
HAL Id: hal-01344019
https://hal.science/hal-01344019

Submitted on 11 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mogwaï: a Framework to Handle Complex Queries on
Large Models

Gwendal Daniel, Gerson Sunyé, Jordi Cabot

To cite this version:
Gwendal Daniel, Gerson Sunyé, Jordi Cabot. Mogwaï: a Framework to Handle Complex Queries on
Large Models. RCIS 2016 - 10th International Conference on Research Challenges in Information
Science, Jun 2016, Grenoble, France. pp.1-12, �10.1109/RCIS.2016.7549343�. �hal-01344019�

https://hal.science/hal-01344019
https://hal.archives-ouvertes.fr


Mogwaı̈: a Framework to Handle Complex Queries
on Large Models

Gwendal Daniel
AtlanMod Team

Inria, Mines Nantes & Lina
Gwendal.Daniel@inria.fr

Gerson Sunyé
AtlanMod Team

Inria, Mines Nantes & Lina
Gerson.Sunye@inria.fr

Jordi Cabot
ICREA
UOC

Jordi.Cabot@icrea.cat

Abstract—While Model Driven Engineering is gaining more
industrial interest, scalability issues when managing large models
have become a major problem in current modeling frameworks.
Scalable model persistence has been achieved by using NoSQL
backends for model storage, but existing modeling framework
APIs have not evolved accordingly, limiting NoSQL query
performance benefits. In this paper we present the Mogwaı̈,
a scalable and efficient model query framework based on a
direct translation of OCL queries to Gremlin, a query language
supported by several NoSQL databases. Generated Gremlin
expressions are computed inside the database itself, bypassing
limitations of existing framework APIs and improving overall
performance, as confirmed by our experimental results showing
an improvement of execution time up to a factor of 20 and a
reduction of the memory overhead up to a factor of 75 for large
models.

Index Terms—Model Query, OCL, Gremlin, Scalability,
NoSQL.

I. INTRODUCTION

Model queries are a key concept in Model Driven Engi-
neering (MDE). They constitute the basis for several model-
ing activities, such as model validation [1], derived features
computation [2], constraint specification [3], or model trans-
formation [4].

With the progressive adoption of MDE techniques in the
industry [5], [6], existing tools have to increasingly deal with
large models, and the scalability of existing technical solutions
to store, edit collaboratively, transform, and query models has
become a major issue [7], [8]. Large models typically appear
in various engineering fields, such as civil engineering [9],
automotive industry [10], product lines [11], and can be
generated in model-driven reverse engineering processes [12],
such as software modernization.

In the last decade, the Eclipse Modeling Framework
(EMF) [13] has become the de-facto standard framework for
building modeling tools, offering a strong foundation to imple-
ment model storage, querying, and persisting functionalities.
The popularity of EMF is attested by the large number of
available EMF-based tools on the Eclipse marketplace [14],
coming from both industry and academia. Therefore, most of
the research works aimed at improving modeling scalability
target this framework. Nevertheless, EMF was first designed to
handle simple modeling activities, and its default serialization
mechanism – XMI [15] – has shown clear limitations to

handle very large models [16], [17]. Furthermore, XML-
based serialization has two important drawbacks: (i) it favors
readability instead of compactness and (ii) XMI files have
to be entirely parsed to obtain a navigational model of their
contents. The first reduces performance of I/O access opera-
tions, while the second increases the memory consumption to
load and query a model, and limits the use of proxies and
partial loading to inter-document relationships. In addition,
XMI implementations do not provide advanced features such
as transactions or collaborative edition, and large monolithic
model files are challenging to integrate in existing versioning
systems [18].

CDO [19] was designed to address those issues by providing
a client-server repository structure to handle large model
in a collaborative environment. CDO supports transactions
and provides a lazy-loading mechanism, which allows the
manipulation of large models in a reduced amount of memory
by loading only accessed objects. Recently, the increasing
popularity of NoSQL databases has led to a new genera-
tion of persistence frameworks that store models in scalable
and schema-less databases. Morsa [16], [20] is one of the
first approaches that uses NoSQL databases to handle very
large models. It relies on a client-server architecture based
on MongoDB and aims to manage scalability issues using
document-oriented database facilities. NeoEMF [21] is another
persistence framework initially designed to take advantage of
graph databases to represent models [17], [22]. It has been
extended to a multi-backend solution supporting graph and
key-value stores and can be configured with application-level
caches to limit database accesses.

While this evolution of model persistence backends has
improved the support for managing large models, they are
just a partial solution to the scalability problem in current
modeling frameworks. In its core, all frameworks are based
on the use of low-level model handling APIs. These APIs
are then used by most other MDE tools in the framework
ecosystem to query and update models. Since these APIs are
focused on manipulating individual model elements and do not
offer support for generic queries, all kinds of queries required
by model-based tools must be translated into a sequence of
API calls for individual accesses. This is clearly inefficient
when combined with persistence frameworks because (i) the
API granularity is too fine to benefit from the advanced



query capabilities of the backend and (ii) an important time
and memory overhead is necessary to construct navigable
intermediate objects needed to interact with the API (e.g. to
chain the sequence of fine-grained API calls required to obtain
the final result).

To overcome this situation, we propose the Mogwaı̈, an
efficient and scalable query framework for large models. The
Mogwaı̈ framework translates model queries written in OCL
into expressions of a graph traversal language, Gremlin, which
are directly used to query models stored in a NoSQL backend.
We argue that this approach is more efficient and scalable
than existing solutions relying on low-level APIs. To evaluate
our solution, we perform a set of queries extracted from
MoDisco [12] software modernization use-cases and compare
the results against existing frameworks based on EMF API.

The paper is organized as follows: Section II introduces
Gremlin, a language to query multiple NoSQL databases, Sec-
tion III presents the architecture of our tool. Section IV and V
introduces the transformation process from OCL expressions
to Gremlin and the prototype we have developed. Section VI
describes the benchmarks used to evaluate our solution and
the results. Finally, Section VII presents related works and
Section VIII summarizes the key points of the paper, draws
conclusions, and presents our future work.

II. THE GREMLIN QUERY LANGUAGE

A. Motivation

NoSQL databases are an efficient option to store large
models [17], [20]. Nevertheless, their diversity in terms of
structure and supported features make them hard to unify
under a standard query language to be used as a generic
solution for our approach.

Blueprints [23] is an interface designed to unify NoSQL
database access under a common API. Initially developed for
graph stores, it has been implemented by a large number of
databases such as Neo4j, OrientDB, and MongoDB. Blueprints
is, to our knowledge, the only interface unifying several
NoSQL databases1.

Blueprints is the base of the Tinkerpop stack: a set of tools
to store, serialize, manipulate, and query graph databases.
Gremlin [24] is the query language designed to query
Blueprints databases. It relies on a lazy data-flow framework
and is able to navigate, transform, or filter a graph. It can
express graph traversals finely and shows positive performance
results when compared to Cypher, the pattern matching lan-
guage used to query the Neo4j graph database [25].

Therefore, we choose Gremlin as our target language as it
is the most mature and generic solution nowadays to query a
wider variety of NoSQL databases.

B. Language description

Gremlin is a Groovy domain-specific language built on top
of Pipes, a data-flow framework based on process graphs. A

1Implementation list is available at https://github.com/tinkerpop/blueprints

process graph is composed of vertices representing computa-
tional units and communication edges which can be combined
to create a complex processing. In the Gremlin terminology,
these complex processing are called traversals, and are com-
posed of a chain of simple computational units named steps.
Gremlin defines four types of steps:

� Transform steps: functions mapping inputs of a given
type to outputs of another type. They constitute the core
of Gremlin: they provide access to adjacent vertices,
incoming and outgoing edges, and properties. In addition
to built-in navigation steps, Gremlin defines a generic
transformation step that applies a function to its input
and returns the computed results.

� Filter steps: functions to select or reject input elements
w.r.t. a given condition. They are used to check property
existence, compare values, remove duplicated results, or
retain particular objects in a traversal.

� Branch steps: functions to split the computation into
several parallelized sub-traversals and merge their results.

� Side-effect steps: functions returning their input values
and applying side-effect operations (edge or vertex cre-
ation, property update, variable definition or assignation).

In addition, the step interface provides a set of built-in methods
to access meta information: number of objects in a step, output
existence, or first element in a step. These methods can be
called inside a traversal to control its execution or check
conditions on particular elements in a step.

Gremlin allows the definition of custom steps, functions,
and variables to handle query results. For example, it is
possible to assign the result of a traversal to a variable and
use it in another traversal, or define a custom step to handle
a particular processing.

(a) Metamodel (b) Instance Model

(c) Persisted Model

Fig. 1. Sample Metamodel and Model



As an example, Figure 1(a) shows a simple metamodel rep-
resenting Packages and Classes. Packages are named contain-
ers owning Classes through their ownedElements reference.
An instance of this metamodel is shown in Figure 1(b) and its
graph database representation is shown in Figure 1(c). Grey
vertices represents Package and Class metaclasses and are
linked to their instance through instanceof edges. The package
p1 is linked to classes c1 and c2 using ownedElements edges.

In what follows, we describe some simple Gremlin exam-
ples based on this model. A Gremlin traversal begins with a
Start step, that gives access to graph level informations such as
indexes, vertex and edge lookups, and property based queries.
For example, the traversal below performs a query on the
classes index that returns the vertices indexed with the name
Package, representing the Package class in the Figure 1(a). In
our example, this class matches vertex 1.
g . i d x ( ” c l a s s e s ” ) [ [ name : ” Package ” ] ] ; / / ! v ( 1 )

The most common steps are transform steps, that allow
navigation in a graph. The steps outE(rel) and inE(rel) navigate
from input vertices to their outgoing and incoming edges,
respectively, using the relationship rel as filter. inV and outV
are their opposite: they compute head and tail vertices of
an edge. For example, the following traversal returns all the
vertices that are related to the vertex 3 by the relationship
ownedElements. The Start step g.v(3) is a vertex lookup that
returns the vertex with the id 3.
g . v ( 3 ) . outE ( ” ownedElements ” ) . inV ; / / ! [ v ( 4 ) , v ( 5 ) ]

Filter steps are used to select or reject a subset of input
elements given a condition. They are used to filter vertices
given a property value, remove duplicate elements in the
traversal, or get the elements of a previous step. For example,
the following traversal returns all the vertices related to vertex
3 by the relationship ownedElements that have a property name
with a size longer than 1 character.
g . v ( 3 ) . outE ( ” ownedElements ” ) . inV

. has ( ”name” ) . f i l t e r f i t . name . l e n g t h > 1g ; / / ! [ v ( 4 ) , v ( 5 )
]

Branch steps are particular steps used to split a traversal
into sub queries, and merge their results. As an example, the
following traversal collects all the id and name properties for
the vertices related to vertex 3 by the relationship ownedEle-
ments. The computation is split using the copySplit step and
merged in the parent traversal using exhaustMerge.
g . v ( 3 ) . outE ( ” ownedElements ” ) . inV . c o p y S p l i t (

( ) . name , ( ) . i d ) . exhaus tMerge ( ) ;

Finally, side-effect steps modify a graph, compute a value, or
assign variables in a traversal. They are used to fill collections
with step results, update properties, or create elements. For
example, it is possible to store the result of the previous
traversal in a table using the Fill step.
d e f t a b l e = [ ] ;
g . v ( 3 ) . outE ( ” ownedElements ” ) . inV .

has ( ”name” ) . f i l t e r f i t . name . l e n g t h > 10g . f i l l ( t a b l e ) ; / /
! [ v ( 4 ) , v ( 5 ) ]

III. THE MOGWAÏ FRAMEWORK

The Mogwaı̈ framework is our proposal for handling com-
plex queries on large models. As discussed above, we will
assume that those large models are stored in a NoSQL backend
with Gremlin support. On the modeling side we will also
assume that queries are expressed in OCL (Object Constraint
Language), the OMG standard for complementing graphical
languages with textual descriptions of invariants, operation
contracts, derivation rules, and query expressions.

More precisely, the Mogwaı̈ approach relies on a model-
to-model transformation that generates Gremlin traversals
from OCL queries which are then directly computed by
any Blueprints database. The results of the query are then
translated back to the modeling framework resulting in the set
of modeling objects that satisfies the query expression.

Figure 2 shows the overall query process of (a) the Mogwaı̈
framework and compares it with (b) standard EMF2 API based
approaches.

An initial textual OCL expression is parsed to transform it
into an OCL model conforming to the OCL metamodel. This
model constitute the input of a model-to-model transformation
that generates the corresponding Gremlin model. The Gremlin
model is then expressed as a text string conforming to the
Gremlin grammar and sent to the Blueprints database for its
execution.

The main difference with existing query frameworks is that
the Mogwaı̈ framework does not rely on the EMF API to
perform a query. In general, API based query frameworks
translate OCL queries into a sequence of low-level API calls,
which are then performed one after the other on the database.
While this approach has the benefit to be compatible with
every EMF-based application, it does not take full advantage of
the database structure and query optimizations. Furthermore,
each object fetched from the database has to be reified to be
navigable, even if it is not going to be part of the end result.
Therefore, execution time of the EMF-based solutions strongly
depends on the number of intermediate objects reified from
the database (which depends on the complexity of the query
but also on the size of the model, bigger models will need a
larger number of reified objects to represent the intermediate
steps) while for the Mogwaı̈ framework, execution time does
not depend on the number of intermediate objects, making it
more scalable over large models.

Once the Gremlin traversal has been executed on the
database side, the results are returned to the framework that
reifies those results into the corresponding model elements.
With this architecture, it is possible to plug our solution on
top of various persistence frameworks and use it in multiple
contexts.

To sum up, the transformation process generates a single
Gremlin traversal from an OCL query and runs it over the
database. This solution provides two benefits: (i) delegation of
the query computation to the database, taking full advantage

2We focus the explanation on the EMF framework but results are general-
izable to all other modeling frameworks we are familiar with.



OCL Query Model Model-to-model
Transformation

Gremlin Traversal 
Model

Gremlin Traversal Blueprints Database

(a) The Mogwaı̈ Query Framework

API Call1

…

API Calln

DatabaseOCL Query Model OCL Interpreter

(b) EMF-based Query Frameworks

Fig. 2. Comparison of OCL execution

of the built-in caches, indexes, and query optimizers; and (ii)
single execution compared to fragmented queries with the
EMF API, removing intermediate object reification.

IV. OCL TO GREMLIN TRANSFORMATION

A. Mapping of OCL expressions

To illustrate the different phases of the transformation,
we introduce a running example: Listing 1 shows a simple
query (on a model conforming to Figure 1(a)) that selects
the Packages instances which contains at least one element
through the ownedElements reference. The transformation
process that generates the Gremlin traversal in Listing 2 relies
on the mappings shown in Table I to translate individual OCL
expressions into Gremlin steps. In this Section we detail how
the different steps of the traversal are generated using this
mapping. In the next Section we present how the input OCL
syntax tree is processed and generated steps are linked together
to produce the complete Gremlin query.
d e f s a m p l e S e l e c t : r e s : S e t ( Package ) =

Package . a l l I n s t a n c e s ( )! s e l e c t ( e j e . ownedElements!
i sEmpty ( ) )

Listing 1. Sample OCL Query

v a r packageV = g . i d x ( ” c l a s s e s ” ) [ [ name : Package ] ] ;
packageV . inE ( ” i n s t a n c e o f ” ) . outV . f i l t e r fe= i t ;

e . outE ( ” ownedElements ” ) . inV . t o L i s t ( ) . i sEmpty ( ) g ;

Listing 2. Generated Gremlin Textual Traversal

We have divided the supported OCL expressions into four
categories based on Gremlin step types: transformations, col-
lection operations, iterators, and general expressions. Note that
other types of OCL expressions that are not explicitly listed in
the table can be first expressed in terms of those that appear
there [26] and therefore be also covered by our mapping.

The first group, transformation expressions, returns a com-
puted value from their input. Expressions that navigate the
elements in the model are mapped to navigation steps: Type
access is translated into an index query returning the vertex
representing the type, assuming the type exists. In the example,
the Package type is mapped to the index call g.idx("
classes")[[name:Package]], and the result vertex is
stored in a dedicated variable to reduce database accesses. The
AllInstances collection is mapped to a traversal returning

adjacent vertices on the Type vertex having an instanceof
outgoing edge (inE("instanceof").outV). Reference
and attribute collect operations are respectively mapped
to an adjacent vertex collection on the reference name and
a property step accessing the attribute. Type conformance is
checked by comparing the adjacent instanceof vertex with the
type one using a generic transform step. Finally, attribute and
reference collect from type casting are mapped as regular
collect operation, because each vertex in the database
contains its inherited attributes and edges.

The second group, operations on collections, needs a par-
ticular mapping because Gremlin step content is unmodifiable
and cannot support collection modifications natively. Union,
intersection and set subtraction expressions are
mapped to the fill step, which puts the result of the traversal
into a variable. We have extended Gremlin by adding union,
intersection, and subtract methods that compute the result
of those operations from the variables storing the traversed
elements. Including operation is translated to a gather step,
that collects all the objects and process the gathered list with
a closure that adds the element to includes. The list is then
transformed back to a step input by using the scatter step.
Excluding operations can be achieved by using the except
step, that removes from the traversal all the elements in its
argument. A transformation of the step content into a Groovy
collection is done to handle includes and excludes
operations, which are then mapped to a containment checking.
Finally, functions returning the size and the first element of
a collection are mapped to count() and first() step methods.
Note that there is no specific method to check if a collection
is empty in Gremlin but this can be achieved by calling a
Groovy collection transformation.

Iterator expressions are OCL operations that check a con-
dition over a collection, and return either the filtered col-
lection or a boolean value. Select is mapped to a filter
step with the translation of the condition as its body. In
the example the body of the select operation contains
an implicit collect on the reference ownedElements and
a collection operation isEmpty(), that are respectively
mapped to outE("ownedElements").inV and toList
().isEmpty(). Reject is mapped the same way with
a negation of its condition. Exists and forAll mapping
follow the same schema: a filter step with the condition or its
negation is generated and the number of results is analyzed.
Finally, general operations (comparisons, boolean operations,
variable declaration, and literals) are simply mapped to their
Groovy equivalent.

The mapping presented in this Section produces all the
Gremlin steps of the result traversal. In the next section, we
detail the processing of the input OCL expression and how
these steps are linked to produce the complete Gremlin query
shown in Listing 2.

B. Transformation Process

1) OCL Metamodel: The input of the transformation is
an OCL model representing the abstract syntax tree of the



TABLE I
OCL TO GREMLIN MAPPING

OCL expression Gremlin step
Type g.idx(’classes’)[[name:’Type’]]a

allInstances() inE(’instanceof’).outV
collect(attribute) attribute
attribute (implicit collection) attribute
collect(reference) outE(’reference’).inV
reference (implicit collection) o.outE(’reference’).inV
oclIsTypeOf(C) o.outE(’instanceof’).inV.transformfit.next() == Cg
oclAsType(C).attribute attribute
oclAsType(C).reference outE(’reference’).inV
col1 !union(col2) col1.fill(var1); col2.fill(var2); union(var1, var2);
col1 !intersection(col2) col1.fill(var1); col2.fill(var2); intersection(var1, var2);
col1�col2 (Set subtraction) col1.fill(var1); col2.fill(var2); subtract(var1, var2);
including(object) gatherfit << object;g.scatter;
excluding(object) except([object]);
includes(object) toList().contains(object)
excludes(object) !(toList().contains(object))
size() count()
first() first()
isEmpty() toList().isEmpty()
select(condition) c.filterfconditiong
reject(condition) c.filterf!(condition)g
exists(expression) filterfconditiong.hasNext()
forAll(expression) !(filterf!conditiong.hasNext())
=; >;>=; <;<=; <> ==; >;>=; <;<=; ! =
+;�; =;%; � +;�; =;%; �
and,or,not &&,k,!
variable variable
literals literals

aResults of index queries are stored in dedicated variables to optimize database accesses

OCL query to perform. Figure 3 presents a simplified ex-
cerpt of the OCL metamodel3. In the OCL, a Constraint
is a named top-level container that contains a specification
described in an ExpressionInOCL element. This expression
is composed of an OCLExpression representing its body, a
context variable (self), and may define result and parameter
variables. An OCLExpression can be a type access (TypeExp),
a variable access or definition (VariableExp), or an abstract
call expression (CallExp). CallExp are divided into three
subclasses: OperationCallExp representing OCL operations,
PropertyCallExp representing property navigations (attribute
and reference accesses), and IteratorExp representing iteration
loops over collections. These IteratorExp elements define
an iterator Variable, and contains a body OCLExpression
representing the expression to apply on each element of their
input. Finally, expressions can be chained by the CallExp
source reference representing the element the call apply on,
or by being an argument of an OperationCallExp. In the
OCL metamodel we use, all the operations are encapsulated
into OperationCallExp elements. The actual identifier of the
operation is contained in the name attribute.

Figure 4 shows the instance of the OCL metamodel
representing the abstract syntax tree for the sample query
presented in Listing 1. The top level element Constraint
sampleSelect contains the context variable self of the

3The complete OCL metamodel we use is available at http://tinyurl.com/
hof89by

Fig. 3. Extract of OCL Metamodel



query, its result variable (res), and an ExpressionInOCL
element representing the query itself. Each expression in the
OCL metamodel is linked to its source expression, in charge
of computing the object/s on which the next expression will be
applied. In the example the ExpressionInOCL body contains
the root expression in the source tree of the query (the select in
this case). This select iterator has the allInstances operation as
its source, which has itself a source reference on the TypeExp
Package (meaning that we iterate over the whole population
of the Package class). It also defines an iterator variable
e and a body tree (representing the expression to evaluate
over each element of the source collection) starting with the
isEmpty operation that is the root of the expression. This opera-
tion is applied on the result of the ownedElements property
navigation, which has a source reference to a VariableExp
expression that refers to the iterator e.

Fig. 4. OCL Query Syntax Tree

2) Gremlin Metamodel: The output of our model-to-model
transformation is a Gremlin model. Since Gremlin does not
have a metamodel-based representation of its grammar we
propose our own Gremlin metamodel. As Gremlin is a Groovy
based language, it could have been possible to reuse the Java
or Groovy metamodels but they are too large for our needs
and miss an easy way to define the concept of step, a core
concept specific to Gremlin.

Figure 5 presents the Gremlin metamodel we use in our ap-
proach. In this metamodel, a GremlinScript is defined by a set
of Instructions that can be TraversalElements, VariableDec-
larations, or Expressions. Supported Expressions are unary
and binary comparisons, boolean operations, and Literals.
UnaryExpressions and BinaryExpressions contain respectively
one and two inner Instructions. A TraversalElement is a single
computation step in a Gremlin traversal. It can be either a
Gremlin Step, a VariableAccess, or a MethodCall. Traver-
salElements are organized through a composite pattern: each
Step has a next containment reference that links to the next
TraversalElement in the chain. In the Gremlin terminology,
such a chain of computation is called a traversal. Step elements
are the core concept in the Gremlin language. We represent
each step presented in Section II and the ones defined in the
Gremlin documentation4 as subclasses of the Step class. Steps
subclasses can contain attributes, like InEStep or OutEStep,

4http://tinyurl.com/j9hloxr

that contain the label of the edge to navigate. EdgesStep and
VerticesStep correspond to edge and vertex lookup (g.E()
and g.V()). Finally, FilterSteps are particular Steps that
contain a reference to a Closure, that is defined by a set of
Instructions that are applied on each filtered element.

For the sake of readability we only put the key concepts in
this metamodel excerpt. In particular, we omit an important
number of Steps and MethodCalls, as well as the concrete
subclasses of supported unary and binary expressions. A
complete definition of the metamodel is provided in the project
repository5.

Figure 6 presents the instance of the Gremlin metamodel
corresponding to the traversal shown in Listing 2. The top-
level GremlinScript contains two instructions. The first one is
a VariableDeclaration that defines the variable packageV.
The value of this variable is defined by a Gremlin traversal
composed of a Start step (the initial access to the graph),
an IndexCall representing the index query returning the ver-
tex representing the metaclass Package, and a NextCall that
unroll the step content and returns the vertex. The second
instruction is a VariableAccess, representing the access to the
variable defined in the previous instruction. This access is the
begining of a second traversal composed of navigation steps
(InE, OutV), and a Filter. This last step contains a Closure,
representing the boolean condition of the Filter. This Closure
is composed of two instructions: a VariableDeclaration that is
mapped to the closure iterator, and a VariableAccess followed
by a navigation, a ToList cast, and a Groovy IsEmpty check.
As shown in the example, it is possible to compose Steps and
regular Groovy MethodCalls in order to create a traversal.

Fig. 6. Generated Gremlin Syntax Tree

3) Transformation Execution: To create a complete Grem-
lin traversal, the Mogwaı̈ framework needs to process the AST
model representing the syntax tree of the OCL query. In this
Section we present how the input OCL query is navigated
and how the different elements produced by the mappings

5http://tinyurl.com/peuyu32



Fig. 5. Extract of Gremlin Metamodel

presented in Table I are assembled to create the final Gremlin
script. For the sake of clarity, we provide an overview of the
transformation in Figure 7, which presents how an input OCL
Query Model (1) is processed to produce the output Gremlin
Traversal Model (9).

1- OCL Query 
Model

2- Preprocessing

5- Split Collection 
Operations

4- IndexCalls

9- Gremlin Model
7.1- Sub-traversal

7.2- Sub-traversal

8- Merging

6.2- Splitted OCL

6.1- Splitted OCL

3- Gremlin Script

Fig. 7. Overview of the Transformation

The transformation starts by processing (2) the top-level
OCL Constraint and generates the corresponding Gremlin-
Script element (3). The input model is then inspected to find if
the context variable self is accessed in the Constraint body.
If it is the case, a VariableDeclaration element is created. The
value of the created variable is not set at the model level, it
will be binded by the framework before executing the query
(see Section V). The same processing is performed to generate
VariableDeclarations from parameter variables.

Once this is done, the transformation collects all the Type-
Exp element in the input model, and generates corresponding

traversals containing an IndexCall (4) that returns the vertex
from the database index representing the accessed type. The
results of these calls are stored in VariableDeclaration ele-
ments. These variables are created to improve the execution
performance of the generated script by caching index results
and limit database access. During this step, a mapping between
generated variables and TypeExp elements is computed. This
mapping is then reused in the transformation to transform
every TypeExp into a VariableAccess element.

In the Gremlin language, it is not possible to merge natively
two traversals that do not have the same start step. Fur-
thermore, Groovy Collection API does not provide methods
to merge or subtract two collections and return the updated
collection (methods such as addAll and removeAll return
a boolean value, and thus can not be used as the input of the
next computation step). A consequence of this limitation is
that it is not possible to express in a single traversal union,
intersection, and set subtraction operations. To handle these
expressions, it is necessary to split the input OCL query (5)
into several traversals representing each part of the operation.
To handle that, the transformation collects all the root elements
of each part (source and argument) of union, intersection,
and set subtraction operations in the input model, and creates
VariableDeclarations to store the result of the subexpressions.
Each root element corresponds to an OCL expression (6.1,
6.2) that will be translated into a single traversal (7.1, 7.2).
During this step, helper functions that compute the results of
these OCL operations are also generated.



The elements created in the different steps of the trans-
formation are then merged (8) inside the GremlinScript to
produce the output Gremlin Traversal Model (9).

To better illustrate how the transformation works, we dis-
cuss now how the Mogwaı̈ framework transforms the OCL
expression in Listing 1 to the final Gremlin expression shown
in Figure 6 (abstract syntax tree) and Listing 2 (final textual
expression).

As an initial step, the transformation has to preprocess the
OCL model to first find the access to context and parameter
variables. In our example, the input OCL expression does not
contain references to those variables, and no VariableDeclara-
tion are created. Then, the transformation collects the TypeExp
Package and creates the corresponding VariableDeclaration
packageV. The value of the created variable is defined by
the traversal composed of a StartStep, an IndexCall, and a Next
method call, representing the query performed on the class
index returning the vertex corresponding to the metaclass
Package.

Then, the transformation collects union, intersection, and
set subtraction operations and computes their source and
argument root elements. In our example, there is no such
operation, and this phase simply returns the root element of
the entire OCL expression.

Once this is done, we can start with the actual transforma-
tion of the OCL expressions computed in the pre-processing
phase. To generate the first step of a traversal, the root
expression in the source chain is retrieved and transformed
according to Table I. In the example, the type access TypeExp
is transformed into a VariableAccess (the one defined during
the pre-processing phase). Next elements in the traversal are
generated by processing the source containment tree in a pos-
torder traversal where transformed OCL nodes are mapped and
linked to the previous generated step using the next reference.
In the example, this processing generates the Gremlin nodes
inE(’instanceof)’ and outV corresponding to the allInstance
expression.

Iterator operations need a particular processing: their body
has to be transformed as well. In the example, the se-
lect iterator is transformed into a filter step containing a
closure that represents its body. The body expression is
parsed starting from the root element and generated steps are
linked together. In Figure 6, body expression is mapped to
variableAccess, outE(’ownedElements’) and inV, toList and
isEmpty, corresponding respectively to the iterator access,
collect(ownedElements), and isEmpty OCL expressions. The
iterator Variable generates a VariableDeclaration instruction.
The name of the iterator Variable is assigned to the generated
VariableDeclaration, and its value contains the closure it
value, that represents the current element processed. This
variable shadowing is necessary to avoid it erasement in nested
iterators.

Finally, if the OCL expression ends with an Union, inter-
section, or set subtraction operation, or if it is the last one
in the argument expression, the transformation generates a
Fill step that ends the traversal and puts the results in the

dedicated variable defined in the initial step. Then, if the result
of the operation is the source of another OCL expression,
the transformation generates another traversal that starts with
a MethodCall element representing the call to the helper
function generated in the initial step.

To better illustrate this particular processing, we present the
transformation process of the simple OCL expression shown
in Listing 3.

p1 . ownedElements . name! un ion (
p2 . ownedElements . name )! s i z e ( )

Listing 3. Sample Union OCL Query

This expression collects the names of the elements con-
tained in the packages p1 and p2, merge them using an union
operation, and returns the size of the computed collection. As
stated before, the transformation starts by processing the input
model in order to find source and argument root elements of
the union operation. In this example, this processing returns
the VariableExp p1 and p2. The transformation then generates
two VariableDeclarations named union1 and union2 to
store the results of the subexpressions p1.ownedElements
.name and p2.ownedElements.name (line 1–2 in List-
ing 4). Then each subexpression is translated according to
the process presented before, and the resulting traversals are
affected to the generated VariableDeclaration using a Fill step
(lines 3–4). In addition, the transformation generates the helper
function union(col1,col2) that performs the union of
two collections (lines 5–7). Finally, the transformation pro-
cesses the size call, that has the result of the union call as
its source. A MethodCall is generated that represents a call
to the helper function union, and constitute the input of the
last traversal that computes the size of the collection (line 8).

1 v a r un ion1 ;
2 v a r un ion2 ;
3 p1 . outE ( ’ ownedElements ’ ) . inV . name . f i l l ( un ion1 ) ;
4 p2 . outE ( ’ ownedElements ’ ) . inV . name . f i l l ( un ion2 ) ;
5 d e f un ion ( co l1 , c o l 2 ) f
6 / / un ion h e l p e r body
7 g
8 un ion ( union1 , un ion2 ) . c o u n t ( ) ;

Listing 4. Sample Union Traversal

Once the traversal model has been generated, it is then
parsed to produce the textual Gremlin query that is finally
processed by our tool as described in the next section.

V. TOOL SUPPORT

A prototype implementation of the Mogwaı̈ framework is
provided as part of NeoEMF [17], a NoSQL persistence
framework built on top of the EMF. It is implemented as an
extension of the framework and supports query translation,
execution, and result reification from Blueprint’s persisted
models. The framework presents a simple query API, that
accepts a textual OCL expression or an URI to an OCL file
containing the expression to transform. In addition, the query
API accepts input values that represents self and parameter
variables.

Initial OCL queries are parsed using Eclipse MDT OCL [27]
and the output OCL models constitute the input of a set of 70



ATL [4] transformation rules and helpers implementing the
mapping presented in Table I and the associated transformation
process (Section IV-B3). As an example, Listing 5 shows
the transformation rule that creates a filter step from an
OCL select operation. The next step is computed by the
getContainer helper, which returns the parent of the
element in the source tree. The instructions of the closure are
contained in an ordered set, to ensure the instruction defining
the iterator variable (rule var2def ) is generated before the
body instructions. Finally, the select body is generated, using
the helper getFirstInstruction that returns the root
element in a source tree.

r u l e s e l e c t 2 f i l t e r f
from
s : OCL! I t e r a t o r E x p ( s . getOpName ( ) = ’ s e l e c t ’ )
t o
f : Greml in ! F i l t e r S t e p (

c l o s u r e  c l ,
n e x t  s e l e c t . g e t C o n t a i n e r ( ) ) ,

c l : Greml in ! C l o s u r e (
i n s t r u c t i o n s  O r d e r e d S e tfg

. append ( t h i s M o d u l e . v a r 2 d e f ( s e l e c t . i t e r a t o r .
f i r s t ( ) ) )

. append ( s e l e c t . body . g e t F i r s t I n s t r u c t i o n ( ) ) )
g

Listing 5. Select to Filter ATL Transformation Rule

Once the Gremlin model is generated by the transformation,
it is expressed using its textual concrete syntax and input
values corresponding to context and parameter variables are
binded to the ones defined during the transformation. The
resulting script is sent to an embedded Gremlin engine, which
executes the traversal on the database and returns the result
back to NeoEMF that reifies it to create a navigable EMF
model. The reification process is done once the query has been
entirely executed, and the constructed model only contains the
query result objects, removing the memory overhead implied
by created objects from intermediate steps of the traversal.

Finally, it is also possible to provide input elements to the
Mogwaı̈ framework to check invariants, compute a value, or
navigate the model from them.

VI. EVALUATION

In this section, we evaluate the performance of the Mogwaı̈
framework to query EMF models, in terms of memory foot-
print and execution time. Results are compared against per-
formance of different querying APIs/strategies (EMF-Query,
standard Eclipse OCL, IncQuery, and Mogwaı̈) on top of the
NeoEMF/Graph backend with Neo4j.

A complementary comparison of the increased level of
performance due to the uses of NoSQL solutions over SQL
ones has been done in previous work [21].

Experiments are executed on a computer running Fedora 20
64 bits. Relevant hardware elements are: an Intel Core I7 pro-
cessor (2:7GHz), 16GB of DDR3 SDRAM (1600MHz) and
a SSD hard-disk. Experiments are executed on Eclipse 4.4.1
(Luna) running Java SE Runtime Environment 1.7. To run
our queries, we set the virtual machine parameters -server
and -XX:+UseConcMarkSweepGC that are recommanded
in Neo4j documentation.

TABLE II
OVERVIEW OF THE EXPERIMENTAL SETS

Plug-in # LOC XMI Size # Elements
org.eclipse.gmt.modisco.java 22 074 20:2MB 80 664

org.eclipse.jdt.core 328 568 420:6MB 1 557 006

A. Benchmark presentation

The experiments are run over two large models automati-
cally generated using the MoDisco Java Discoverer. MoDisco
is a reverse engineering tool able to obtain complete (low-
level) models from Java code. The two example models are
the result of applying Modisco on two Eclipse Java plug-ins:
the MoDisco plug-in itself and the Eclipse Java Development
Tools (JDT) core plug-in. Table II shows the details of the
experimental sets in terms of number of line of code (LOC)
in the plug-in, resulting XMI file size and number of model
elements.

To compare the scalability of the different approaches, we
perform several queries on the previous models. To simulate a
realistic setting, these queries are taken from typical MoDisco
software modernization use cases. Queries retrieve:6

� InvisibleMethods: collects the set of private and pro-
tected methods of a Java project.

� Grabats09: returns the set of static methods returning
their containing class (singleton patterns).

� ThrownExceptions: returns the list of exceptions thrown
in each package of the plug-in.

� TextElementInJavadoc: returns the textual contents of
the Javadoc tags in comments of the input Model element.

� EmptyTextInJavadoc: returns the empty textual contents
of the Javadoc tags in comments of the input Model
element.

The first three queries start with an allInstances call,
which is an important bottleneck for EMF API based query
frameworks [28]. The fourth perform a partial navigation from
the input Model element, and returns all the textual contents in
the it javadoc comments. The last query navigates the model
the same way, but only returns empty comments. Table III
shows the number of intermediate objects loaded using EMF
API (#Interm.) and the size of the result set (#Res.) to give
an idea of the query complexity.

Correctness of the translation has been checked by com-
paring manually the results of the Mogwaı̈ framework against
results of the Eclipse OCL interpreter. In addition, we provide
several test suites in the project repository7 that check the
validity of the translation of single OCL expression and
multiple expression composition.

All the queries are executed under two memory configura-
tions: the first one is a large virtual machine of 8GB and the
second is a small-one of 250MB. This allows us to compare
the different approaches both in normal and stressed memory
conditions.

6Query benchmarks can be found at http://tinyurl.com/nhpf6pq
7http://tinyurl.com/jrj66og



TABLE III
NUMBER OF LOADED OBJECTS AND RESULT SIZE FOR MODISCO AND

JDT

MoDisco JDT
#Interm. #Res. #Interm. #Res.

InvisibleMethods 80 664 134 1 557 006 3927

Grabats09 80 664 0 1 557 006 92

ThrownExceptions 80 664 0 1 557 006 1155

TextElementInJavadoc 28 505 12 359 136 753 54 201

EmptyTextInJavadoc 28 505 0 136 753 0

B. Results

Tables IV (MoDisco) and V (JDT) present the average
results of 100 executions of the presented queries with EMF-
Query, Eclipse OCL interpreter, IncQuery (detailed in Sec-
tion VII), and the Mogwaı̈ framework on a NeoEMF/Graph
database. The correctness of query results has been validated
by comparing the results of the different frameworks with the
ones of the queries executed with the OCL interpreter.

Left columns of the tables present the time to perform the
queries while right columns focus on the memory consumption
implied by the query computation. All the tables present the
results for large and small virtual machine configurations. Note
that we were not able to express TextElementInJavadoc and
EmptyTextInJavadoc queries as EMF-Query code.

C. Discussion

The Mogwaı̈ framework outperforms the other query frame-
works executed over NeoEMF/Graph both in terms of memory
consumption and execution time. Results of allInstances
based queries (1–3) show that the difference in terms of
execution time is up to 20 times better than the Eclipse OCL
interpreter and the EMF-Query framework, plus up to 75 times
better in terms of memory consumption. This improvement is
explained by (i) the absence of created intermediate objects
that consume time and memory and (ii) the use of indexes and
query optimizations on the database side, avoiding a complete
traversal of the model elements.

Instead, if the query traverses a small subset of the model
and does not use database indexes (queries 4 and 5) the
benefits of using the Mogwaı̈ framework are reduced. The
result of the fourth query (where an important part of the
intermediate elements are needed anyway since they are part of
the result set) confirms this observation. Fourth and fifth query
results also show that an important memory consumption
is implied by the reification of the result elements. This
overhead also impacts query execution time: execution and
result reification of the fourth query over the JDT model is
around 1 s longer than for the fifth query.

Note that the comparison only considers a single execution
of each query over non-loaded models. In cases where the
query is executed many times over a slightly different version
of the same model, an incremental approach like the one
provided by IncQuery could be a very interesting complement
to our approach by using the Mogwaı̈ framework to perform
initialization queries of the incremental engine and then let the
incremental engine take over from there.

To summarize these results, the Mogwaı̈ framework is an
interesting solution to perform complex queries over large
models. Using query translation approach, gains in terms
of execution time and memory consumption are positive,
but the results also show that the overhead implied by the
transformation engine may not be worthwhile when dealing
with relatively small models or simple queries.

The main disadvantage of the Mogwaı̈ framework concerns
its integration to an EMF environment. To benefit from the
Mogwaı̈, other Eclipse plug-ins need to be explicitly in-
structed to use it. Integration with the Mogwaı̈ framework
is straighforward but must be explicitly done. Instead, other
solutions based on the standard EMF API provide benefits in
a transparent manner to all tools using that API.

VII. RELATED WORK

There are several frameworks to query models, specially
targeting the EMF framework (including one or more of the
EMF backends mentioned in Section I). The main ones are
Eclipse MDT OCL [27], EMF-Query [29] and IncQuery [30].

Eclipse MDT OCL provides an execution environment
to evaluate OCL invariants and queries over models. It re-
lies on the EMF API to navigate the model, and stores
allInstances results in a cache to speed up their compu-
tation. EMF-Query is a framework that provides an abstraction
layer on top of the EMF API to query a model. It includes a set
of tools to ease the definition of queries and manipulate results.
Compared to the Mogwaı̈ framework, these two solutions are
strongly dependent on the EMF API, providing on the one
hand an easy integration in existing EMF applications, but on
the other hand they are unable to benefit from all performance
advantages of NoSQL databases due to this API dependency.

EMF-IncQuery [30] is an incremental pattern matcher
framework to query EMF models. It bypasses API limitations
using a persistence-independent index mechanism to improve
model access performance. It is based on an adaptation of
a RETE algorithm, and query results are cached and incre-
mentally updated using the EMF notification mechanism to
improve performance. While EMF-IncQuery shows great exe-
cution time performances [1] when repeating a query multiple
times on a model, the results presented in this article show
mitigated performances for single evaluation of queries. This
is not the case for our framework. Caches and indexes must
be build for each query, implying a non-negligible memory
overhead compared to the Mogwaı̈ framework. In addition, the
initialization of the index needs a complete resource traversal,
based on EMF API, which can be costly for lazy-loading
persistence frameworks.

Alternatively, other approaches that target the translation of
OCL expressions to other languages/technologies [31] are also
relevant to our work. For example, Heidenreichin et al. [32]
propose a solution to automatically build a database from
a UML representation of an application, and translate the
OCL invariants into database constraints. A similar approach
was proposed by Brambilla et al. [33] in the field of web
applications. In that case, queries are translated into triggers



TABLE IV
QUERY FRAMEWORK RESULTS ON MODISCO MODEL (LARGE VM / SMALL VM)

Execution Time (s) Memory Consumption (MB)
EMF-Query OCL IncQuery Mogwaı̈ EMF-Query OCL IncQuery Mogwaı̈

InvisibleMethods 9/9 10/10 20/20 4/4 25/21 23/23 34/34 4/4
Grabats09 9/9 11/10 20/20 4/4 24/24 19/23 39/41 4/4
ThrownExceptions 11/11 10/10 20/19 4/4 23/24 19/19 30/26 7/6
TextElementInJavadoc X 6/6 20/20 5/5 X 10/9 55/54 8/8
EmptyTextInJavadoc X 7/7 22/21 4/4 X 10/9 58/53 7/7

TABLE V
QUERY FRAMEWORK RESULTS ON JDT MODEL (LARGE VM / SMALL VM)

Execution Time (s) Memory Consumption (MB)
EMF-Query OCL IncQuery Mogwaı̈ EMF-Query OCL IncQuery Mogwaı̈

InvisibleMethods 133/169 151/153 326/662 8/9 392/116 393/93 550/162 6/6
Grabats09 131/157 154/158 332/2418 7/7 388/120 389/127 616/228 5/5
ThrownExceptions 171/198 151/157 324/457 6/6 388/120 386/92 486/81 7/7
TextElementInJavadoc X 19/20 321/595 10/10 X 39/41 570/171 25/23
EmptyTextInJavadoc X 20/21 322/592 9/9 X 42/40 568/173 7/6

or views. Nevertheless, in all these scenarios the goal is to use
OCL for code-generation purposes as part of a data validation
component. Similar generative approaches exist also for other
pairs of query and target languages [34]. Once generated, there
is no link between the code and the models and therefore it
cannot be used to speed up the model queries. In addition,
all these approaches perform the translation at compilation-
time, whereas the Mogwaı̈ framework translates OCL queries
to Gremlin at runtime.

De Carlos et al. [35], [36] present the Model Query Trans-
lator (MQT), an approach similar to the Mogwaı̈ framework
that translates EOL [37] queries into SQL. MQT uses a
metamodel-agnostic database schema to store models, and it
extends EOL to produce optimized SQL queries executed on
the database side. Our translation approach is different because
it relies on a model-to-model transformation to produce Grem-
lin traversals from OCL queries, allowing runtime execution
of the transformation as well as preparation of the traversals
at compilation time. In addition, graph-based navigation of
models removes the overhead implied by complex joins, and
the Gremlin language is expressive enough8 to translate the
entire OCL.

Beyond the EMF world, proprietary meta-modeling tools
provide specific query languages. This is the case of
MetaEdit+ [38] from MetaCase, a commercial tool that sup-
ports the development of domain-specific languages, which
provides a proprietary query language. This is also the case of
ConceptBase [39], a deductive object manager for conceptual
modeling and meta-modeling, which provides O-Telos, a query
language for deductive databases.

Efficient model queries can also be linked to live models
and Models@Run.Time [40], which aims to create adaptive
software that keeps a model representation of the running
system during the execution. In this environment, models be-
come decisional artifacts that are queried during the execution

8Gremlin is written using the Groovy programming language, which is a
dynamic imperative language for the Java platform

to take decisions, compute metrics, or retrieve information.
In this context, time and memory consumption are critical
aspects, since the decisions (i. e., the queries) have to be
taken as quickly as possible in a stressed and concurrent
environment. The results presented in this article show that the
Mogwaı̈ framework can be an interesting candidate to handle
these queries both in term of memory consumption and time
performance.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented the Mogwaı̈, a framework that
generates Gremlin traversals from OCL queries in order to
maximize the benefits of using a NoSQL backend to store large
models. OCL queries are translated using model-to-model
transformation into Gremlin traversals that are then computed
on the database side, reducing the overhead implied by the
modeling API and the reification of intermediate objects. We
also presented a prototype integrated in NeoEMF/Graph, a
scalable model persistence framework that stores models into
graph databases. Our experiments have shown that the Mogwaı̈
framework outperforms existing solutions in terms of memory
consumption (up to a factor of 75) and execution time (up to
a factor of 20) to perform complex queries over large models.

Model transformations intensively rely on model queries to
match candidate elements to transform and navigate source
model. Integrating the Mogwaı̈ framework in model trans-
formation engines to compute these queries directly on the
database could reduce drastically execution time and memory
consumption implied by the transformation of large models.
Another possible solution to enhance transformation engines
would be to translate the transformation itself into database
queries. This approach would allow to benefit of the Mogwaı̈
framework improvements for model queries as well as element
creation, deletion, or update.

As future work, we plan to study the definition of Gremlin’s
custom steps and to optimize collection operations to produce
more readable traversals. Moreover, while the Gremlin lan-
guage defines update operations, these modifications cannot



be expressed using standard OCL, which is a side-effect
free language. We plan to combine our OCL support with
imperative constructs [41] allowing the efficient execution of
complex update operations as well. We also plan to study the
impact of semantically-equivalent OCL expressions [26] on
generated traversals. With this information, it could be possible
to improve the quality of the traversals by first applying an
automatic refactoring on the OCL side.

Finally, we would like to study the integration of the
Mogwaı̈ framework into model persistence solutions that do
not rely on a Gremlin compatible database. For instance, we
plan to adapt existing work on EOL to SQL translation [35] to
test our model-to-model transformation based approach over
SQL databases.

REFERENCES

[1] G. Bergmann, A. Horváth, I. Ráth, and D. Varró, “Incremental evaluation
of model queries over emf models: A tutorial on emf-incquery,” in Proc.
of the 7th ECMFA, Berlin, Heidelberg, 2011, pp. 389–390.

[2] I. Ráth, A. Hegedüs, and D. Varró, “Derived features for emf by
integrating advanced model queries,” in Proc. of the 8th ECMFA, Kgs.
Lyngby, Denmark, 2012, pp. 102–117.

[3] OMG, “OCL Specification,” 2015, URL: http://www.omg.org/spec/OCL.
[Online]. Available: http://www.omg.org/spec/OCL

[4] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “Atl: A model
transformation tool,” SCP, vol. 72, no. 1–2, pp. 31 – 39, 2008, special
Issue on Second issue of experimental software and toolkits (EST).

[5] J. Hutchinson, M. Rouncefield, and J. Whittle, “Model-driven engineer-
ing practices in industry,” in Proc of the 33rd ICSE. IEEE, 2011, pp.
633–642.

[6] P. Mohagheghi, M. A. Fernandez, J. A. Martell, M. Fritzsche, and
W. Gilani, “Mde adoption in industry: challenges and success criteria,”
in Proc. of Workshops at MoDELS 2008. Springer, 2009, pp. 54–59.

[7] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra, J. S.
Cuadrado, J. De Lara, I. Ráth, D. Varró, M. Tisi et al., “A research
roadmap towards achieving scalability in model driven engineering,” in
Proc. of BigMDE. ACM, 2013, pp. 1–10.

[8] J. Warmer and A. Kleppe, “Building a flexible software factory using
partial domain specific models,” in Proc. of the 6th OOPSLA Workshop
on Domain-Specific Modeling. University of Jyvaskyla, 2006, pp. 15–
22.

[9] S. Azhar, “Building information modeling (bim): Trends, benefits, risks,
and challenges for the aec industry,” Leadership and Management in
Engineering, vol. 11, no. 3, pp. 241–252, 2011.

[10] G. Bergmann, Á. Horváth, I. Ráth, D. Varró, A. Balogh, Z. Balogh, and
A. Ökrös, “Incremental evaluation of model queries over emf models,”
in Proc. of the 13th MoDELS Conference. Springer, 2010, pp. 76–90.

[11] R. Pohjonen and J.-P. Tolvanen, “Automated production of family
members: Lessons learned,” in Proc. of PLEES, 2002, pp. 49–57.

[12] H. Bruneliere, J. Cabot, G. Dupé, and F. Madiot, “Modisco: A model
driven reverse engineering framework,” IST, pp. 1012 – 1032, 2014.

[13] The Eclipse Foundation, “The Eclipse Modeling Framework,” 2015.
[Online]. Available: https://www.eclipse.org/modeling/emf

[14] Eclipse Foundation, “Eclipse Marketplace - Modeling Tools,” 2015.
[Online]. Available: http://marketplace.eclipse.org/

[15] OMG, “OMG MOF 2 XMI Mapping Specification version 2.4.1,”
Object Management Group, August 2011. [Online]. Available:
http://www.omg.org/spec/XMI/2.4.1/

[16] J. E. Pagán and J. G. Molina, “Querying large models efficiently,” IST,
pp. 586–622, 2014.

[17] A. Benelallam, A. Gómez, G. Sunyé, M. Tisi, and D. Launay,
“Neo4EMF, a Scalable Persistence Layer for EMF Models,” in Proc.
of the 10th ECMFA, York, United Kingdom, 2014, pp. 230–241.

[18] K. Barmpis and D. Kolovos, “Hawk: Towards a scalable model indexing
architecture,” in Proc. of BigMDE’13. New York, NY, USA: ACM,
2013, pp. 6:1–6:9.

[19] Eclipse Foundation, “The CDO Model Repository (CDO),” 2015.
[Online]. Available: http://www.eclipse.org/cdo/

[20] J. E. Pagán, J. S. Cuadrado, and J. G. Molina, “Morsa: A scalable
approach for persisting and accessing large models,” in Proc. of the
14th MoDELS Conference, Wellington, New Zealand, 2011, pp. 77–92.

[21] A. Gómez, G. Sunyé, M. Tisi, and J. Cabot, “Map-based transparent
persistence for very large models,” in Proc. of the 18th FASE Conference.
London, United Kingdom: Springer, 2015, pp. 19–34.

[22] G. Daniel, G. Sunyé, A. Benelallam, and M. Tisi, “Improving memory
efficiency for processing large-scale models,” in Proc. of BigMDE’14,
York, United Kingdom, 2014, pp. 31–39.

[23] Tinkerpop, “Blueprints API,” 2015. [Online]. Available: www.blueprints.
tinkerpop.com

[24] ——, “The Gremlin Language,” 2015. [Online]. Available: www.
gremlin.tinkerpop.com

[25] F. Holzschuher and R. Peinl, “Performance of graph query languages:
Comparison of cypher, gremlin and native access in neo4j,” in Proc. of
the Joint EDBT/ICDT 2013 Workshops, New York, NY, USA, 2013, pp.
195–204.

[26] J. Cabot and E. Teniente, “Transformation techniques for ocl con-
straints,” SCP, vol. 68, no. 3, pp. 179 – 195, 2007, special Issue on
Model Transformation.

[27] The Eclipse Project, “MDT OCL.” [Online]. Available: www.eclipse.
org/modeling/mdt/?project=ocl

[28] R. Wei and D. S. Kolovos, “An efficient computation strategy for
allinstances (),” BigMDE 2015, p. 32, 2015.

[29] The Eclipse Foundation, “EMF Query,” 2015. [Online]. Available:
https://projects.eclipse.org/projects/modeling.emf.query

[30] G. Bergmann, Á. Horváth, I. Ráth, and D. Varró, “Efficient model
transformations by combining pattern matching strategies,” in Proc. of
the 2nd ICMT, Zurich, Switzerland, 2009, pp. 20–34.

[31] J. Cabot and E. Teniente, “Constraint support in mda tools: A survey,”
in Proc. of the 2nd ECMDA-FA, 2006, vol. 4066, pp. 256–267.

[32] F. Heidenreich, C. Wende, and B. Demuth, “A framework for generating
query language code from ocl invariants,” Electronic Communications
of the EASST, vol. 9, pp. 1–10, 2007.

[33] M. Brambilla and J. Cabot, “Constraint tuning and management for web
applications,” in Proc. of the 6th ICWE, New York, 2006, pp. 345–352.

[34] T. Halpin, M. Curland, K. Stirewalt, N. Viswanath, M. McGill, and
S. Beck, “Mapping orm to datalog: An overview,” in On the Move to
Meaningful Internet Systems: OTM 2010 Workshops. Springer, 2010,
pp. 504–513.

[35] X. D. Carlos, G. Sagardui, and S. Trujillo, “Mqt, an approach for run-
time query translation: From EOL to SQL,” in Proc. of OCL 2014 co-
located with MoDELS 2014, Valencia, Spain, 2014, pp. 13–22.

[36] X. De Carlos, G. Sagardui, A. Murguzur, S. Trujillo, and X. Mendialdua,
“Model query translator: A model-level query approach for large-scale
models,” in 2015 3rd International Conference on MODELSWARD, Feb
2015, pp. 62–73.

[37] D. S. Kolovos, R. F. Paige, and F. A. Polack, “The epsilon object
language (eol),” in Proc. of the 2nd ECMDA-FA. Springer, 2006, pp.
128–142.

[38] J. Tolvanen and S. Kelly, “Metaedit+: defining and using integrated
domain-specific modeling languages,” in Proc. of the 24th OOPSLA
Conference. ACM, 2009, pp. 819–820.

[39] M. Jarke, M. A. Jeusfeld, H. W. Nissen, C. Quix, and M. Staudt,
Object Databases: 2nd ICOODB Conference. Berlin, Heidelberg:
Springer, 2010, ch. Metamodelling with Datalog and Classes:
ConceptBase at the Age of 21, pp. 95–112. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-14681-7 6

[40] B. Morin, O. Barais, J. Jezequel, F. Fleurey, and A. Solberg, “Models@
run. time to support dynamic adaptation,” Computer, vol. 42, no. 10,
pp. 44–51, 2009.

[41] F. Büttner and M. Gogolla, “On ocl-based imperative languages,” SCP,
vol. 92, Part B, pp. 162-178, 2014.


