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Abstract

The paper studies the expectation of the inspection time in complex aging sys-

tems, i.e. the length of the shortest path in a Directed Acyclic Graph, with

random costs on egdes. We give a lower bound for this expectation.
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1. Introduction and motivations

The random shortest path problem may be a good model for describing the

time to failure of very complex systems with various degradation schemes as for

instance nuclear plants. In this section, we describe our motivations for studying

such random shortest path problems.

1.1. Problem statement

Consider a complex system whose n degradation states have been identified

by experts. Let node 1 represent the state where the system is considered as

new and let node n be the state of unacceptable degradation. All maximum

paths from any node of the graph end at node n as in the figure below. The
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Figure 1: Graph of degradation states with Weibull transitions.

system is supposed to possibly evolve from a degradation state to any neighbor

in the corresponding connected directed acyclic graph. The transition time

between any two given states is assumed to follow a Weibull distribution whose

parameters are estimated if the number of observations is sufficiently large.

Otherwise, it is possible to make Bayesian inference in order to combine the

real data with some expert opinions.

Assume we start with a brand new system. Then, evolution of the system

starts in state 1. Maintenance policies require that the system be inspected

before reaching state n, i.e. unacceptable degradation. We represent this by

a connected Directed Acyclic Graph (DAG) G = (V,E), where |V | = n and

|E| = m. In the sequel, we assume that m ≥ n. Such examples of complex

systems have been studied in Corset (2003); Celeux et al. (2006); Adjerid et al.

(2012). Moreover, Chen et al. (1999) study the shortest path, in the maintenance

optimization context, for some multi-state parallel-series systems. The problem

posed in this paper is to provide a lower bound on acceptable inspection times.

1.2. Inspection times and shortest paths

In order to simplify the analysis, we assume that evolution inside the degra-

dation graph, a Directed Acyclic Graph (DAG), proceeds following the rule that

starting from one node i, the system goes to state j minimizing the transition
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time among neighbors of state i. Therefore, acceptable inspection times will be

the times lower than the shortest path from state 1 to state n where each edge

is weighted by its transition time. In general situations, we thus may ask for

• an estimator of the expected length of the shortest path from 1 to n,

• a confidence interval for the expected time path.

This task is in general impossible to achieve because of the huge number of

observations this should require in practice. The goal of this paper is to propose

a lower bound on the expected length of the shortest path.

The paper is organized as follows. Since shortest path problems are well

known to be representable as linear programs, we will address in the next section

the more general problem of deriving a lower bound to the expectation of linear

programs with random costs. In the third section, we specialize the study of this

lower bound to an appropriate linear programming formulation of the shortest

path problem. Moreover, we show that in the case of exponentially distributed

random costs, the Dyer-Frieze-McDiarmid upper bound is as bad as possible.

The fourth section is devoted to the application to reliability theory as motivated

by the introductory example above. In particular, the Weibull distribution is

proved to satisfy the assumptions under which the proposed lower bound holds.

2. Random linear programs

Consider the linear program with random costs given by

z = min ctx

Ax = b

x ≥ 0

(1)

where c is a random vector with independent components taking values on Rm+ ,

A is a matrix in Rn×m and b is a vector in Rn. The expectation of ci is denoted

by µi and its variance by σ2
i .

Throughout the paper, we will assume that the components of c have a

continuous density w.r.t. the Lebesgue measure.
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In the sequel, we assume that A is full rank, i.e. rank(A) = n, and that the

constraints of (1) define a polytope which is therefore a compact set. For any

subset of {1, . . . ,m}, we denote by AB the matrix whose column set is the set

of columns of A indexed by B. We will also use the notation xB and cB for the

vectors whose components are the components of x and c which are indexed by

B. A set of indices B is called a basis if its cardinality is n and the matrix AB

is full rank. A basis is called feasible if xB = A−1B b ≥ 0. A feasible basis is said

to be optimal if x∗ defined by

x∗B = A−1B b

x∗Bc = 0

is an optimal solution of (1). Random linear programs have been investigated

recently and many impressive results have been optained in the case of i.i.d.

cost vectors. For instance, the assignment problem was investigated in Wästlund

(2005), Krokhmal et al. (2007), Krokhmal and Pardalos (2009) in the asymptotic

regime.

In this section, we propose a lower bound on the expected value of random

linear programs in the spirit of the Dyer, Frieze and McDiarmid inequality, see

Dyer et al. (1986). The Dyer-Frieze-McDiarmid inequality is a powerful tool

for the analysis of some linear programming and combinatorial optimization

problems with random costs, as detailed in the monograph of Steele (1997).

More precisely, The Dyer-Frieze-McDiarmid bounds reads as follows.

Theorem 2.1. (Dyer-Frieze-McDiarmid) Assume that all the components

of c in (1) are independent and nonnegative and there exists β ∈ (0, 1] such that

E [ci | ci ≥ h] ≥ E [ci] + βh.

Let x be a feasible solution of (1). Let z∗ denote the random optimal value of

(1). Then, assuming E [c1]x1 ≥ · · · ≥ E [cm]xm.

E [z∗] ≤ β−1
m∑
i=1

E [ci]xi. (2)
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The Weibull distributions W(η, γ) (η and γ are respectively the scale and

shape parameters), has density function

f(x) =
γ

η

(
x

η

)γ−1
exp

(
−
(
x

η

)γ)
. (3)

When the edges are Weibull distributed with shape parameters γi in the

interval [1, 2] for i = 1, . . . , n, we will see in Proposition 4.1

E[ci | ci ≥ h] ≤ E[ci] + βh (4)

with β = 1. Note that Dyer-Frieze-McDiarmid requires the reverse inequality

instead, in order to hold. We will however use this property to obtain a lower

bound on the expectation of the optimal value of random linear programs in

Theorem 2.1.

As in Dyer et al. (1986), we will need the following result which is well known

to users of the simplex algorithm.

Lemma 2.1. A necessary and sufficient condition for a feasible basis to be op-

timal is that

ctBc ≥ ctB(AtB)−1ABc . (5)

Definition 2.1. For a basis B, let IB be the index set

IB =
{
i ∈ {1, . . . , n} |

(
ctB(AtB)−1ABc

)
i
≥ 0
}
.

Using this result and following the same reasoning as in the proof of the

Dyer, Frieze and McDiarmid inequality in Dyer et al. (1986), we obtain the

following proposition.

Proposition 2.1. Consider the random linear program (1) with random cost

vector c having independent components and satisfying (4) with β ∈ [1,+∞).

Let B be a set of feasible bases. For each B ∈ B, pB will denote the probability

that B is optimal. Let IB be the index set IB = ∩B∈B IB. Let x be any vector

satisfying the constraints of (1) and such that

xIcB = 0. (6)
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Then, we have

E[z] ≥ 1

β

∑
B∈B

pBE[cB ]xB . (7)

Proof. Fix a basis B and let EB be the event that B be optimal. Take any x

satisfying the primal constraints. Then we have

E[z | EB ] = E[ctB(AB)−1b | EB ]

= E[ctB(AB)−1(ABxB +ABcxBc) | EB ]

= E[ctBxB + ctB(AB)−1ABcxBc | EB ].

(8)

But using (4) together with (6), we have E[ctBc | EB , cB ]xBc ≤ E[ctBc ]xBc +

βctB(AB)−1ABcxBc , and thus

E[z | EB ] = E[ctB | EB ]xB + E
[
E[ctB(AB)−1ABc | EB , cB ] | EB

]
xBc

≥ E[ctB | EB ]xB + 1
β

(
E[ctBc | EB ]− E[ctBc ]

)
xBc

=
(

1− 1
β

)
E[ctB | EB ]xB + 1

βE[ct | EB ]x− 1
βE[ctBc ]xBc .

(9)

Since β ∈ [1,+∞) we can rule out the term
(

1 − 1
β

)
E[ctB | EB ]xB and using

the fact that E[ctBc ]xBc = E[ct]x− E[ctB ]xB , we get

E[z | EB ] ≥ 1

β
E[ct | EB ]x− 1

β

(
E[ct]x− E[ctB ]xB

)
. (10)

Finally take the expectation over all possible bases to obtain

E[z] ≥ 1
β

∑
B∈B pBE[ct | EB ]x− 1

β

∑
B pBE[ct]x+ 1

β

∑
B∈B pBE[ctB ]xB

= 1
β

∑
B pBE[ctB ]xB .

(11)

�

The result of this proposition is not completely satisfactory since the proba-

bilities pB that B be an optimal basis are not known. In certain cases, efficient

approximations of these probabilities can be obtained using a more precise ex-

pression of pB . Since in the case where the components of the cost vector c are

independent we easily get such an expression from the conditions for optimality

given in Lemma 2.1. The lower bound we thus obtain is summarized in the

following theorem.

6



Theorem 2.2. Consider the random linear program (1) with random cost vec-

tor c with independent coordinates.

a. Let B be a basis for this program and for all j ∈ B and i ∈ Bc, let

αij = ((AtB)−1ABc)ji. Then, we have

pB = E[
∏
i∈Bc

P (ci ≥
∑
j∈B

cjαji | cB)]. (12)

b. Let x be any vector satisfying (6) and the constraints of (1). Then

E[z] ≥ 1

β

∑
B∈B

E[
∏
i∈Bc

P (ci ≥
∑
j∈B

cjαji | cB)]E[cB ]txB . (13)

Proof. a. Due to independence of the components of c, conditionally on the

value of cj , j ∈ B, the events ci ≥
∑
j∈B cjαji are independent. Thus, the

desired formula.

b. Combine a. with Proposition 2.1. �

Remark 2.1. Condition (6) is easy to verify in practice by choosing a set B

which is not too large and computing IB explicitely.

With these results in hand, we will now be able to turn to the more special-

ized case of random shortest paths in the next section.

3. Random shortest paths in connected DAGs

3.1. Linear programming formulation

The shortest path problem can be represented as an equivalent linear pro-

gramming problem, as is well known Hoffman and Markowitz (1963). In (Pa-

padimitriou and Steiglitz, 1998, pp. 75–79) for instance, the shortest path

problem is shown to be equivalent to

min
x∈Rn

ct0x subject to A0x = b and x ≥ 0, (14)

where c0 is the column vector whose components are the transition times on

each edge, A0 is the incidence matrix of the oriented degradation graph and b is
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the vector [−1, 0, · · · , 0, 1]t, encoding the fact that we start the path at node 1

and end it at node n. Recall that the incidence matrix is constructed as follows.

Its rows are indexed by the nodes of the graph while its columns are indexed

by its edges with an extra column of all ones. In each column indexed by edge

(i, j), set the ith component to -1, the jth component to 1 and set all other

entries to zero. For instance, the incidence matrix for the graph of figure 1.1 is

given by

A0 =



−1 −1 −1 0 0 0 0

1 0 0 −1 0 0 0

0 1 0 1 −1 −1 0

0 0 1 0 1 0 −1

0 0 0 0 0 1 1


.

Any solution vector x∗ to this linear program whose components are binary, i.e.

∈ {0, 1} encodes a path whose edges correspond to the nonzero components of

x∗. The important property is that the matrix A0 is totally unimodular (TUM)

which means that every square submatrix has determinant equal to -1, 0 or 1.

This linear programming formulation of the problem has however a drawback:

the incidence matrix is not full rank and the size of its kernel is the number of

connected components of the graph, see Bollobás (1998). On the other hand,

for our results to apply recall that we need the matrix A in (1) to be full rank.

In order to remedy this problem, we introduce the extended incidence matrix

A, given by

A = [A0 | e],

where e is the vector whose components are all equal to one. For instance, the

extended incidence matrix for the graph of figure 1.1 is given by

A =



−1 −1 −1 0 0 0 0 1

1 0 0 −1 0 0 0 1

0 1 0 1 −1 −1 0 1

0 0 1 0 1 0 −1 1

0 0 0 0 0 1 1 1


.
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In addition, let c denote the extended cost vector [ct0, 0]. Then, we get the

following proposition.

Proposition 3.1. The shortest path problem is equivalent to the linear program

min
x∈Rn

ctx subject to Ax = b and x ≥ 0. (15)

Proof. Let x be an optimal solution of the given linear program. Then, x

satisfies the Karush-Kuhn-Tucker equations which are of the form:



c+
[
I At

] u

v

 = 0,

Ax = b

x ≥ 0

uixi = 0 for i = 1, . . . , n

ui ≤ 0

vj(a
t
jx− bj) = 0 for j = 1, . . . ,m

(16)

where atj is the jth row of A and the vectors u ∈ Rn and v ∈ Rm are the

Lagrange multipliers. More precisely, the multipliers that compose the vector

u deal with the nonegativity constraints and the components of v deal with the

others. The third equation is imposed in order to select the ”active” constraints

at optimality. In particular, it implies that if un+1 6= 0 we must have xn+1 = 0.

On the other hand, if un+1 = 0, xn+1 may be positive. In what follows, we

show that xn+1 is always null which will readily imply that this linear program

also solves the shortest path problem.

Equations (16) determine a polyhedron in Rn+1 × Rn × Rm. Now assume

that [xt, ut, vt]t is a corner point of this polyhedron and that un+1 = 0. Since

the matrix A is now full rank, the x-part of the corner vector satisfies

Ax = b,

and

xi = 0, i ∈ Ix

9



for some index set Ix of cardinality n + 1 − m. Now write these last nullity

constraints Cx = 0 for some appropriate matrix C. Then by Cramer’s rules, we

obtain that the last coordinate xn+1 is proportional to

det
( C[

A0 | b
] ).

On the other hand, we know that the sum of the rows of A is equal to zero and

the same holds for the sum of the components of b. Therefore, the determinant

just above is null. Therefore xn+1 = 0 as announced. From this, it is easy to

deduce that the vector of the first n components of an optimal solution to the

present linear program also solves (14). �

Using this proposition, we deduce that Theorem 2.2 applies to the random

shortest path problem. We now consider the Dyer-Frieze-McDiarmid bound

which gives an upper bound on the expected optimal value.

3.2. The DFM upper bound

The upper bound for the expected optimal cost of random linear programs

in Dyer et al. (1986) is a very nice result and a major contribution to the study

of random optimization problems; see also Steele (1997).

It is interesting to understand to what extent the Dyer-Frieze-McDiarmid

(DFM) bound is useful for the shortest path problem. Surprisingly, the answer

is that the DFM bound is as bad as possible in this case, despite is remark-

able efficiency on other standard combinatorial problems as shown in (Steele,

1997, Chapter 4). To understand why this happens, consider the deterministic

problem where the random costs are replaced by their expected values.

ζ = minE[c]Tx

Ax = b

x ≥ 0

(17)

Now, notice that whatever the distribution of the cost vector c may be, the

following upper bound is immediate to obtain:

E[z] ≤ ζ. (18)
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The following proposition shows that the DFM bound is no better than this

trivial upper bound.

Proposition 3.2. Consider problem (1) where the random costs are assumed

to be independent and exponentially distributed. Assume that the solution of

(17) is unique. Then the DFM bound is equal to the optimum value ζ of the

associated deterministic program (17).

Proof. Take x equal to the vector minimizing (17). It is clear that x is a binary

vector. It is also clear that the number of ones in this vector is less than the

number of nodes in the graph. Then, the maximum value over all sets S of

cardinality n in the right hand side term in (2) is obtained when S is taken to

be the set of indices i for which xi = 1. Thus
∑
i∈S E[ci]xi is exactly the cost

of x, i.e. ζ. �

Thus, contrarily to intuition, replacing the random costs by their expected

values is far from being a safe idea for the problem of providing efficient lower

bounds to the mean inspection time.

Remark 3.1. Uniqueness in (17) is not restrictive since it occurs with proba-

bility one with continuous random costs.

4. Application to reliability

In this section, we address the problem of finding lower bounds to the in-

spection time of complex systems in reliability. As explained in Section 1 our

main interest in studying random shortest paths problems relies in its possible

application to the analysis of the time to failure for very complex systems. We

will assume in this section that the transition times between two degradation

states follows a Weibull distribution. In order to apply our previous results, we

will need to study the Weibull distribution a little further.
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4.1. Some properties of the Weibull distribution

Let X be a random variable with Weibull distribution Weib(η, γ), i.e. with

probability density function given by

fX(t) =
γ

η

( t
η

)γ
e−(

t
η )
γ

. (19)

Then, the mean residual time to failure (MRTF) is given by

GX(h) = E[X | X ≥ h] = ηe(
h
η )
γ

Γ(1 +
1

γ
, (
h

η
)γ), (20)

where Γ(a, h) is the incomplete gamma function defined by

Γ(a, h) =

∫ +∞

h

ta−1e−tdt. (21)

Lemma 4.1. Let X be a Weibull, denoted Weib(η, γ), distributed random vari-

able. Then,

a. the first two derivatives of the MRTF for a Weibull distributed variable

X are given by

G′X(h) = γ
(h
η

)γ(η
h
e(
h
η )
γ

Γ
(
1 +

1

γ
, (
h

η
)β
)
− 1
)

(22)

and

G′′X(h) = − γ2

ηγ h
(γ−1)

(
1 + γ(hη )γ

)
+

γ
η(γ−1)h

(γ−2)e(
h
η )
γ

Γ(1 + 1
γ , (

h
η )γ)

(
γ(hη )γ + γ − 1

)
.

(23)

Moreover,

b. when γ ≥ 1 we have

lim
h→0

G′X(h) = 0, lim
h→+∞

G′X(h) = 1 and ∀h ≥ 0, G′′X(h) < 1. (24)

Proof. a. We omit the proof of the formula for the first and second derivative

of GX .

b. Now, since G′X is clearly continuous on R+ and G′X(0) = 0, we obtain

the first assertion in b. Using the transformation u = t− (h/η)γ , the first of the

two terms between parenthesis in (22) can we written

ηe
(
h

η
)γ

Γ
(
1 +

1

γ
, (
h

η
)γ
)

= h

∫ +∞

0

e−u
(
1 + (

η

h
)γu
) 1
γ du. (25)
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For all u ≥ 0 we have the following Taylor expansion

(1 + (
η

h
)γu
) 1
γ = 1 +

1

γ

ηγ

hγ
u+ o(

1

hγ
). (26)

Multiplying by e−u and integrating, we obtain∫ +∞
0

e−u
(
1 + ( ηh )γu

) 1
γ du =

∫ +∞

0

e−u du+
1

γ

ηγ

hγ

∫ +∞

0

e−uu du+ o(
1

hγ
)

= 1 +
1

γ

ηγ

hγ
+ o(

1

hγ
).

(27)

Combining with (22), we deduce from a simple analysis of the second derivative

that limh→+∞ G′X(h) = 1 and G′X(h) ≤ 1 for all h ∈ R+. �

4.2. The lower bound

In this subsection, we work out an easily computable lower bound derived

from Theorem 2.2. We first have the following crucial result saying that the

most commonly encountered Weibull distributions in reliability theory satisfy

the main assumption of Proposition 2.1 and Theorem 2.2.

Proposition 4.1. Assume that X has distribution Weib(η, γ) with γ > 1.

Then, for all h ≥ 0, we have

E[X | X ≥ h] ≤ E[X] + h.

Proof. This is a direct consequence of lemma 4.1. �

In the next theorem, we derive an explicit lower bound from Theorem 2.2 in

the case of Weibull distributions.

Theorem 4.1. Consider the random linear program (1) with random cost vec-

tor c with independent components and assume that each component ci, 1 ≤ i ≤

n follows a Weibull distribution Weib(ηi, γi)

a. Let B be a basis for this program and for all j ∈ B and i ∈ Bc, let

αij = ((AtB)−1ABc)ji. Then, we have

pB ≥ 1−
∑
i∈Bc

4
√
e
(∑

j∈B α
2
jiη

2
jΓ
(

1 + 2
γj

)) 1
2

+ |
∑
j∈B αjiηjΓ

(
1 + 1

γj

)
|

ηγii
. (28)
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b. Let x be any vector satisfying (6) and the constraints of (1). Then

E[z] ≥
∑
B∈B

(
1−
∑
i∈Bc

4
√
e
(∑

j∈B α
2
jiη

2
jΓ
(

1 + 2
γj

)) 1
2

+ |
∑
j∈B αjiηjΓ

(
1 + 1

γj

)
|

ηγii

)
E[cB ]txB .

(29)

Proof. a. Theorem 2.2.a. gives the following formula for pB :

pB = E
[ ∏
i∈Bc

exp−
(

max
{

0,

∑
j∈B αjicj

ηi

})γi]
, (30)

where the expectation is taken with respect to the variables cj , j ∈ B. Now

since exp(−x) ≥ 1− x, we obtain that

pB ≥ E
[
1−

∑
i∈Bc max

{
0,
(∑

j∈B αjicj

ηi

)γi}]
,

= 1−
∑
i∈Bc E

[
max

{
0,

∑
j∈B αjicj

ηi

}γi]
.

(31)

Thus,

pB ≥ 1−
∑
i∈Bc

E
[

max
{

0,
∑
j∈B αjicj

}γi]
ηγii

. (32)

In order to simplify the subsequent computations, we will use the crude ma-

jorization:

max
{

0,
∑
j∈B

αjicj

}
≤ |
∑
j∈B

αjicj |

which gives

pB ≥ 1−
∑
i∈Bc

E
[
|
∑
j∈B αjicj |γi

]
ηγii

. (33)

Now, our next goal is to use the Kintchine inequalities in order to bound the last

expression by a quantity expressed in terms of the l2 norm which will be easier

to control. For this purpose, one might want to center the random variables

involved in (33) and use the triangle inequality to obtain

E
[
|
∑
j∈B αjicj |γi

] 1
γi

= E
[
|
∑
j∈B αji(cj − E[cj ] + E[cj ])|γi

] 1
γi

≤ E
[
|
∑
j∈B αji(cj − E[cj ])|γi

] 1
γi

+ E
[
|
∑
j∈B αjiE[cj ]|γi

] 1
γi

= E
[
|
∑
j∈B αji(cj − E[cj ])|γi

] 1
γi

+ |
∑
j∈B αjiE[cj ]|

(34)
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Using Jensen’s inequality, a standard trick gives

E
[
|
∑
j∈B αji(cj − E[cj ])|γi

] 1
γi

= E
[
|
∑
j∈B αji(cj − E[c′j ])|γi

] 1
γi

≤ E
[
|
∑
j∈B αji(cj − c′j)|γi

] 1
γi

(35)

where c′j , j ∈ B are i.i.d. variables independent of cj , j ∈ B and such that

cj has same distribution as c′j , j ∈ B. Let εj , j ∈ B be standard Rademacher

±1 random variables. Since
∑
j∈B αji(cj − c′j) has the same distribution as∑

j∈B αjiεj(cj − c′j), we have

E
[
|
∑
j∈B αji(cj − E[cj ])|γi

] 1
γi

= E
[
|
∑
j∈B αjiεj(cj − c′j)|γi

] 1
γi

≤ 2E
[
|
∑
j∈B αjiεjcj |γi

] 1
γi

(36)

where we used once again the triangle inequality. Notice that

E
[
|
∑
j∈B αjiεjcj |γi

] 1
γi

= E
[
E
[
|
∑
j∈B αjiεjcj |γi | cj , j ∈ B

]] 1
γi

= E
[(

E
[
|
∑
j∈B αjiεjcj |γi | cj , j ∈ B

] 1
γi
)γi] 1

γi
.

(37)

On the other hand, Khintchine’s inequality gives

E
[(

E
[
|
∑
j∈B αjiεjcj |γi | cj , j ∈ B

] 1
γi
)γi] 1

γi ≤ CγiE
[(

(
∑
j∈B α

2
jic

2
j )

1
2

)γi] 1
γi

(38)

where Cγi is equal to
√

2eγi in the present context. Thus,

E
[(

E
[
|
∑
j∈B αjiεjcj |γi | cj , j ∈ B

] 1
γi
)γi] 1

γi ≤
√

2eγi

(
E
[
(
∑
j∈B α

2
jic

2
j )

γi
2

] 2
γi
) 1

2

.

(39)

Moreover, since p 7→ E[|X|p]
1
p is an increasing function and γi is assumed to

belong to [1, 2], we obtain the simpler bound

E
[(

E
[
|
∑
j∈B αjiεjcj |γi | cj , j ∈ B

] 1
γi
)γi] 1

γi ≤ 2
√
eE
[∑

j∈B α
2
jic

2
j

] 1
2

,

= 2
√
e
(∑

j∈B α
2
jiE
[
c2j
]) 1

2

(40)
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Moreover, since E[c2j ] = η2jΓ
(

1 + 2
γj

)
, we have

E
[(

E
[
|
∑
j∈B αjiεjcj |γi | cj , j ∈ B

] 1
γi
)γi] 1

γi ≤ 2
√
eE
[∑

j∈B α
2
jic

2
j

] 1
2

,

= 2
√
e
(∑

j∈B α
2
jiη

2
jΓ
(

1 + 2
γj

)) 1
2

.

(41)

Combining this result with (33), (34), (36), (37), and replacing E[cj ] = ηjΓ
(

1 +

1
γj

)
in (34), we finally obtain the desired result.

b. This follows from part a. and Proposition 2.1. �

5. Conclusion and perspectives

In this paper, we derived a lower bound (Theorem 4.1) on the probability

that a given path is optimal for the shortest path problem with independent

arc weights with Weibull distributions. For this purpose, we used the linear

programming formulation of the problem and extended the work of Dyer et al.

(1986) (Theorem 2.2).

The results presented here are of a theoretical nature. Further refinements

and applications to real data will be proposed in a subsequent paper.
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Béla Bollobás. Modern graph theory, volume 184. Springer Science & Business

Media, 1998.

G. Celeux, F. Corset, A. Lannoy, and B. Ricard. Designing a bayesian network

for preventive maintenance from expert opinions in a rapid and reliable way.

Reliability Engineering and System Safety, 91(7):849–856, 2006.

16



Cheng Chen, Max Q-H Meng, and Ming J Zuo. Selective maintenance optimiza-

tion for multi-state systems. In Electrical and Computer Engineering, 1999

IEEE Canadian Conference on, volume 3, pages 1477–1482. IEEE, 1999.

F. Corset. Maintenance optimization from Bayesian networks and reliability

with doubly censored data. Thèse Université Joseph Fourier, Grenoble, 2003.
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