying why the algorithm computes a valid lower bound on the cardinality variable C j . Each time an item is used by bin j, the other bins (where this item was candidate) reduce their quantities availableF orOtherBins k since they "consume" their flexibility to give items. If at least one other bin k absolutely needs the current item i to fulfill its own minimum cardinality (detected at line 13), available is set to false meaning that this item can not be used in the computation of the cardinality of bin j to reach the minimum load.

On the other hand, if the current item can be used (available=true), then other bins which agreed to give this item have one item less available. The availableF orOtherBins k numbers are decremented at line 22.

Finally notice that the algorithm may detect unfeasible situations when it is not able to reach the minimum load at line 28.

Maximum Cardinality

The algorithm to compute the maximum cardinality is similar. The changes to bring to Algorithm 1 are:

1. The variable binM inCard should be named binM axCard 2. The items are considered in increasing weight order at line 7, and 3. The stopping criteria at line 8 becomes binLoad + w i > L j . 4. There is no feasibility test at lines 27 -29.

Complexity Assuming the items are sorted initially in decreasing weights, this algorithm runs in O(n•m) with n the number of items and m the number of bins. Hence adjusting the cardinality of every bins takes O(n • m 2 ). This algorithm has no guarantee to be idempotent. Indeed the bin j may consider an item i as available, but the later adjustment of the minimum cardinality of another bin k may cause this item to be unavailable if bin j is considered again.

Example 4. The instance considered -depicted in Figure 1 (a) -is the following:

BinPacking([X 1 , . . . , X 4 ], [w 1 , . . . , w 4 ], [L 1 , . . . , L 3 ]) X 1 ∈ {1, 2}, X 2 ∈ {1, 2}, X 3 ∈ {2, 3}, X 4 ∈ {2, 3}, w 1 = 1, w 2 = 1, w 3 = 3, w 4 = 3 L 1 ∈ {1, 2}, L 2 ∈ {2, 3}, L 3 ∈ {2, 4} (2) 
We consider first the computation of the cardinality of bin 2. This bin must have at least one item to reach its minimum load. We now consider the maximum cardinality of this bin. Items 1 and 2 can both be packed into bin 2 but doing Algorithm 1: Computes a lower bound on the cardinality of bin j Data: j a bin index Result: binM inCard a lower bound on the min cardinality for the bin j 1 binLoad ← sum(packj) ; The constraint is unfeasible ; 29 end so would prevent bin 1 to achieve its minimum load requirement of 1. Hence only one of these items can be used during the computation of the maximum cardinality for bin 2. Assuming that item 1 is used, the next item considered is item 3 having a weight of 3. But Adding this item together with item 1 would exceed the maximum load (4 > 3) (stopping criteria for the maximum cardinality computation). Hence the final maximum cardinality for bin 2 is one. The cardinality reasoning also deduces that bin 1 must have between one and two items and bin 3 must have exactly one item. Based on these cardinalities, the global cardinality constraint (GCC) is able to deduce that item 1 and 2 must be packed into bin 1. This filtering is illustrated on Figure 1 (b).

The algorithm from [START_REF] Schaus | Cardinality reasoning for bin-packing constraint: Application to a tank allocation problem[END_REF] deduces that bin 2 must have between one and two items (not exactly one as the new filtering). The upper bound of two items is obtained with the two lightest items 1 and 2. As for the new algorithm, it deduces that bin 1 must have between one and two items and bin 3 must have exactly one item. Unfortunately, the GCC is not able to remove any bin from the item's domains based on these cardinality bounds. Thus, this algorithm is less powerful than the new one.

Filtering the load variables

We introduce a filtering of the load variable taking the cardinality information into account. No such filtering was proposed in [START_REF] Schaus | Cardinality reasoning for bin-packing constraint: Application to a tank allocation problem[END_REF]. Algorithm 2 is similar to Algorithm 1 except that we try to reach the minimum cardinality requirements by choosing first the "lightest" items until the minimum cardinality C j is reached (line 8). Again a similar reasoning can be done to compute an upper bound on the maximum load.

Experiments

The Balanced Academic Curriculum Problem (BACP) is recurrent in Universities. The goal is to schedule the courses that a student must follow in order to respect the prerequisite constraints between courses and to balance as much as possible the workload of each period. Each period also has a minimum and maximum number of courses. Table 2: Detailed statistics obtained on some significant instances.

The experiments were conducted on a Macbook Pro 2.3 Ghz, I7. The solver used is OscaR [START_REF]OscaR: Scala in OR[END_REF] running on JVM 1.7 of Oracle and implemented with Scala 2.10. The source code of the constraint is available on OscaR repository.

Table 1 gives the number of solved instances for increasing timeout values. Table 2 illustrates the detailed numbers (time, best bound, number of failures) for some instances with a 30 minutes timeout. As can be seen, the new filtering allows to solve more instances sometimes cutting the number of failures by several order of magnitudes.

Conclusion

We introduced stronger cardinality bounds on the BinPacking constraint by also integrating the cardinality requirements of other bins during the computation. These stronger bounds have a direct impact on the filtering of placement variables through the GCC constraint. The improved filtering was experimented on the BACP allowing to solve more instances and reducing drastically the number of failures on some instances.

Example 1 .

 1 Five items with weights 3, 3, 4, 5, 7 can be placed into bin 1 having a possible load L 1 ∈ [20..22]. Two other items are already packed into that bin with weights 3 and 7 (|pack 1 | = 2 and l 1 = 10). Clearly we have that |A 1 | = 2 obtained with weights 5, 7. The minimum value of the domain of the cardinality variable C 1 is thus set to 4.

2

 2 binM inCard ← |packj| ; 3 othersBins ← {1, . . . , m} \ j ; 4 foreach k ∈ otherBins do 5 availableF orOtherBins k ← |cand k | -(C k -|pack k |); 6 end 7 foreach i ∈ candj in decreasing weight order do 8 if binLoad ≥ Lj then 9 break ; 10 end 11 available ← true; 12 for k ∈ othersBins do 13 if k ∈ Dom(Xi) ∧ availableF orOtherBins k = 0 then 14 available ← false ; 15 end 16 end 17 if available then 18 binLoad ← binLoad + wi ; 19 binM inCard ← binM inCard + 1 ; 20 for k ∈ othersBins do 21 if k ∈ Dom(Xi) then 22 availableF orOtherBins k ← availableF orOtherBins k -1 ; 27 if binLoad < Lj then 28

Fig. 1 :

 1 Fig. 1: (a) BinPacking instance with 3 bins and 4 items. The arcs represent for each item, the possible bins. (b) Domains resulting from the filtering induced with the tighter computation of the cardinalities. The grey in a bin stands for the minimum level to reach.

Table 1 :

 1 The largest of the three instances available on CSPLIB (http://www.csplib.org) with 12 periods, 66 courses having a weight Algorithm 2: Computes a lower bound on load of bin j Data: j a bin index Result: binM inLoad a lower bound on the load of bin j 1 binCard ← |packj| ; 2 binM inLoad ← sum(packj) ; 3 othersBins ← {1, . . . , m} \ j ; 4 foreach k ∈ otherBins do5 availableF orOtherBins k ← |cand k | -(C k -|pack k |); 6 end7 foreach i ∈ candj in increasing weight order do Number of instances for which is was possible to prove optimality within the time limit.

	8	if binCard ≥ (Cj) then		
	9	break ;		
	10	end		
	11	available ← true;		
	12	for k ∈ othersBins do		
	13	if k ∈ Dom(Xi) ∧ availableF orOtherBins k = 0 then
	14	available ← false ;		
	15	end		
	16	end		
	17	if available then		
	18	binM inLoad ← binLoad + wi ;	
	19	binCard ← binCard + 1 ;		
	20	for k ∈ othersBins do		
	21	if k ∈ Dom(Xi) then		
	22	availableF orOtherBins k ← availableF orOtherBins k -1 ;
	23	end		
	24	end		
	25	end		
	26 end		
	27 if binCard < Cj then		
	28	The constraint is unfeasible ;		
	29 end		
		limit(s) A	B	C
		15	13	27	41
		30	18	34	46
		60	21	37	51
		120	25	43	57
		1800	37	62	69
	between 1 and 5 (credits) and 65 prerequisites relations, was modified in [6] to
	generate 100 new instances 3 by giving each course a random weight between

Available at http://becool.info.ucl.ac.be/resources/bacp