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Abstract We study the weighted circuit constraint in the context of constraint pro-

gramming. It appears as a substructure in many practical applications, particularly

routing problems. We propose a domain filtering algorithm for the weighted circuit con-

straint that is based on the 1-tree relaxation of Held and Karp. In addition, we study

domain filtering based on an additive bounding procedure that combines the 1-tree

relaxation with the assignment problem relaxation. Experimental results on Traveling

Salesman Problem instances demonstrate that our filtering algorithms can dramatically

reduce the problem size. In particular, the search tree size and solving time can be re-

duced by several orders of magnitude, compared to existing constraint programming

approaches. Moreover, for medium-size problem instances, our method is competitive

with the state-of-the-art special-purpose TSP solver Concorde.

1 Introduction

Many practical industrial problems, most importantly routing problems, ask to find

a circuit in a weighted graph, typically with additional properties. The most famous

example is to find a circuit with minimum total weight, visiting all nodes of the graph

exactly once, i.e., the well-known Traveling Salesman Problem (TSP) [2, 27]. Additional

properties that are often imposed in practice are time windows in which the nodes must

be visited, or precedence relations between the nodes.

For the symmetric Traveling Salesman Problem without side constraints, the most

effective exact solution methods are based on integer linear programming technol-

ogy [27]. The most notable example is the special-purpose TSP solver Concorde, that
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Jean-Charles Régin, Michel Rueher
I3S-CNRS, University of Nice-Sophia Antipolis, Nice, France
E-mail: jean-charles.regin@unice.fr,rueher@polytech.unice.fr



2

can solve pure symmetric Traveling Salesman Problems on 10,000s or more of nodes

in a reasonable time [2]. However, when side constraints are involved, Concorde can

no longer be applied, and current exact methods in general cannot scale beyond, say,

a few hundred nodes at best.

One competitive approach to solving such (routing) problems with several side con-

straints is constraint programming (CP), see for example [22, 37]. In a constraint pro-

gramming model, different aspects of the problem can be expressed by so-called global

constraints that capture the combinatorial structures forming the problem [47, 32].

For example, in the case of the Traveling Salesman Problem with Time Windows, one

global constraint may capture the fact that we need to have a closed tour, while another

global constraint may capture the time window information. Each such constraint has

an associated domain filtering algorithm that removes domain values that are provably

inconsistent with that constraint, and hence with the problem as a whole. A global view

on the problem is established through constraint propagation, in which the updated

variable domains are communicated from one constraint to the next, until a fixed point

is reached [6].

In constraint programming, specific syntax for expressing unweighted circuit con-

straints in a graph have been proposed already since the first CP systems were de-

veloped [39, 4]. Most current CP systems contain a constraint to model unweighted

circuits, although the associated filtering algorithm may be quite different for each sys-

tem. Weighted circuit constraints are less common in CP systems, as the weights and

the circuit are typically handled separately. However, several filtering algorithms have

been proposed in the literature that can be applied to the weighted circuit constraint,

for example by Caseau and Laburthe [9], Pesant et al. [42], and Focacci et al. [21]

(see Section 3 for more detailed information). Yet, no professional CP system currently

offers any of these algorithms, and solving problems that contain weighted circuit con-

straints remains a challenge for constraint programming. One of the main motivations

of our work is to expand the reach of constraint programming solvers to complex rout-

ing problems by proposing more effective filtering algorithms for the weighted circuit

constraint.

The main contributions of this work are the following. First, we introduce a filtering

algorithm for the weighted circuit constraint based on the well-known 1-tree relaxation

by Held and Karp [28, 29]. Second, we utilize a ‘set variable’ representation of the

constraint, allowing the application of different relaxation-based filtering methods on

the same variables. In particular, we study an additive bounding procedure by cou-

pling the 1-tree relaxation with the assignment problem relaxation. Third, we analyze

the strengths of the different relaxations in terms of their respective filtering power

by extensive computational results. Lastly, we experimentally show that our method

currently provides the most competitive constraint programming approach for solving

Traveling Salesman Problems.

The paper is structured as follows. In Section 2 we provide necessary definitions and

basic methodological concepts. In Section 3 we provide an overview of related work.

In Section 4 we introduce our representation of the weighted circuit constraint, and

discuss the relationship with other existing representations. In Section 5 we present

our filtering algorithms based on the 1-tree relaxation. In Section 6 we present the

additive bounding procedure that can be applied to strengthen the filtering algorithm.

The computational results are presented in Section 7. We present our main conclusions

in Section 8.



3

2 Preliminaries

In this section we present definitions and methodology on which our methods are based.

To make the paper as self-contained as possible we recall graph-theoretic definitions as

well as a description of the 1-tree relaxation and the assignment problem relaxation.

2.1 Basic definitions

We first recall some basic definitions. Let G = (V,E,w) be an undirected weighted

graph with node set V edge set E, and edge weights w : E → Q+. We let n = |V | and

m = |E|.
A circuit in G is a sequence C = v0, e1, v1, . . . , ek, vk where k ≥ 0, such that

– v0, v1, . . . , vk ∈ V ,

– vk = v0,

– v0, v1, . . . , vk−1 are all distinct,

– e1, e2, . . . , ek ∈ E, and

– ei = (vi−1, vi) for i = 1, . . . , k.

When k equals |V |, C is called a Hamiltonian circuit. We define the weight of C

as w(C) =
∑k
i=1 w(ei). Given a nonnegative number K, the weighted Hamiltonian

circuit problem asks to find a Hamiltonian circuit in G with weight at most K. The

(symmetric) Traveling Salesman Problem, or TSP, asks to find a Hamiltonian circuit

in G with minimum weight. In constraint programming, the weighted circuit constraint

corresponds precisely to the weighted Hamiltonian circuit problem, being a feasibility

problem instead of an optimization problem (we present a definition of the weighted

circuit constraint in Section 4). We note, however, that the optimal solution of the TSP

serves as a certificate to the feasibility of the weighted circuit constraint. Furthermore,

optimal solutions to relaxations of the TSP are valid lower bounds for the weighted

circuit constraint.

For directed graphs edges are ordered pairs, called arcs. We assume without loss

of generality that an arc between two nodes occurs at most once. For a directed graph

G = (V,A,w) on node set V , arc set A and arc weights w : A → Q+, the above

definitions are generalized naturally to directed versions by replacing edge ei by arc ai.

When the weight function w for a directed graph is not symmetric, the corresponding

TSP is referred to as an asymmetric TSP.

Recall that for a graph G = (V,E), a spanning tree is a connected subgraph of G

with |V |−1 edges. For simplicity, we also identify a spanning tree with its set of edges.

Lastly, we fix the following notation. Let G = (V,E,w) be an undirected weighted

graph. For an edge e ∈ E, we let G \ {e} denote the graph (V,E \ {e}, w). For a node

i ∈ V , we let G \ {i} denote the graph (V \ {i}, E \ {(i, j) | j ∈ V }, w).

For S ⊂ V , we let δ(S) define the set of all edges (i, j) with i ∈ S and j ∈ V \ S.

In particular, we let δ(i) represent all edges adjacent to node i ∈ V .
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2.2 Linear Model for the Traveling Salesman Problem

The TSP can be modeled as an integer linear program by introducing a binary variable

xe for all e ∈ E, representing whether edge e is included in the circuit or not [2]:

min
∑
e∈E

w(e)xe (1)

s.t.
∑
e∈δ(i)

xe = 2 ∀i ∈ V (2)

∑
i,j∈S,i<j

x(i,j) ≤ |S| − 1 ∀S ⊂ V, |S| ≥ 3 (3)

xe ∈ {0, 1} ∀e ∈ E (4)

Relaxations can be obtained by relaxing the degree constraints (2) or the subtour elim-

ination constraints (3) that define the connectivity. Both relaxations will be discussed

next.

2.3 1-Tree Relaxation

The 1-tree relaxation, introduced by Held and Karp [28, 29], follows from relaxing the

degree constraints (2).

Without loss of generality, we assume that the nodes V are labeled {1, 2, . . . , n}.
A 1-tree is defined as a spanning tree on the subgraph induced by the set of nodes

V \ {1}, together with two distinct edges incident to node 1. Note that the choice of

node 1 is arbitrary, depending on the labeling of V . The degree of a node is the set of

edges in the 1-tree incident to that node, and we denote it by deg(i) for i ∈ V . The

1-tree relaxation asks to find a 1-tree with minimum total edge weight. To see that a

minimum 1-tree is a relaxation for the TSP, observe that every tour in the graph is a

1-tree, and if a minimum-weight 1-tree is a tour, it is an (optimal) solution to the TSP.

Note that a 1-tree is a tour if and only if the degree of all nodes is two.

The 1-tree relaxation can be obtained by moving the degree constraints (2) for all

nodes in V \{1} into the objective with associated Lagrangean multipliers π1, π2, . . . , πn
(where π1 = 0), yielding the following model:

min
∑
e∈E

w(e)xe +
∑

i∈V \{1}

πi(2−
∑
e∈δ(i)

xe) (5)

s.t.
∑
e∈δ(1)

xe = 2 (6)

∑
e∈E

xe = |V | (7)

∑
i,j∈S,i<j

x(i,j) ≤ |S| − 1 ∀S ⊂ V \ {1}, |S| ≥ 3 (8)

xe ∈ {0, 1} ∀e ∈ E (9)

The Langrangean multipliers π are also called node potentials. In this model, constraints

(8) still define the subtour elimination constraints that together with constraints (6)
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Fig. 1 a. The graph corresponding to Example 1. Edge weights are indicated next to each
edge. b. A minimum 1-tree for the edge weights under a., represented by bold edges. Boxed
numbers represent the node potentials. The objective value of this 1-tree is 21. c. Updated
edge weights and a new minimum 1-tree with objective value 24.

and (7) define the 1-tree structure. An optimal 1-tree relaxation (i.e., with highest

objective value) is found by optimizing over the π variables, for example through sub-

gradient optimization. Although there exist various alternatives for doing this, in our

implementation we closely follow the original combinatorial approach by Held and Karp

[28, 29].

The iterative approach proposed by Held and Karp produces a sequence of 1-trees

which increasingly resemble tours. We start by computing an initial minimum-weight

1-tree, by finding a minimum-spanning tree on G \ {1}, and adding the two edges

with lowest cost incident to node 1. If the optimal 1-tree is a tour, we have found an

optimal tour. Otherwise, the degree constraint (6) is violated for one or more nodes.

In that case, we proceed by penalizing the degree of such nodes being different from

two by perturbing the edge costs of the graph, via the node potentials π: For each edge

(i, j) ∈ E, the new edge weight w̃(i, j) is defined as w̃(i, j) = w(i, j)−πi−πj . Held and

Karp [28] show that the optimal TSP tour is invariant under these changes, but the

optimal 1-tree is not. One choice for the node potentials is to define πi = (2−deg(i))·C,

for a constant C (this constant may be updated at each iteration). The Held-Karp

procedure re-iterates by solving the 1-tree problem and perturbing the edge costs until

it reaches a fixed point or meets a stopping criterion. The best lower bound, i.e., the

maximum among all choices of the node potentials, is known as the Held-Karp bound.

Example 1 Consider the undirected weighted graph G = (V,E,w) depicted in Fig. 1.a,

i.e., V = {1, 2, 3, 4, 5, 6}, E = {(1, 2), (1, 3), (1, 6), (2, 4), (2, 5), (3, 4), (3, 5), (4, 6), (5, 6)},
and edge weights as indicated in the figure (next to each edge). A minimum 1-tree un-

der the edge weights in a. is given in bold in Fig. 1.b. Its objective value is 21. For each

node i ∈ V we update the node potentials as πi = (2− deg(i)) · C using C = 1.5. The

node potentials are indicated in boxes next to the nodes. The corresponding updated

edge weights are given in Fig. 1.c., together with a new minimum 1-tree with objective

value 24. �

Recall that a minimum spanning tree, and therefore a minimum 1-tree, can be com-

puted in O(m+ n logn) using Prim’s algorithm, or in O(m logn) time using Kruskal’s
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algorithm [11]. The best known time complexity for computing a minimum spanning

tree is O(mα(m,n)), where α(m,n) is the inverse Ackermann function [10].

2.4 Assignment Problem Relaxation

The assignment problem relaxation is obtained by relaxing the connectivity constraints

(3) as well as the integrality constraints:

min
∑
e∈E

w(e)xe (10)

s.t.
∑
e∈δ(i)

xe = 2 ∀i ∈ V, (11)

0 ≤ xe ≤ 1 ∀e ∈ E. (12)

This formulation can be applied to symmetric TSPs. However, the assignment problem

relaxation is particularly effective on asymmetric TSP instances (see, e.g., [8]). For

a directed weighted graph G = (V,A,w′) with asymmetric weight function w′, the

assignment problem relaxation can be formulated as:

min
∑
a∈A

w′(a)xa (13)

s.t.
∑

j∈V,(i,j)∈A

x(i,j) = 1 ∀i ∈ V, (14)

∑
i∈V,(i,j)∈A

x(i,j) = 1 ∀j ∈ V, (15)

0 ≤ xa ≤ 1 ∀e ∈ E. (16)

Because the resulting constraint matrix is totally unimodular, this linear programming

relaxation will provide an integer optimal solution, if a solution exists. In fact, it can

be solved with an efficient combinatorial algorithm, the Hungarian method, which runs

in O(n3) time, and in O(n2) time when applied incrementally [38, 7].

3 Historical Overview and Related Work

In the first constraint programming system Alice (from 1978), a constraint was in-

troduced to express that a set of variables represent a circuit in a graph [39]. More

specifically, to find a circuit covering a set of nodes V , one can define a bijection

C : V → V representing this circuit as follows in Alice:

FIND BIJ C → V V CIR

where the keywords BIJ and CIR represent ‘bijection’ and ‘circuit’, respectively. That

is, for a sequence v1, v2, . . . , v|V |, we have C(vi) = vi+1 for i = 1, 2, . . . , |V | − 1,

and C(v|V |) = v1. After several years (in 1994), the constraint appeared in the more

modern CP system CHIP, under the name circuit, as part of a general extension of the

language to include global constraints [4]. Currently, most CP systems include a circuit
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constraint, or a similar constraint that is semantically equivalent.1 Since these circuit

constraints are not parametrized with edge weight information, the associated filtering

algorithms are based on feasibility only [4, 23]. Furthermore, because a solution to the

circuit constraint corresponds to a sequence of variables that take pairwise different

values, most CP approaches apply the alldifferent constraint [45] in their model (see

also Section 4).

We note that the weighted circuit constraint also appeared in the integer program-

ming community, introduced as ‘tour’ in the system SCIL by Althaus et al. [1]. They

use this constraint to automatically derive a corresponding integer linear programming

model.

Caseau and Laburthe [9] were the first to study cost based filtering algorithms for

the weighted circuit constraint. They propose to apply an assignment-based relaxation

as well as a spanning tree relaxation, although the main focus is on their assignment

model. As a lower bound on the weight of the circuit, they sum the smallest assignments

over all variables. They further apply a lazy alldifferent propagation, based on the

pairwise not-equal constraints. Finally, a separate filtering algorithm is applied that

forbids edges that would create a subtour, through a so-called nocycle constraint.

More precisely, the filtering step of the nocycle constraint consists in finding a path

of mandatory edges of length at most n − 1, and removing the edge between the two

endpoints of the path. In other words, they study a decomposition of the weighted

circuit constraint, where the cost based filtering is performed on an ad-hoc version

of the weighted alldifferent constraint, being a weaker version of the assignment

problem relaxation of Section 2.4. Caseau and Laburthe also implemented the Held-

Karp scheme, that resulted in solving TSPs up to size 70 (i.e., st70 in 3,300 seconds),

which takes the TSP structure into account explicitly. They report that the Lagrangean

values had to be tuned for each individual instance, and that the approach was therefore

not stable and robust enough for application in CP. The work we propose in this paper

can be viewed as an extension and improvement of that approach.

The work of Pesant, Gendreau, Potvin, and Rousseau [42] for TSPTW applies

nocycle constraints to remove edges between two endpoints of a path. They further

maintain two lower bounds; one is the ‘greedy’ lower bound by summing the edges with

smallest weight incident to each node, similar to the assignment model of Caseau and

Laburthe [9]. The other bound is based on the minimum spanning tree. These bounds

are used to fathom suboptimal search nodes, but the relaxations are not applied for

cost based domain filtering.

The work by Focacci, Lodi, Milano, and Vigo [20] and Focacci, Lodi, and Milano

[19, 21, 22] applies (reduced) cost based filtering to optimization constraints, with an

application to TSPs. Their methodology allows to apply any (linear) relaxation for this

purpose, and they apply the assignment problem relaxation as well as the minimum

spanning arborescence relaxation for asymmetric TSPs. The application of the latter

relaxation is closely related to our work. The main focus of this sequence of papers,

however, is on the assignment problem as a relaxation for the weighted alldifferent

constraint, which is then applied as a relaxation for the weighted circuit constraint in

the context of TSPs. This approach is similar to Caseau and Laburthe [9], but Focacci

et al. [20] apply the stronger linear programming relaxation. The resulting approach,

1 We note that one exception is the IBM ILOG constraint programming environment (i.e.,
CP Optimizer and OPL), that no longer supports the IloPath constraint (to model weighted
Hamiltonian paths) nor the circuit constraint [33, 34].
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using the assignment problem relaxation, is particularly effective on asymmetric TSPs,

see for example Focacci et al. [21]. Additional works following this line of research

include those by Milano and van Hoeve [41] and Lodi, Milano, and Rousseau [40].

The weighted circuit constraint belongs to the more general class of ‘graph con-

straints’, i.e., constraints that define certain properties on graphs. In particular, the

unweighted tree constraint [5, 15] can be applied as a relaxation to the circuit con-

straint on directed graphs. Furthermore, the weighted spanning tree constraint is closely

related to our work [13, 14, 46, 48]. As we will see in Section 5, we can extend several

concepts from the weighted spanning tree constraint to handling the 1-tree relaxation

for the weighted circuit constraint.

The TSP has been studied extensively in the Operations Research literature, in-

cluding the 1-tree relaxation and the assignment problem relaxation; see [2, 27] for re-

cent overviews. In particular, Grötschel and Holland [26] describe a procedure to solve

large-scale symmetric TSPs, an important component of which is the pre-processing

phase that removes provably sub-optimal edges based on the reduced costs stemming

from the 1-tree relaxation, which is similar to our approach. Furthermore, whenever

a new upper bound is found during the solving process, Grötschel and Holland apply

standard variable fixing based on the reduced cost stemming from the linear program-

ming relaxation to eliminate sub-optimal edges and fix edges that must appear in an

optimal solution. Our edge filtering process is based on the same concept, although we

identify the edges to be eliminated or fixed through combinatorial procedures (based

on the 1-tree relaxation) rather than a general LP relaxation. Moreover, we embed

these procedures inside a domain filtering algorithm and incrementally maintain the

data structures throughout the search tree.

State-of-the-art integer programming based TSP solvers (such as Concorde) revolve

around a linear programming relaxation of the TSP that contains many specialized cuts

that have been developed for the TSP. In addition to subtour elimination constraints,

such cuts include comb inequalities, cuts from blossoms, etcetera [2]. As a consequence,

these methods must use a generic linear programming solver. During the solving pro-

cess, the reduced costs associated with this entire linear programming formulation are

applied rather than specific reduced costs stemming from, e.g., the 1-tree relaxation.

Reasoning based on the reduced costs of the entire LP can be stronger than that of

the 1-tree relaxation. We note that instead of removing inconsistent edges, the LP

relaxation of Concorde is based on a subset of core edges through a column generation

process; edges with negative reduced cost are eligible for inclusion in the LP relaxation.

An important restriction, however, is that Concorde can only handle pure symmetric

TSPs, as additional side constraints would typically violate the special TSP structure

that is utilized in the cut generation algorithms and the upper bound heuristics. In

contrast, our combinatorial filtering algorithm is embedded inside a global constraint,

which can be naturally combined with additional constraints in a constraint program-

ming system.

4 Representation of the Weighted Circuit Constraint

In the CP literature, different variable representations have been proposed for the

(weighted) circuit constraint, the most common of which are the ‘successor’ and the

‘permutation’ representation. We next discuss the consequences of these different rep-

resentations, and then introduce our set variable representation.
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We recall that the domain of a variable x, denoted by D(x), is a set of elements

that can be assigned to x.

In the successor representation, a variable nexti is introduced representing the node

that is visited immediately after node i, for all i ∈ V . The initial variable domains

can be set to D(nexti) = V \ {i}. Often the successor variables are combined with

predecessor variables predi representing the node that is visited immediately before

node i. Thus, we have (nexti = j) ⇔ (predj = i). In the permutation representation,

a variable posj is introduced representing the j-th node that is visited (pos stands for

position), for j = 1, 2, . . . , n. That is, pos1 up to posn represent the order in which the

nodes are visited. The initial domains can be set to D(posi) = V .

Both the successor and permutation representation allow the use of alldiffer-

ent filtering algorithms [45], because one necessary condition for both representations

is that the variables take pairwise different values. For the successor representation,

additional conditions can be used for filtering purposes, see for example Genç Kaya

and Hooker [23]. We note that all CP approaches for the weighted circuit constraint

described in Section 3 are based on the successor representation.

The choice of the representation influences the choice of the relaxation that can be

applied onto the variables. Namely, for the successor representation (together with the

alldifferent constraint) the degree constraints cannot be relaxed (i.e., the degree of

each node is two), while for the permutation representation the connectivity require-

ment cannot be relaxed. Therefore, the applicability of a relaxation depends on the

choice of variables. For example, the successor representation naturally accommodates

the assignment problem relaxation.

We propose a representation that is based on a set variable X representing the

edges that form the tour.2 Using this representation, we can choose to relax either the

degree constraints, or connectivity constraints, or both (sequentially). For the domain

representation of X, we choose the ‘cardinality+subset’ definition [25, 3].3 That is,

– we require that X has cardinality |V |, and

– we maintain a lower and upper bound on the domain of X, where the lower bound

L(X) represents all mandatory edges, and the upper bound U(X) all possible edges.

Initially, we can define D(X) = [∅, E]. We also introduce a variable z representing the

total weight of the eventual tour represented by X.

In terms of our set variable X, the unweighted circuit constraint on a graph G =

(V,E) is expressed as circuit(X,G), and it states that the edges in X define a Hamil-

tonian cycle on V in G. For the weighted version, we extend the definition of G with the

edge weight function w as G = (V,E,w). The constraint weighted-circuit(X, z,G)

states that the edges in X form a Hamiltonian cycle on the nodes V in G with weight

at most z, i.e.,

weighted-circuit(X, z,G) = circuit(X,G) ∧

(∑
e∈X

c(e) ≤ z

)
.

During the search for a solution, the domains of X and z will change as a result of

constraint propagation caused by constraints other than weighted-circuit. Therefore,

2 Set variables were introduced independently by Puget [44] and Gervet [24].
3 We note that alternative set domain representations exist, but for the purpose of our

paper, the cardinality+subset representation is most natural. Moreover, it is available in most
existing CP systems.
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Fig. 2 a. The graph corresponding to Example 2. Edge weights are indicated next to each
edge. Bold edges are mandatory. b. Graph representation reflecting the domain changes after
filtering.

given domains for X and z, domain filtering for weighted-circuit amounts to the

following tasks:

i) Identify edges in G that must be part of a solution and add these to the lower bound

L(X) (the mandatory edges),

ii) Identify edges in G that cannot be part of a solution and remove these from the

upper bound U(X) (the possible edges),

iii) Identify the minimum value that z can take and use this to increase its lower bound.

We also refer to edges that cannot be part of a solution as inconsistent edges. When a

filtering algorithm removes all inconsistent edges from U(X) and adds all mandatory

edges to L(X), it is said to establish bounds consistency on weighted-circuit [25].

Because finding even a single solution to the weighted-circuit constraint is already an

NP-complete problem [36], establishing bounds consistency is NP-hard. Therefore, we

will focus on developing effective, and computationally efficient, filtering algorithms for

the weighted-circuit constraint that do not necessarily establish bounds consistency.

Example 2 Consider again the undirected weighted graph G = (V,E,w) from Exam-

ple 1, with the original edge weights as in Fig. 1.a. Furthermore, consider set variable X

with domain D(X) = [{(1, 2)}, E}], and variable z with interval domain D(z) = [0, 25].

Fig. 2.a depicts G again, where the mandatory edge of X is indicated in bold.

For illustrative purposes we next identify all four possible circuits that include

mandatory edge (1, 2), and their corresponding weight:

1) 1-2-4-6-5-3-1 with weight 24

2) 1-2-5-3-4-6-1 with weight 30

3) 1-2-5-6-4-3-1 with weight 25

4) 1-6-5-3-4-2-1 with weight 27

Let us analyze the constraint weighted-circuit(X, z,G). First, observe that all

edges in the graph can be part of a circuit that contains the mandatory edge of X,

and moreover, no edge (other than the mandatory edge) appears in all circuits. Thus,

based on feasibility alone, we cannot deduce any further information.

Taking into account the weights, however, we can identify that edge (1, 6) appears

only in solutions with weight at least 27, while z allows solutions with weight at most

25. Therefore, we can remove edge (1, 6) from the upper bound of X. In fact, we
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can inspect the two feasible solutions 1) and 3) and identify that edges (1, 3), (4, 6),

(5, 6) always appear in a solution. They can therefore be added to the lower bound

(mandatory edges) of X. Finally, we can also increase the lower bound of z to 24; the

minimum weight over all solutions. �

5 Filtering for the Weighted Circuit Constraint

As mentioned before, we propose filtering algorithms based on relaxations of weighted-

circuit, where our primary focus will be on the 1-tree relaxation that was introduced

by Held and Karp. Additionally, we apply combinatorial filtering based on connectivity

requirements. The approach we take for identifying mandatory and possible edges is

closely related to that of the weighted spanning tree constraint [14, 46, 48]. Namely,

by definition a 1-tree on a graph G contains a spanning tree on the graph G \ {1}.
We therefore adapt the concepts and algorithms that were developed for the minimum

spanning tree to the graph G \ {1}.
Throughout this section, we let G = (V,E,w) be an undirected weighted graph.

We let T (G) denote a minimum 1-tree of G. We let Te(G) denote a minimum 1-tree of

G containing edge e ∈ E. For a subset of edges E′ ⊆ E, we let w(E′) denote
∑
e∈E′ we.

5.1 Removing Edges Based on Marginal Costs

The marginal cost of an edge e ∈ E with respect to T (G) is defined as w(e) =

w(Te(G))− w(T (G)). That is, it represents the marginal weight increase if e is forced

into the minimum 1-tree. If Te(G) does not exist (for example because e forms a cy-

cle with mandatory edges in G \ {1}), we define w(e) = ∞. We note that the term

‘marginal cost’ is commonly used in the context of sensitivity analysis for minimum

spanning trees [51, 50, 12]. We will apply marginal costs to identifying inconsistent

edges, based on the following lemma.

Lemma 1 Consider the constraint weighted-circuit(X, z,G) where G = (V,E,w),

and let e ∈ E. If

w(T (G)) + w(e) > max(D(z)),

then e is inconsistent and can be removed from U(X).

Proof An edge is inconsistent if w(Te(G)) > max(D(z), and w(Te(G)) = w(T (G)) +

w(e) by definition. ut

Observe that Lemma 1 is invariant under the application of node potentials π to

the edge weights of G, as discussed in Section 2. In particular, each 1-tree that is

computed during the Held-Karp process can be used for filtering purposes. This allows,

for example, to terminate the Held-Karp process once a certain time or quality criterion

has been met, and safely apply the resulting relaxation. We remark that this property

can be extended to more general Lagrangean-based filtering; see Sellmann [49].

In order to apply Lemma 1 to filter inconsistent edges, we need to compute the

marginal cost for each edge. Computing w(e) via Te(G) for each individual edge e ∈ E
would take O(m2α(m,n)) time in the worst case, which is not practical. We next

describe how we can compute the marginal cost for all edges in G\{1} more efficiently,

given a 1-tree.
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Lemma 2 Let G = (V,E,w) be a weighted graph and let T (G) be a minimum 1-tree

of G. Let e = (i, j) ∈ E such that e /∈ T (G) and i, j 6= 1. Let Pi,j be the unique i-j path

in T (G) \ {1}. Then

w(e) = w(e)−max{w(a) | a ∈ Pi,j}.

Proof By definition, a minimum 1-tree consists of a minimum spanning tree M on

G \ {1} and two smallest-weight edges incident to node 1. The edges e = (i, j) ∈ E
such that i, j 6= 1 are precisely all edges in G\{1}. Therefore, for all edges e = (i, j) ∈ E
such that e /∈ T (G) and i, j 6= 1, w(e) is equivalent to the marginal cost of e with respect

to M . The result then follows from, e.g., [51]. ut

Finding the unique path Pi,j can be achieved through a depth-first search on T (G) in

O(n) time for an edge (i, j). This immediately yields an overall O(mn) time complexity

for computing w(e) for all e ∈ E such that e /∈ T (G), e /∈ δ(1).

We recall that very similar filtering has been applied to the weighted spanning tree

constraint by [14, 46]. In particular, we can readily apply the algorithm of [46] and

obtain an improved overall time complexity of O(n+m+ n logn).

Lastly, the marginal cost for the edges that are incident to node 1 can be computed

as follows.

Lemma 3 Let G = (V,E,w) be a weighted graph and let T (G) be a minimum 1-tree

of G. Let e ∈ δ(1) such that e /∈ T (G). Then

w(e) = w(e)−max{w(a) | a ∈ δ(1), a ∈ T (G)}.

Proof Computing w(e) via Te(G) can be done by adding maxa∈E w(a) to w(e′) for all

edges e′ ∈ δ(1), e′ 6= e and finding the minimum 1-tree in the modified graph. This

1-tree then includes edge e and argmin{w(a) | a ∈ δ(1), a ∈ T (G)} to be incident to

node 1, effectively replacing argmax{w(a) | a ∈ δ(1), a ∈ T (G)} with e. ut

Example 3 Consider again graph G from Example 1, and the constraint weighted-

circuit(X, z,G), with D(X) = [∅, E] and D(z) = [0, 25]. We apply the updated edge

weights and the minimum 1-tree from Fig. 1.c. to filter the constraint.

First, consider edge (2, 5) with weight 5. Applying Lemma 2, the path P2,5 is 2-4-6-

5, with a maximum weight edge of value 4.5 (i.e., edge (4, 6)). Therefore, the marginal

cost w(2, 5) = 5 − 4.5 = 0.5. Recall that the 1-tree has objective value 24, while the

upper bound for z is 25. Therefore we cannot remove (2, 5) from U(X). Consider next

edge (1, 6) with weight 6.5. By Lemma 3, its marginal cost is w(1, 6) = 6.5− 4.5 = 2.

Since 24 + 2 > 25, we can remove (1, 6) from U(X) by Lemma 1. �

Let us next compare our filtering based on marginal costs with the feasibility filter-

ing of Caseau and Laburthe [9] and Pesant et al. [42] based on the nocycle constraint.

Recall that the filtering step of the nocycle constraint consists in finding a path of

mandatory edges of length at most n − 1, and removing the edge between the two

endpoints of the path. Using our framework, that removed edge would have a marginal

cost determined by the unique path in the tree, that is formed by mandatory edges

only. In such case, the replacement cost is infinite, and hence the edge will be removed

also in our framework. Therefore, our algorithm is stronger than the feasibility filtering

of [9] and [42] based on the nocycle constraint.
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Fig. 3 The filtered graph for st70 with respect to an upper bound of 700 (a) and 675 (b).

Fig. 3 presents an illustration of the practical impact of our edge filtering based

on marginal costs, applied to the complete graph st70 from TSPLIB. In Fig. 3.a we

show the graph after removing the filtered edges with respect to an upper bound of

700, while Fig. 3.b shows the effect of edge filtering with respect to an upper bound of

675 (the length of the optimal tour, which was heuristically found).

5.2 Identifying Mandatory Edges

The replacement cost of an edge e ∈ T (G) is defined as w′(e) = w(T (G\{e}))−w(T (G)),

where we define w(T (G\{e})) =∞ if G\{e} is not connected. It represents the weight

increase of the minimum 1-tree when a tree edge e is removed from G, and hence must

be replaced with a non-tree edge. We can apply replacement costs to identify which

edges are mandatory, using the following immediate lemma.

Lemma 4 Consider the constraint weighted-circuit(X, z,G) where G = (V,E,w).

Let T (G) be a minimum 1-tree of G and let e ∈ T (G). If w(T (G)) ≤ max(D(z)) and

w(T (G)) + w′(e) > max(D(z)),

then e is mandatory and can be added to L(X).

Similar to the marginal costs for non-1-tree edges, we separate the computation of the

replacement costs for 1-tree edges in G \ {1} and those in δ(1).

Lemma 5 Let G = (V,E,w) be a weighted graph and let T (G) be a minimum 1-tree of

G. Let e ∈ T (G)\{1}. Let T 1 and T 2 be the two sub-trees that form (T (G)\{1})\{e}.
Then

w′(e) = w(e)−min{w(i, j) | (i, j) ∈ E, (i, j) 6= e, i ∈ T 1, j ∈ T 2}.

Proof Analogous to Lemma 2, w′(e) is equivalent to the replacement cost of e in the

minimum spanning tree of G \ {1}. The result then follows from, e.g., [51]. ut

Example 4 We continue Example 3. Consider edge (4, 6) with weight 4.5. Removing

this edge from T (G) \ {1} yields two subtrees with respective node sets {2, 3, 4} and

{5, 6}. We can minimally reconnect these sets through edge (2, 5) with weight 4.5.

Therefore, the replacement cost of (4, 6) is w′(4, 6) = 4.5 − 4.5 = 0 by Lemma 5, and

we cannot conclude that this edge is mandatory. �
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Lemma 5 gives rise to the following algorithm for computing the replacement costs

in G \ {1}. First, we order all non-1-tree edges by non-increasing weight. We then

consider each of these edges in turn. Non-tree edge (i, j) forms a (unique) circuit with

edges in T (G) \ {1}. The first edge that we consider (i.e., with smallest weight) serves

as ‘replacement edge’ for all edges on the unique circuit. Similarly, the non-tree edges

that are considered subsequently will serve as replacement edge for all edges on their

respective circuit that have not yet been assigned a replacement edge. As each circuit

may be of length O(n), this algorithm has an O(mn) time complexity.

The theoretically best known time complexity for finding all edge replacement costs

for minimum spanning trees is O(mα(m,n)) [51, 12], and we immediately inherit this

time complexity for computing the replacement costs of the edges in T (G) \ {1}. In

fact, these ideas have been applied before to identify mandatory edges for the weighted

spanning tree constraint, by [14, 48]. In particular, we can apply the algorithm of [48]

that achieves the time complexity of O(mα(m,n)), in a manner that is practically

suitable for constraint programming systems.

Lastly, the replacement cost for the edges that are incident to node 1 can be com-

puted as follows, analogous to Lemma 3.

Lemma 6 Let G = (V,E,w) be a weighted graph and let T (G) be a minimum 1-tree

of G. Let e ∈ δ(1) such that e ∈ T (G). Then

w′(e) = w(e)−min{w(a) | a ∈ δ(1), a /∈ T (G)}.

5.3 Forcing Edges Based on Degree Constraints

We next discuss an additional filtering rule that follows from connectivity considera-

tions, and can be applied at no extra cost during the computation of the 1-tree using

Prim’s algorithm. First, observe that the connectivity constraints (3) in the TSP model

of Section 2 can alternatively be modeled as (see, e.g., [2]):∑
e∈δ(S)

xe ≥ 2 ∀S ⊂ V, |S| ≥ 3. (17)

A useful consequence of (17) is the following corollary.

Corollary 1 Consider the constraint weighted-circuit(X, z,G) where G = (V,E,w).

Let S be a proper nonempty subset of V . If |δ(S)| = 2, then both edges in δ(S) are

mandatory and can be added to L(X).

Recall that Prim’s algorithm [43] computes the minimum spanning tree in G\{1} in

the following manner. Starting from any node v ∈ V , it first partitions V into disjoints

subsets S = {v} and S̄ = V \{v} and creates an empty tree T . Then it iteratively adds

to T the minimum edge (i, j) ∈ δ(S) such that i ∈ S, and moves j from S̄ to S. We

can apply Corollary 1 at each step during Prim’s algorithm: Whenever we encounter

a partition (S, S̄) such that δ(S) contains two edges, we can add these to the set of

mandatory edges.

Example 5 We continue Example 3, that is, with edge (1, 6) removed from U(X).

Assume that Prim’s algorithm starts with node 6, i.e., S = {6} and S̄ = {2, 3, 4, 5}.
We have δ(S) = {(4, 6), (5, 6)} with cardinality 2. Hence, by Corollary 1 both edges

(4, 6) and (5, 6) are mandatory. �
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5.4 Handling Asymmetric Instances

In Section 4, we have made no assumption on G to be directed or not. The filtering

algorithms presented in this section, however, were based on the assumption that G is

undirected. In case G is a directed graph with asymmetric edge weights, there are two

possibilities to filter the weighted-circuit constraint. The first is to apply a directed

version of the 1-tree relaxation (referred to as 1-arborescence in Held and Karp [28]),

and adapt the filtering algorithms accordingly. The second possibility is to convert

the asymmetric instance into a symmetric one [35], to which we apply the techniques

for the 1-tree relaxation. Our initial computational experiments showed that the 1-

arborescence performs worse than the 1-tree relaxation on the transformed instance,

both in terms of solution quality (lower bound) and algorithmic stability. Therefore,

we adopted the second possibility in our implementation and experimental results.

We next describe the method of Jonker and Volgenant [35] for transforming an

asymmetric instance into a symmetric one, as we will need these details in the following

section on additive bounding. Let G = (V,A,w) be a directed weighted graph with node

set V = {1, 2, . . . , n}, arc set A, and asymmetric weight function w. Let C be a n× n
weight matrix defined such that for i, j ∈ V , Ci,j = w(i, j) if (i, j) ∈ A, Ci,j = ∞ if

(i, j) /∈ A and i 6= j, and Ci,j = −M if i = j, where M is a very large number. In other

words, C exactly represents the weight function w, except that its diagonal entries are

−M . We also define the n× n matrix W as Wi,j =∞ for all i, j ∈ V .

The asymmetric instance is now transformed into a symmetric instance on a com-

plete graph with 2n nodes and weight matrix C̃ defined as

C̃ =

[
W CT

C W

]
,

that is, the edge weight function on the symmetric instance returns C̃i,j for an edge

(i, j), where i, j ∈ {1, 2, . . . , 2n}.
Assuming that the original instance has a bounded solution, the optimal solutions

of the new instance are bounded as well, and contain exactly n edges of weight −M .

Solutions occur in pairs, and one pair takes the form

i1 → (i1 + n)→ i2 → (i2 + n)→ · · · → in → (in + n)→ i1,

with ik ∈ V for k = 1, 2, . . . , n. These solutions occur in 1-to-1 correspondence with

the optimal solutions to the original asymmetric instance: One can delete nodes with

index greater than n from the solution, and add nM to its objective value to obtain

the corresponding solution to the original problem.

Recall that since C̃ is symmetric, we only need to represent one undirected edge

for each pair (i, j) and (j, i) of G̃, with bounded weight. We choose to represent the

lower diagonal edges C̃, i.e., we let arc (i, j) ∈ A be represented by edge (i+n, j) in E.

6 Improved Filtering Through Additive Bounding

Fischetti and Toth [16] introduced an additive bounding procedure that combines dif-

ferent relaxations to obtain a valid lower bound for a given problem. More precisely,
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following the description of [16], the additive bounding procedure takes as input a

problem P of the form
min cx

s.t. x ∈ F (P ),

where x and c are, respectively, a column vector of variables and a cost row vector,

both having n elements, and F (P ) ⊂ {x ∈ Rn : x ≥ 0}.
Let L(1), . . . , L(r) be lower bounding relaxations available for problem P . Assume

that, for i = 1, . . . , r, lower bounding procedure L(i)(c) —when applied to problem P

with cost vector c— returns a lower bound value v(i) as well as a residual cost row

vector c(i) ∈ Rn such that

c(i) ≥ 0, and (18)

v(i) + c(i)x ≤ cx for each x ∈ F (P ). (19)

For example, a linear programming relaxation for P will produce in addition to a

lower bound also a vector of reduced costs, that fit precisely the above definition of

residual cost. The additive bounding procedure starts with applying relaxation L(1) to

the original cost vector c. Then, for i = 2, . . . , r it will sequentially apply relaxation

L(i)(c(i−1)). Fischetti and Toth show that v(1) +v(2) + · · ·+v(r) is a valid lower bound

for P .

Additive bounding has been used in the context of constraint programming to ob-

tain stronger domain filtering for specific problem structures, in particular discrepancy-

based additive bounding [18, 41, 40].

In our framework, using a set variable representation, we can easily integrate the

1-tree relaxation and the assignment problem relaxation using additive bounding. As

these relaxations represent complementary structures of the weighted-circuit con-

straint, together they may yield a stronger additive bound. More precisely, we propose

to use the marginal costs associated with the 1-tree relaxation to define residual costs

for the assignment problem relaxation. For symmetric instances, the 1-tree and as-

signment problem are defined on the same graph, and we can immediately define the

residual cost of an edge e as the marginal cost w(e) stemming from the 1-tree relax-

ation. For asymmetric instances, we take into account the transformation described

in Section 5.4, as follows. Let G = (V,A,w) be the original directed graph, and let

G̃ = (Ṽ , E, w̃) be the undirected graph after applying the transformation. We first

apply the 1-tree relaxation to G̃. We then apply the Assignment Problem relaxation

to the original graph, where the residual cost of arc (i, j) ∈ A is made equal to the

marginal cost of edge (i+ n, j) in E.

Lastly, we show that:

Lemma 7 Marginal costs are valid residual costs for the additive bounding framework.

Proof By definition marginal costs are always positive, which proves condition (18). In

terms of our application, the second condition (19) is stated as

w(T (G)) +
∑
e∈E

w(e)xe ≤
∑
e∈E

w(e)xe. (20)

Before we prove this, for each edge e ∈ E we denote by er the ‘replacement edge’

of e with respect to T (G). That is, from Lemma 2, for an edge e = (i, j) we have

er = argmax{w(a) | a ∈ Pi,j} where Pi,j is the unique i-j path in T (G) \ {1}. We
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will use this to rewrite w(Te(G)) as w(T (G)) + w(e) − w(er). Statement (20) can be

derived as

w(T (G)) +
∑
e∈E

w(e)xe = w(T (G)) +
∑
e∈E

(w(Te(G))− w(T (G)))xe

= w(T (G)) +
∑
e∈E

(
w(T (G)) + w(e)− w(er)− w(T (G))

)
xe

= w(T (G))−
∑
e∈E

w(er)xe +
∑
e∈E

w(e)xe ≤
∑
e∈E

w(e)xe,

where the last inequality follows from w(T (G))−
∑
e∈E w(er)xe ≤ 0 as w(T (G)) is the

value of a minimum 1-tree. ut

7 Computational Results

We next evaluate our proposed algorithms experimentally. Our main focus will be on

assessing the impact of domain filtering, with respect to using only the bounds from

the relaxations. We will measure this for the 1-tree relaxation, and compare it to the

assignment problem relaxation and the combined additive bounding relaxation. As test

problem domain, we use symmetric and asymmetric TSP instances. We use structured

instances from TSPLIB as well as randomly generated instances. As we are interested

here in the effect of filtering, we provide each method with the same upper bound that

we obtained using the state-of-the-art Lin-Kernighan-Helsgaun algorithm [30, 31].

Additionally, we compare our methodology to the TSP solver Concorde. The main

reason for this is to analyze the respective strengths and weaknesses of our method and

this dedicated solving method. In particular, we would like to validate how much slower

our CP approach is with respect to this special-purpose TSP solver. Furthermore, we

would like to measure the possible amount of overhead generated by the linear pro-

graming solver used in Concorde with respect to our, more light-weight, algorithms. A

typical measure in this context is the number of search nodes that are generated per sec-

ond, from which the average time spent per search node can be derived. Namely, if two

approaches provide the same amount of total solving time for the weighted-circuit

constraint alone, a CP solver would generally favor the approach that generates the

most number of search nodes, to allow more effective interaction with other problem

constraints through constraint propagation in more complex models.

Finally, we would like to compare our methodology to existing state-of-the-art CP

technology. Unfortunately, none of the major CP solvers currently provides a filtering

algorithm for the weighted-circuit constraint. We therefore selected IBM ILOG CP

Optimizer, which is among the fastest CP solvers currently available, to compare our

method with. We applied the following model (as suggested in the documentation of

CP Optimizer), that combines the successor and the permutation representation. Let

G = (V,E,w) be the weighted graph under consideration, with |V | = n. For each i ∈ V
we introduce variables nexti, and for each j ∈ {1, 2, . . . , n}, we introduce a variable



18

posj (as in Section 4). We then formulate the problem as

min
∑
i∈V

w(i,nexti)

s.t. alldifferent(next1, . . . , nextn)

alldifferent(pos1, . . . , posn)

posj = nextposj−1
∀j ∈ {2, . . . , n}

pos1 = 1

For symmetric problem instances, we break symmetry (reverse tours) by additionally

introducing variables predi for each i ∈ V , and introducing the constraints

alldifferent(pred1, . . . , predn) (21)

inverse(next, pred) (22)

next1 < pred1 (23)

Here, the inverse constraint in (22) represents the relationships (nexti = j) ⇔
(predj = i) for all pairs i, j (i 6= j), while constraint (23) forbids the reverse tours.

Since the default search of CP Optimizer did not perform well, we apply a depth-

first search to this model over the next variables, using minimum domain size as variable

ordering heuristic, and the minimum distance value as value ordering heuristic. We

use ‘extended filtering’ as inference level for the constraints. The comparison with

this model will give insight in the additional strength that filtering algorithms for the

weighted-circuit can provide to existing CP technology.

7.1 Implementation Details

We have implemented all proposed algorithms in C++: The 1-tree relaxation, the as-

signment problem relaxation, the filtering algorithms, the additive bounding procedure,

and a standard branch-and-bound search procedure. For our experiments, we have used

two different branching schemes. The first is called ‘binary branching’: At each branch

and bound node, choose the edge e with maximum replacement cost and create two

children nodes, one where e is removed, and one with e forced into the solution. The

second branching scheme is called ‘tree branching’: At each branch and bound node,

we first sort the edges by non-increasing replacement cost. We create multiple children

nodes as follows. In the first child node, the first edge (i.e., with maximum replace-

ment cost) is removed. In the second child node, the first edge is forced and the second

edge is removed. In the third child node, the first two edges are forced and the third

is removed, and so on. The binary branching scheme is more effective on structured

problem instances from TSPLIB, while the tree branching scheme is more suitable for

randomly generated instances.

As stated before, the proposed filtering algorithms do not establish bounds con-

sistency on the weighted-circuit constraint. Moreover the algorithms are not idem-

potent, which means that repeated application of the algorithms may filter (remove

or force) more edges. Therefore, we investigated the effect of increasing the repeated

application of our filtering algorithms until we reach a fixpoint. Table 1 summarizes

an experimental evaluation on TSPLIB instances (we refer to [48] for more details).

We report the average solving time and number of search tree nodes, as well as the

average number of search nodes that is explored per second. Observe that filtering until
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no filtering one round fixpoint

average time (s) 693.64 1.66 3.38
average search nodes 9,833.80 489.28 453.60
average nodes/s 115.52 177.38 136.90

Table 1 Comparing the 1-tree relaxation without filtering (no filtering) with one round of
filtering (one round), and filtering until a fixpoint is reached (fixpoint), on TSPLIB instances.

the fixpoint can reduce the number of search nodes, but the computational overhead

does not warrant the limited additional filtering of the fixpoint computation. In the

experiments that follow, we therefore only apply the filtering algorithms once at each

search node.

Our assignment problem implementation closely follows the approach of Focacci,

Lodi, Milano, and Vigo [20] and Focacci, Lodi, and Milano [19]. That is, we imple-

mented the Hungarian method (a combinatorial algorithm for solving the assignment

problem), and applied reduced cost based filtering. When we run our branch and bound

procedure solely with the assignment problem relaxation, we apply the binary branch-

ing scheme.

The results with the Concorde solver [2] were obtained by using version Concorde-

03.12.19 together with IBM ILOG CPLEX 12.2 as linear programming solver. We

also report results for IBM ILOG CP Optimizer 12.2 (as part of the CPLEX 12.2

Optimization Studio). We used the Lin-Kernighan-Helsgaun algorithm, version LKH-

2.0.5, to compute upper bounds to the traveling salesman problems. All experiments

are performed using a 2.33GHz Intel Xeon machine with 8GB memory.

7.2 Symmetric Traveling Salesman Problems

In our first set of experiments we randomly generated TSP instances on graphs with

50 to 550 nodes (with increments of 50). That is, for a given number of nodes n, we

generate an n×n weight matrix where each upper-diagonal entry is a uniform-randomly

generated integer between 1 and 1,000, corresponding to the ‘class A’ type problems

described in [17]. For each number of nodes, we generated 30 instances. Each of these

instances was solved by 1) our branch-and-bound solver using the 1-tree relaxation but

no filtering, 2) our branch-and-bound solver using the 1-tree relaxation and filtering,

and 3) the solver Concorde. Our branch-and-bound solver uses the tree branching

scheme as search strategy, and was run with a time limit of 1,800 seconds.

In Fig. 4 we present a log-log scatter plot that compares the impact of our filtering

algorithms to the branch-and-bound search, in terms of search tree nodes (a) and solv-

ing time (b). We note that whenever a method reaches the time limit for an instance,

we report this as 104 in Fig. 4.a for visualization purposes (104 was the maximum num-

ber of search nodes reported for an instance). That is, for such instances, the actual

number of search nodes explored within 1,800 seconds may be much lower. Fig. 4.a

clearly illustrates the impact of filtering, in that the number of search tree nodes can

consistently be dramatically reduced. This is also reflected in the running time, and an

interesting observation from Fig. 4.b is that the relative performance of the filtering

algorithms increases for larger instances. We attribute this to the fact that our filtering

algorithms not only reduce the search tree size, but also impact the running times of
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Fig. 4 Comparing the 1-tree relaxation with and without filtering on randomly generated
symmetric TSP instances, in terms of number of search tree nodes (a) and solving time in
seconds (b). The solving time limit was set to 1,800 seconds. Each data point in these figures
corresponds to an instance.

1-tree no filtering 1-tree with filtering Concorde

size solved time nodes/s solved time nodes/s solved time nodes/s

50 1.00 0.13 299.26 1.00 0.03 712.39 1.00 0.18 19.59
100 1.00 3.19 55.10 1.00 0.34 160.65 1.00 0.31 6.10
150 1.00 18.31 13.83 1.00 1.42 46.91 1.00 0.59 4.52
200 1.00 132.30 5.16 1.00 4.68 33.00 1.00 0.97 3.18
250 0.97 409.88 2.13 1.00 10.98 25.76 1.00 1.98 2.83
300 0.80 770.67 1.38 1.00 24.35 20.29 1.00 2.32 2.15
350 0.67 1,239.25 0.61 1.00 39.54 15.96 1.00 3.74 1.92
400 0.33 1,589.71 0.42 0.97 108.45 11.04 1.00 4.57 1.64
450 0.17 1,722.56 0.34 1.00 121.08 12.16 1.00 4.99 1.68
500 0.00 1,800.00 0.21 0.97 194.32 8.81 1.00 6.42 1.38
550 0.00 1,800.00 0.20 0.97 206.99 7.98 1.00 5.00 1.00

Table 2 Comparing the 1-tree relaxation with and without filtering, and with Concorde, on
the same randomly generated symmetric TSP instances as were used in Fig. 4. For each method
and size class, we report the fraction of instances solved, average solving time, and average
number of search nodes processed per second. All reported times are in seconds; the solving
time limit was set to 1,800 seconds.

these algorithms. Most importantly, the computation of a 1-tree takes much less time

on a filtered graph.

In Table 2 we report these result on these same instances in an aggregated way, by

averaging instances of the same size. For each method (1-tree no filtering, 1-tree with

filtering, and Concorde), and each problem size, we report the fraction of instances

solved to optimality, the average solving time (by taking 1,800 seconds for instances

that reach the time limit this number serves as a lower bound), and the average number

of nodes per second processed in the branch-and-bound search. When using only the

1-tree relaxation, we can handle instances up to 250 nodes. When we add our filtering

algorithms, we can handle almost all instances up to 550 nodes. Naturally, the dedicated

solver Concorde can also handle all these problems easily. However, Table 2 presents two

interesting observations. First, for small to medium sized problems (up to around 150

nodes), the 1-tree relaxation with filtering is competitive to Concorde, and sometimes

even faster. Second, the number of nodes processed per second is much larger for the

1-tree relaxation with filtering than for Concorde. This indicates that our light-weight
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filtering algorithms can be much more attractive to embed in a generic CP solver than

the heavier linear programming relaxation that is used in Concorde.

We next report results on a selection of TSPLIB instances with less than 300 nodes,

that could be optimally solved within the time limit by one of our branch-and-bound

algorithms. The results are reported in Table 3, that shows for each method (IBM

ILOG CP Optimizer, 1-tree no filtering, 1-tree with filtering, and Concorde) the best

found solution, the number of search nodes, and the solving time in seconds. For these

instances, our branch-and-bound solver uses the binary branching scheme as search

strategy. All methods were run with a time limit of 1,800 seconds. The upper bound

is given to each method without a witness, and happens to correspond to the optimal

value for all reported instances. Hence, the task for each method is to find the optimal

tour, and prove its optimality. Our branch and bound methods, however, also keeps

track of the best tour found during search (for example during the computation of a

1-tree). In some cases, the value of this best tour may exceed the given upper bound,

but we still report it as ‘best tour’ in the table.

The first observation from Table 3 is that the weighted-circuit constraint with

only the 1-tree relaxation already greatly outperforms the standard CP model. The per-

formance of the weighted-circuit is further improved when the filtering algorithms

are also active. A second observation is that for small to medium-sized problems (in-

cluding all TSPLIB instances up to eil76), our method is competitive to Concorde.

This again indicates that our filtering algorithms are relatively powerful already. More-

over, these results are particularly relevant because in most practical vehicle routing

problems, the tours are of small to medium size.

Lastly, we mention that previous CP-based methods for TSPLIB instances did not

scale beyond small sized instances: The hybrid method of Focacci et al. [22], using

the assignment problem relaxation, can solve instance gr48, while an extension of that

method presented in [41] (using discrepancy-based subproblem generation) can solve

instance brazil58. The largest TSPLIB instance solved so far by a CP method was st70,

by employing a 1-tree relaxation [9]. Our filtering algorithms for weighted-circuit

thus improve on the state of the art in CP methods for solving TSP instances, and

show that filtering based on the 1-tree relaxation can be performed in a stable and

robust enough manner.

7.3 Asymmetric Traveling Salesman Problems

We next present results on asymmetric TSP instances. All our algorithms presented in

this section apply the binary branching scheme. We first validate the performance of

our 1-tree filtering algorithm on random asymmetric problem instances, similar to the

random symmetric instances above (that is, using ‘type A’ instances from [17]). The

results are presented in Fig. 5, which follows the same format as Fig. 4. Based on these

figures, we observe that the relative performance of our 1-tree filtering algorithms is

similar for symmetric and asymmetric instances.

We also compare the three different relaxations (1-tree, assignment problem, and

the additive bound) on these randomly generated instances. We remark that the as-

signment problem relaxation is typically more effective on asymmetric instances than

on symmetric ones [17], which makes these instances particularly appropriate as a

benchmark set. The results are reported in Table 4, which follows the same format

as Table 2. These results indicate that generally the assignment problem relaxation
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Table 3 Experimental results on symmetric instances from TSPLIB. The instances are or-
dered by non-decreasing size (indicated by the number in each instance name). For each in-
stance, we report the upper bound (UB) computed with the Lin-Kernighan-Helsgaun heuristic.
For each method, we report the best solution found, the number of search tree nodes, and the
solving time in seconds. The solving time limit was set to 1,800 seconds.
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1-tree with filtering AP with filtering 1-tree + AP with filtering

size solved time nodes/s solved time nodes/s solved time nodes/s

50 1.00 0.17 144.77 1.00 0.15 3,581.80 1.00 0.17 147.66
100 1.00 1.75 41.43 1.00 10.93 1,247.26 1.00 1.44 39.68
150 1.00 21.73 18.47 0.97 82.20 622.48 1.00 15.84 16.54
200 1.00 242.75 13.67 1.00 14.08 493.02 1.00 105.40 12.26
250 0.44 1,351.33 11.75 1.00 87.79 329.74 0.71 921.04 10.56
300 0.37 1,268.25 7.14 0.97 168.73 237.42 0.60 975.86 6.42
350 0.13 1,571.26 5.78 0.93 174.69 200.83 0.30 1,360.32 5.27
400 0.13 1,594.88 4.50 0.77 545.65 154.61 0.23 1,475.17 4.16
450 0.13 1,674.32 3.63 0.87 344.65 151.10 0.20 1,505.84 3.38

Table 4 Comparing the 1-tree relaxation (1-tree), the assignment problem relaxation (AP),
and the additive bounding relaxation (1-tree + AP), on randomly generated asymmetric TSP
instances. For each method and size class, we report the fraction of instances solved, average
solving time, and average number of search nodes processed per second. All reported times are
in seconds; the solving time limit was set to 1,800 seconds.

IBM ILOG CP Optimizer 1-tree no filtering 1-tree with filtering

best search best search best search
instance UB tour nodes time tour nodes time tour nodes time

br17 39 39 18,862,474 1,202.83 39 344,170 66.35 39 223,603 34.40
ftv33 1286 1286 1,239,425 589.51 1286 65 0.28 1286 3 0.03
ftv35 1473 1473 3,669,666 1,800.00 1473 131 0.77 1473 41 0.12
ftv38 1530 - 3,337,894 1,800.00 1530 323 1.62 1530 87 0.22
ftv44 1613 - 2,730,136 1,800.00 1613 717 6.11 1613 227 0.72
ftv47 1776 - 2,199,876 1,800.00 1776 1,495 9.04 1776 471 1.36
ry48p 14422 - 1,531,267 1,800.00 14422 1,115 13.43 14422 364 1.58
ft53 6905 - 4,800,410 1,800.00 6905 1 0.16 6905 1 0.10
ftv55 1608 - 1,543,447 1,800.00 1608 5,021 41.77 1608 2,155 6.74
ftv64 1839 - 904,623 1,800.00 1839 10,413 138.15 1839 2,111 11.56
ft70 38673 - 699,906 1,800.00 38673 277 9.28 38673 138 1.26
ftv70 1950 - 918,180 1,800.00 1950 32,199 624.26 1950 5,992 42.01
kro124p 36230 - 332,249 1,800.00 36230 20,617 1,257.89 36230 5,670 91.77

Table 5 Experimental results on asymmetric instances from TSPLIB. The instances are or-
dered by non-decreasing size (indicated by the number in each instance name). For each in-
stance, we report the upper bound (UB) computed with the Lin-Kernighan-Helsgaun heuristic.
For each method, we report the best solution found, the number of search tree nodes, and the
solving time in seconds. The solving time limit was set to 1,800 seconds.

1-tree with filtering AP with filtering 1-tree + AP with filtering

best search best search best search
instance UB tour nodes time tour nodes time tour nodes time

br17 39 39 223,603 34.40 39 5,716,951 199.29 39 221,738 35.15
ftv33 1286 1286 3 0.03 1286 33,936 5.71 1286 3 0.03
ftv35 1473 1473 41 0.12 1473 14,613 2.37 1473 88 0.20
ftv38 1530 1530 87 0.22 1530 48,260 9.83 1530 102 0.27
ftv44 1613 1613 227 0.72 1613 63,362 14.48 1613 169 0.56
ftv47 1776 1776 471 1.36 1776 9,094,310 1,800.00 1776 331 1.07
ry48p 14422 14422 364 1.58 - 3,905,158 1,800.00 14422 155 0.76
ft53 6905 6905 1 0.10 - 7,225,825 1,800.00 6905 1 0.08
ftv55 1608 1608 2,155 6.74 - 5,502,314 1,800.00 1608 2,363 7.39
ftv64 1839 1839 2,111 11.56 1878 4,590,304 1,800.00 1839 1,896 10.45
ft70 38673 38673 138 1.26 - 3,761,251 1,800.00 38673 86 0.91
ftv70 1950 1950 5,992 42.01 - 3,798,786 1,800.00 1950 2,983 21.97
kro124p 36230 36230 5,670 91.77 - 1,418,885 1,800.00 36230 5,907 91.60

Table 6 Comparing propagation based on the 1-tree relaxation (1-tree), the Assignment Prob-
lem relaxation (AP), and the additive bounding relaxation (1-tree + AP), on asymmetric in-
stances from TSPLIB. For each instance, we report the upper bound (UB) computed with the
Lin-Kernighan-Helsgaun heuristic. For each solving method, we report the best solution found,
the number of search tree nodes, and the solving time in seconds. The solving time limit was
set to 1,800 seconds.
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Fig. 5 Comparing the 1-tree relaxation with and without filtering on randomly generated
asymmetric TSP instances, in terms of number of search tree nodes (a) and solving time in
seconds (b). The solving time limit was set to 1,800 seconds. Each data point in these figures
corresponds to an instance.

performs very well on problem instances of this type, which confirms the findings of

Focacci et al. [20]. We also observe that the additive bounding procedure can improve

the 1-tree relaxation, although the improvements are not dramatic.

We next consider asymmetric problem instances from TSPLIP. We first compare

the 1-tree relaxation, with and without filtering, to IBM ILOG CP Optimizer in Table 5,

which follows the same format as Table 3. Again, we observe that adding only the bound

from the 1-tree relaxation already greatly improves the standard CP model, while our

filtering methods (1-tree with filtering) make it possible to solve these problems more

efficiently.

Lastly, we compare the three different relaxations (1-tree, assignment problem, and

the additive bound) on these instances. The results are reported in Table 6, which again

follows the same format as Table 3. Somewhat to our surprise, the assignment problem

relaxation (AP with filtering) did not perform as well as the 1-tree relaxation on these

instances (1-tree with filtering). However, when the assignment problem is coupled with

the 1-tree relaxation to produce the additive bound, several instances can be solved

much faster. In particular, with the additive bounding relaxation the solving time for

instance ftv70 is almost halved with respect to the 1-tree relaxation.

8 Conclusion

We have presented new propagation methods for handling the weighted-circuit con-

straint based on the 1-tree relaxation. We proposed to define the weighted-circuit

constraint using a set variable that represents the mandatory and possible edges that

can be taken in a solution. This representation naturally allows to apply and combine

different relaxations, and we have in particular described an additive bounding pro-

cedure that combines the 1-tree relaxation with the assignment problem relaxation in

the context of domain filtering for the weighted-circuit constraint.

We have implemented our filtering algorithms and evaluated their performance on

Traveling Salesman Problems (TSPs). Our experimental results have demonstrated

that domain filtering based on the 1-tree relaxation can indeed be very effective, and

outperforms existing CP technology on the considered problem set. In particular, our
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approach allows to scale up the best known CP-based technology from small-sized (up

to around 50 cities) to medium-sized problems instances (up to around 150 cities) for

symmetric TSPs.
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2. D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook. The Traveling Salesman

Problem: A Computational Study. Princeton University Press, 2006.

3. F. Azevedo. Cardinal: A Finite Sets Constraint Solver. Constraints, 12:93–129,

2007.

4. N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Mathe-

matical and Computer Modelling, 20(12):97–123, 1994.

5. N. Beldiceanu, P. Flener, and X. Lorca. The Tree Constraint. In Proceedings

of the Fourth International Conference on Integration of AI and OR Techniques

in Constraint Programming for Combinatorial Optimization Problems (CPAIOR),

volume 3524 of Lecture Notes in Computer Science, pages 64–78. Springer, 2005.

6. C. Bessiere. Constraint Propagation. In F. Rossi, P. van Beek, and T. Walsh,

editors, Handbook of Constraint Programming, chapter 3. Elsevier, 2006.

7. G. Carpaneto, S. Martello, and P. Toth. Algorithms and codes for the assignment

problem. Annals of Operations Research, 13(1):191–223, 1988.

8. G. Carpaneto, M. Dell’Amico, and P. Toth. Exact Solution of Large-Scale, Asym-

metric Traveling Salesman Problems. ACM Transactions on Mathematical Soft-

ware, 21(4):394–409, 1995.

9. Y. Caseau and F. Laburthe. Solving small TSPs with constraints. In Proceedings of

the 14th International Conference on Logic Programming (ICLP), pages 316–330.

MIT Press, 1997.

10. B. Chazelle. A Minimum Spanning Tree Algorithm with Inverse-Ackermann Type

Complexity. Journal of the ACM, 47(6):1028–1047, 2000.

11. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT

Press, Cambridge, MA, 1990.

12. B. Dixon, M. Rauch, and R. Tarjan. Verification and sensitivity analysis of mini-

mum spanning trees in linear time. SIAM J. Comput., 21(6):1184–1192, 1992.

13. G. Dooms and I. Katriel. The minimum spanning tree constraint. In Proceedings

of CP, volume 4204 of LNCS, pages 152–166. Springer, 2006.

14. G. Dooms and I. Katriel. The “not-too-heavy spanning tree” constraint. In

Proceedings of the Fourth International Conference on Integration of AI and OR

Techniques in Constraint Programming for Combinatorial Optimization Problems

(CPAIOR), volume 4510 of Lecture Notes in Computer Science, pages 59–70.

Springer, 2007.

15. J.-G. Fages and X. Lorca. Revisiting the Tree Constraint. In Proceedings of the

17th International Conference on the Principles and Practice of Constraint Pro-

gramming (CP), volume 6876 of LNCS, pages 271–285. Springer, 2011.

16. M. Fischetti and P. Toth. An additive bounding procedure for combinatorial op-

timization problems. Operations Research, 37(2):319–328, 1989.



26

17. M. Fischetti and P. Toth. An additive bounding procedure for the asymmetric

travelling salesman problem. Mathematical Programming, 53(1):173–197, 1992.

18. F. Focacci. Solving Combinatorial Optimization Problems in Constraint Program-

ming. PhD thesis, University of Ferrara, 2001.

19. F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In Proceedings

of the Fifth International Conference on Principles and Practice of Constraint

Programming (CP), volume 1713 of Lecture Notes in Computer Science, pages

189–203, 1999.

20. F. Focacci, A. Lodi, M. Milano, and D. Vigo. Solving TSP through the integration

of OR and CP techniques. Electronic Notes in Discrete Mathematics, 1:13–25,

1999.

21. F. Focacci, A. Lodi, and M. Milano. Embedding relaxations in global constraints

for solving TSP and TSPTW. Annals of Mathematics and Artificial Intelligence,

34(4):291–311, 2002.

22. F. Focacci, A. Lodi, and M. Milano. A hybrid exact algorithm for the TSPTW.

INFORMS Journal on Computing, 14(4):403–417, 2002.
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