
HAL Id: hal-01344015
https://hal.science/hal-01344015v1

Submitted on 11 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UMLtoGraphDB: Mapping Conceptual Schemas to
Graph Databases

Gwendal Daniel, Gerson Sunyé, Jordi Cabot

To cite this version:
Gwendal Daniel, Gerson Sunyé, Jordi Cabot. UMLtoGraphDB: Mapping Conceptual Schemas to
Graph Databases. ER 2016 - 35th International Conference on Conceptual Modeling, Nov 2016, Gifu,
Japan. pp.430-444, �10.1007/978-3-319-46397-1_33�. �hal-01344015�

https://hal.science/hal-01344015v1
https://hal.archives-ouvertes.fr

UMLtoGraphDB: Mapping Conceptual Schemas to
Graph Databases

Gwendal Daniel1, Gerson Sunyé1, and Jordi Cabot2;3

1 AtlanMod Team
Inria, Mines Nantes & Lina

{gwendal.daniel,gerson.sunye}@inria.fr
2 ICREA

jordi.cabot@icrea.cat
3 Internet Interdisciplinary Institute, UOC

Abstract. The need to store and manipulate large volume of (unstructured) data
has led to the development of several NoSQL databases for better scalability.
Graph databases are a particular kind of NoSQL databases that have proven their
efficiency to store and query highly interconnected data, and have become a
promising solution for multiple applications. While the mapping of conceptual
schemas to relational databases is a well-studied field of research, there are only
few solutions that target conceptual modeling for NoSQL databases and even less
focusing on graph databases. This is specially true when dealing with the map-
ping of business rules and constraints in the conceptual schema. In this article
we describe a mapping from UML/OCL conceptual schemas to Blueprints, an
abstraction layer on top of a variety of graph databases, and Gremlin, a graph
traversal language, via an intermediate Graph metamodel. Tool support is fully
available.

Keywords: Database Design, UML, OCL, NoSQL, Graph Database, Gremlin

1 Introduction

NoSQL databases have become a promising solution to enhance scalability, availability,
and query performance of data intensive applications. They often rely on a schemaless
infrastructure, meaning that their schemas are implicitly defined by the stored data and
not formally described. This approach offers great flexibility since it is possible to use
different representations of a same concept (non-uniform data), but client applications
still need to know (at least partially) how conceptual elements are stored in the database
in order to access and manipulate them. Acquiring this implicit knowledge of the un-
derlying schema can be an important issue, for example in data integration processes,
where each data source has to be inspected to find its underlying structure [13].

Graph databases are a particular type of NoSQL databases that represent data as a set
of vertices linked together by edges where both vertices and edges can be labeled with
a number of property values. Graph databases often provide advanced and expressive
query languages that are particularly optimized to compute traversals of highly inter-
connected data. Recently, the graph database ecosystem is gaining popularity in several

engineering fields such as social network [11] or data provenance [1] analysis, and the
leading graph database vendor Neo4j4 is used in production by several companies [16].

In order to take full benefit of NoSQL solutions, designers must be able to integrate
them in current code-generation architectures to use them as target persistence backend
for their conceptual schemas. Unfortunately, while several solutions provide transfor-
mations from ER and UML models to relational database schemas, the same is not
true for NoSQL databases as discussed in detail in the related work. Moreover, NoSQL
databases present an additional challenge: data consistency is a big problem since the
vast majority of NoSQL approaches lack any advanced mechanism for integrity con-
straint checking [21].

To overcome this situation, we propose the UMLtoGraphDB framework, that trans-
lates conceptual schemas expressed using the Unified Modeling Language (UML) [24]
into a graph representation, and generates database-level queries from business rules
and invariants defined using the Object Constraint Language (OCL) [23]. The frame-
work relies on a new GraphDB metamodel, as an intermediate representation to facili-
tate the integration of several kinds of graph databases. Enforcement of (both OCL and
structural) constraints is delegated to an intermediate software component (middleware)
in charge of maintaining the underlying database consistent with the conceptual schema.
External applications can then use this middleware to safely access the database. This
is illustrated in Figure 1.

UML Class
Diagram

context B
inv validPrice : self.price > 0context A

inv myInvariant:
self.value > 0

OCL Constraints

Graph Database

Client Applications

Middleware
code generation

Fig. 1. Conceptual Model to Graph database

The rest of the paper is structured as follows: Section 2 presents the UMLtoGraphDB
framework and its core components, Section 3 introduces the GraphDB metamodel and
details the model-to-model transformation which creates an instance of it from a UML
model. Section 4 presents the transformation that creates graph database queries from
OCL expressions, and Section 5 introduces the code generator. Finally, Section 6 de-
scribes our tool support, Section 7 presents the related works and Section 8 ends up
with the conclusions and future work.

2 UMLtoGraphDB Approach

UMLtoGraphDB is aligned with the OMG’s MDA standard [22], proposing a structured
methodology to systems development that promotes the separation between a specifi-

4 http://neo4j.com/

cation defined in a platform independent way (Platform Independent Model, PIM), and
the refinement of that specification adapted to the technical constraints of the imple-
mentation platform (Platform Specific Model, PSM). A model-to-model transformation
(M2M) generates PSM models from PIMs while a model-to-text transformation typi-
cally takes care of producing the final code out of the PSM models. This PIM-to-PSM
phased architecture brings two important benefits: (i) the PIM level focuses on the spec-
ification of the structure and functions, raising the level of abstraction and postponing
technical details to the PSM level. (ii) Multiple PSMs can be generated from one PIM,
improving portability and reusability. Moreover, using an intermediate PSM model in-
stead of a direct PIM-to-code approach allows designers to tune the generation when
needed and simplify the transformations by reducing the semantic gap between their
input and output artefacts.

In our scenario, the initial UML and OCL models would conform to the PIM level.
UMLtoGraphDB takes care of generating the PSM and code from them. Figure 2
presents the different component of the UMLtoGraphDB framework (light-grey box).

In particular, Class2GraphDB (1) is the first M2M of the UMLtoGraphDB frame-
work. It is in charge of the creation of a low-level graph representation (PSM) from
the input UML class diagram (PIM). The output of the Class2GraphDB transformation
is a GraphDB Model (2), conforming to the GraphDB metamodel (Section 3). This
metamodel is defined at the PSM level, and describes data structures in terms of graph
primitives, such as vertices or edges. The OCL2Gremlin transformation (3) is the sec-
ond M2M in the UMLtoGraphDB framework. It is in charge of the translation of the
OCL constraints, queries, and business rules defined at the PIM level into graph-level
queries. It produces a Gremlin Model, conforming to the Gremlin language metamodel
that complements the previous GraphDB one.

The last step in MDA processes is a PSM-to-code transformation, which generates
the software artifacts (database schema, code, configuration files . . .) in the target plat-
form. In our approach, this final step is handled by the Graph2Code (5) transformation
(Section 5) that processes the generated GraphDB and Gremlin models to create a set
of Java Classes wrapping the structure of the database, the associated constraints, and
the business rules. These Java classes compose the Middleware layer (6) presented in
Figure 1, and contain the generated code to access the physical Graph Database (7).

To illustrate the different transformation steps of our framework we introduce as
a running example the conceptual schema presented in Figure 3 representing a simple
excerpt of an e-commerce application. This schema is specified using the UML nota-
tion, and describes Client, Orders, and Products concepts. A Client is an abstract class
defined by a name and an address. PrivateCustomers and CorporateCustomers are sub-
classes of Client. They contain respectively a cardNumber and a contractRef attribute.
Clients own Orders, that are defined by a reference, a shipmentDate, and a delivery-
Date. In addition, an Order maintains a paid attribute, that is set to true if the Order has
been paid. Products are defined by their name, price, and a textual description and are
linked to Orders through the OrderLine association class, which records the quantity
and the price of each Product in a given Order.

In addition, the conceptual data model defines three textual OCL constraints (pre-
sented in Listing 1), which represent basic business rules. The first one checks that the

UML Class Diagram

context Client
inv validPrice : self.price > 0context Order

inv validOrder : self.
shipment < self.delivery

OCL Constraints

Class2GraphDB
Transformation GraphDB Model

OCL2Gremlin
Transformation

Gremlin Model

Graph2Code
Transformation

Graph Database

(1) (2)

(3) (4)

(5)

(7)
(6)

UML2GraphDB

Middleware

Fig. 2. Overview of the UMLtoGraphDB Infrastructure

Fig. 3. Class Diagram of a Simple e-commerce Application

price of a Product is always positive, the second one verifies that the shipmentDate of
an Order precedes its deliveryDate, and the last one ensures a Client has less than three
unpaid Orders.

c o n t e x t P r o d u c t i n v v a l i d P r i c e : s e l f . p r i c e > 0
c o n t e x t Order i n v v a l i d O r d e r : s e l f . s h i p m e n t D a t e < s e l f . d e l i v e r y D a t e
c o n t e x t C l i e n t i n v maxUnpaidOrders :

s e l f . o r d e r s! s e l e c t (o | n o t o . p a i d)! s i z e () < 3

Listing 1. Textual Constraints

3 Mapping UML Class Diagram to GraphDB

In this section we present the Class2Graph transformation, which is the initial step in
the approach presented in Figure 2. We first introduce the GraphDB metamodel and
then, we focus on the transformation itself.

3.1 GraphDB Metamodel

The GraphDB metamodel defines the possible structure of all GraphDB models. It is
compliant with the Blueprints [26] specification, which is an interface designed to unify
NoSQL database access under a common API. Initially developed for graph stores,
Blueprints has been implemented by a large number of databases such as Neo4j, Ori-
entDB, and MongoDB. The Blueprints API is, to our knowledge, the only interface
unifying several NoSQL databases5. Blueprints is the base of the Tinkerpop stack: a set
of tools to store, serialize, manipulate, and query graph databases. Among other fea-
tures, it provides Gremlin [27], a traversal query language designed to query Blueprints
databases.

Figure 4 presents the GraphDB metamodel. A GraphSpecification element repre-
sents the top-level container that owns all the objects. It has a baseDB attribute, that
defines the concrete database to instantiate under the Blueprints API. In our prototype,
the baseDB can be either Neo4j or OrientDB, two well known graph databases. Graph-
Specification contains all the VertexDefinitions and EdgeDefinitions through the associ-
ations vertices and edges.

A VertexDefinition can be unique, meaning that there is only one vertex in the
database that conforms to it. VertexDefinitions and EdgeDefinitions can be linked to-
gether using outEdges and inEdges associations, meaning respectively that a VertexDefi-
nition has outgoing edges and incoming edges. In addition, VertexDefinition and EdgeDef-
inition are both subtypes of GraphElement, which can define a set of labels that describe
the type of the element, and a set of PropertiesDefinition through its properties refer-
ence. In graph databases, properties are represented by a key (the name of the property)
and a Type. In the first version of this metamodel we define four primitive types: Object,
Integer, String, and Boolean.

Fig. 4. GraphDB Metamodel

3.2 Class2GraphDB Transformation

Intuitively, the transformation consists of mapping UML Classes to VertexDefinitions,
Associations to EdgeDefinitions, and AssociationClasses to new VertexDefinitions con-

5 Implementation list is available at https://github.com/tinkerpop/blueprints

nected to the ones representing the involved classes. The mapping also creates Proper-
tyDefinitions for each Attribute in the input model, and add them to the corresponding
mapped element.

Note that GraphDB has no construct to represent explicitly inheritance, and thus,
the mapping has to deal with inherited attributes and associations. To handle them, the
translation finds all the attributes and associations in the parent hierarchy of each class,
and adds them to the mapped VertexDefinition. While this creates duplicated elements
in the GraphDB model, it is the more direct representation to facilitate queries on the
GraphDB model. In the following, we describe this transformation in more detail.

A class diagram CD is defined as a tuple CD = (Cl;As;Ac; I), where Cl is the
set of classes, As is the set of associations, Ac is the set of association classes, and I the
set of pairs of classes such as (c1; c2) represents the fact that c1 is a direct or indirect
subclass of c2. Note that the first version of UMLtoGraphDB transforms only a subset
of the class diagram, for example enumerations and interfaces supports are planned as
future work.

A GraphDB diagram GD is defined as a tuple GD = (V;E; P), where V is set of
vertex definitions, and E the set of edge definitions, and P the set of property definitions
that compose the graph.

– R1: each class c 2 Cl; not c:isAbstract is mapped to a vertex definition v 2

V , where v:label = c:name [cparents:name, with cparents � Cl and 8p 2

cparents; (c; p) 2 I .
– R2: each attribute a 2 (c[cparents):attributes is mapped to a property definition
p, where p:key = a:name, p:type = a:type, and added to the property list of its
mapped container v such as p 2 v:properties.

– R3: each association as 2 As between two classes c1; c2 2 Cl is mapped to an
edge definition e 2 E, where e:label = as:name, e:tail = v1, and e:head =
v2, where v1 and v2 are the VertexDefinitions representing c1 and c2. Note that
e:tail and e:head values are set according to the direction of the association. If
the association is not directed, a second edge definitions eopposite is created, where
eopposite:label = as:name, eopposite:tail = v2, and eopposite:head = v1, repre-
senting the second possible direction of the association. Aggregation associations
are mapped the same way, but their semantic is handled differently in the generated
code. In order to support inherited associations, EdgeDefinitions are also created to
represent associations involving the parents of c.

– R4: each association as 2 As between multiple classes c1:::cn 2 Cl is mapped to a
vertex definition vasso such as vasso:label = as:name and a set of EdgeDefinitions
ei:tail = vi and ei:head = vasso, associating the created vertex definition to the
ones representing c1:::cn.

– R5: each association class ac 2 Ac between classes c1:::cn is mapped like an asso-
ciation between multiple classes using a vertex definition vac such as vac:label =
ac:name. As for a regular class, vac contains the properties corresponding to the
attributes ac:attributes, and a set of EdgeDefinitions ei 2 E where ei:tail = vi
and ei:head = vac.

To better illustrate this mapping, we now describe how the GraphDB model shown
in Figure 5 is created from the example presented in Figure 3. Note that for the sake

of readability we only show an excerpt of the created GraphDB model. To begin with,
all the classes are translated into VertexDefinition instances following R1. This process
generates the elements v1, v2, v3, and v4, with the labels (Client, PrivateCustomer),
(Client,CorporateCustomer), Order, and Product. Then, R2 is applied to transform at-
tributes into PropertyDefinitions. For example, the attribute name of the class Client
is mapped to the PropertyDefinition p1, which defines a key name and a type String.
These PropertyDefinition elements are linked to their containing VertexDefinition us-
ing the properties association. Once this first step has been done, R3 is applied on the
association orders, mapping it to the EdgeDefinitions e1 and e2, containing the name
of the association. VertexDefinitions representing PrivateCustomer and CorporateCus-
tomer classes are then linked to the one representing Order, respectively with e1 and
e2. Since the association orders is directed, the transformation puts v1 and v2 as the
tail of the edge, and v3 as its head. Then, the association class OrderLine is transformed
by R5 to the VertexDefinition v5, and its attributes productPrice and quantity are trans-
formed into the PropertyDefinitions p6 and p7. Finally, two EdgeDefinitions (e3 and
e4) are also created to link the VertexDefinition v3 and v4 to it.

Fig. 5. Excerpt of the Mapped GraphDB Model

These mapping rules have also been specified in ATL [14], which is a domain-
specific language for defining model-to-model transformations aligned with the QVT
standard [15]. ATL provides both declarative (rule-based) and imperative constructs for
transforming and manipulating models. As an example, Listing 2 shows the ATL trans-
formation rule that maps a UML Class to a VertexDefinition. It is applied for each non-
abstract Class element, excepted AssociationClasses, which have a particular mapping,
as explained in Section 3. The rule creates a VertexDefinition element, and sets its label
attribute with the name of each Class in its parent hierarchy. The set of parent Classes
is computed by the helper getParentClassHierarchy, which returns a sequence

containing all the parents of the current Class. Finally, VertexDefinition properties are
set, by getting all the attributes from the parent hierarchy, and are transformed by the
abstract lazy rule GenericAttribute2Property. The full ATL transformation is
available in the project repository6.

r u l e C l a s s 2 V e r t e x D e f i n i t i o n {
from

c l a s s : UML! C l a s s (n o t (c l a s s . o c l I s T y p e O f (UML! A s s o c i a t i o n C l a s s)) and n o t (c l a s s .
a b s t r a c t))

t o
v e r t e x : Graph ! V e r t e x D e f i n i t i o n (
l a b e l s c l a s s . g e t P a r e n t C l a s s H i e r a r c h y ()! c o l l e c t (cc | cc . name)
�� G e n e r a t e a p r o p e r t y f o r each A t t r i b u t e i n t h e c l a s s h i e r a r c h y
p r o p e r t i e s c l a s s . g e t P a r e n t C l a s s H i e r a r c h y ()
! c o l l e c t (cc | cc . a t t r i b u t e)
! c o l l e c t (a t t | t h i s M o d u l e . G e n e r i c A t t r i b u t e 2 P r o p e r t y (a t t))

)
}

Listing 2. Class2VertexDefinition ATL Transformation Rule

4 Translating OCL Expressions to Gremlin

Once the GraphDB model has been created, another transformation is performed to
translate the OCL expressions defined in the conceptual schema into a Gremlin query
model. The mapping presented in this Section is adapted from the one presented in [8]
dedicated to OCL query evaluation on NeoEMF, a scalable model persistence frame-
work designed to store models into graph databases [2]. In this Section, we present the
Gremlin language and describe how OCL expressions are transformed into Gremlin
queries according to the UML to GraphDB mapping.

4.1 The Gremlin Query Language

Gremlin is a Groovy domain-specific language built over Pipes, a data-flow framework
on top of Blueprints. We have chosen Gremlin as the target query language for UML-
toGraphDB due to its adoption in several graph databases.

Gremlin is based on the concept of process graphs. A process graph is composed of
vertices representing computational units and communication edges which can be com-
bined to create a complex processing flow. In the Gremlin terminology, these complex
processing flows are called traversals, and are composed of a chain of simple compu-
tational units named steps. Gremlin defines four types of steps: Transform steps that
map inputs of a given type to outputs of another type, Filter steps, selecting or rejecting
input elements according to a given condition, Branch steps, which split the compu-
tation into several parallel sub-traversals, and side-effect steps that perform operations
like edge or vertex creation, property update, or variable definition or assignment.

In addition, the step interface provides a set of built-in methods to access meta in-
formation: number of objects in a step, output existence, or first element in a step. These
methods can be called inside a traversal to control its execution or check conditions on
particular elements in a step.

6 https://github.com/atlanmod/UML2NoSQL

4.2 OCL2Gremlin Transformation

Table 1 presents the mapping between OCL expressions and Gremlin concepts. Sup-
ported OCL expressions are divided into four categories based on Gremlin step types:
transformations, collection operations, iterators, and general expressions. Note that due
to lack of space we only present a subset of the OCL expressions which are supported
by our approach. A complete version of this mapping is available in previous work [8].

Table 1. OCL to Gremlin mapping

OCL expression Gremlin step
Type "Type.name"
C.allInstances() g.V().hasLabel("C.name")
collect(attribute) property(attribute)
collect(reference) outE(’reference’).inV
oclIsTypeOf(C) o.hasLabel("C.name")
col1 !union(col2) col1.fill(var1); col2.fill(var2); union(var1, var2);
including(object) gather{it << object;}.scatter;
excluding(object) except([object]);
size() count()
isEmpty() toList().isEmpty()
select(condition) c.filter{condition}
reject(condition) c.filter{!(condition)}
exists(expression) filter{condition}.hasNext()
=; >;>=; <;<=; <> ==; >;>=; <;<=; ! =
+;�; =;%; � +;�; =;%; �
and,or,not &&,k,!
variable variable
literals literals

These mappings are systematically applied on the input OCL expression, follow-
ing a postorder traversal of the OCL Abstract Syntax Tree. As an example, Listing 3
shows the Gremlin queries generated from the OCL constraints of the running example
(Section 2). The v variable represents the vertex that is being currently checked, and
the following steps are created using the mapping. Note that generated expressions are
queries that return a boolean value. These queries are embedded in checking methods
during the generation phase (Section 5).

v . p r o p e r t y (" p r i c e ") > 0 ; / / v a l i d P r i c e
v . p r o p e r t y (" s h i p m e n t D a t e ") < s e l f . p r o p e r t y (" d e l i v e r y D a t e ") ; / / v a l i d O r d e r
v . outE (" o r d e r s ") . inV . f i l t e r { i t . p r o p e r t y (" p a i d ") == f a l s e }

. c o u n t () < 3 ; / / maxUnpaidOrders

Listing 3. Generated Gremlin Queries

5 Code Generation

Our code-generator relies on the Blueprints API for interacting with the graph database
in a vendor neutral way. We first briefly review this API and then we show how we
leverage it to enforce that any application aiming to query/store data through the created
middleware does it so according to the its initial UML/OCL conceptual schema.

5.1 Blueprints API

The Blueprints API is composed of a set of Java classes to manipulate graph databases
in a generic way. These classes are wrappers for database-level elements, such as ver-
tices and edges, providing methods to access, update, and delete them. A Blueprints
database is instantiated using a GraphFactory, that takes a configuration file con-
taining the properties of the databases (type of the underlying graph engine, allocated
memory . . .) and creates the corresponding graph store.

The Blueprints Vertex class provides the methods addEdge(String label,
Vertex otherEnd) and removeEdge(otherEnd) that allow to connect/dis-
connect two vertices by creating/deleting an edge between the current vertex and oth-
erEnd with the given label. Blueprints also defines the vertex method property(String
key), that retrieve the value of the vertex property defined by the given key. In addition,
the Blueprints API provides the traversal() method, that allows to send Gremlin
traversals to the database and return the subgraph resulting from that query.

A complete reference of the Blueprints API is available in [26] .

5.2 Graph2Code Transformation

GraphDB Model

Gremlin Model

Graph2Code
Generator

Middleware

Graph
Database

Configuration
File

blueprints database creation
constraint execution
navigation

graph & database properties

Blueprints API

concrete database creation
native query execution

Fig. 6. Generated Infrastructure

The final step in our UMLtoGraphDB process is the database and code artifacts gen-
eration. Figure 6 presents the infrastructure generated by the Graph2Code transforma-
tion. In short, the generator processes the GraphDB model to retrieve all the VertexDefi-
nition elements and, for each one, it creates a corresponding Java class with the relevant

getters and setters for its attributes (derived from the properties definitions linked to the
vertex) and associations (derived from the input/output edges of the vertex).

Listing 4 presents an excerpt of the Java class generated from the Client element.
Note that this class extends BlueprintsBean, which is a generic class that we provide as
part of the UMLtoGraphDB infrastructure. BlueprintsBean provides auxiliary methods
to connect the class with the Graph database via the Blueprints API and facilitates the
creation and management of graph elements.

Once this basic Java class structure is completed, the generator starts processing
the Gremlin Model to create additional methods. Each method is in charge of checking
one of the OCL constraints (or queries) in the conceptual schema. As usual, checking
methods return a boolean value (false if the constraint is violated). As an example, List-
ing 4 includes the method checkMaxUnpaidOrder executing the Gremlin traversal
mapped from the OCL expression self . orders! select (o | not o.paid)!size () < 3 (this
mapping is detailed in Section 4). The generated expression follows the syntax variant
of the Gremlin internal DSL and not the Groovy-based syntax, both versions can be
generated by our infrastructure. Note that the task of calling the generated constraint-
checking method is responsibility of the client application. Automatic and incremental
checking of these constraints is left for future work.

Finally, the Graph2Code generator creates a Configuration File that contains the
graph and database properties, and is used by the Blueprints API to instantiate the con-
crete graph engine.

p u b l i c c l a s s C l i e n t e x t e n d s B l u e p r i n t s B e a n {
p u b l i c S t r i n g getName () {

r e t u r n (S t r i n g) t h i s . v e r t e x . p r o p e r t y (" name ") . v a l u e () ;
}
p u b l i c S t r i n g g e t A d d r e s s () {

r e t u r n (S t r i n g) t h i s . v e r t e x . p r o p e r t y (" a d d r e s s ") . v a l u e () ;
}
p u b l i c vo id setName (S t r i n g newName) {

t h i s . v e r t e x . p r o p e r t y (" name " , newName) ;
}
p u b l i c vo id s e t A d d r e s s (S t r i n g newAddress) {

t h i s . v e r t e x . p r o p e r t y (" a d d r e s s " , newAddress) ;
}
p u b l i c vo id addOrder (Order o r d e r) {

t h i s . v e r t e x . addEdge (" o r d e r s " , o r d e r . g e t V e r t e x ()) ;
}
p u b l i c vo id removeOrder (Order o r d e r) {

t h i s . v e r t e x . removeEdge (o r d e r . g e t V e r t e x ()) ;
}
p u b l i c b o o l e a n checkMaxUnpaidOrders () {

r e t u r n t h i s . g raph . t r a v e r s a l () .V(t h i s . v e r t e x) . outE (" o r d e r s ")
. inV () . f i l t e r (v ! v . g e t () . < Boolean > p r o p e r t y (" p a i d ") . v a l u e ())

. c o u n t () . i s (P . l t (3)) . hasNext () ;
}

}

Listing 4. Generated Client Java Class

6 Tool Support

UMLtoGraphDB has been implemented as a collection of open-source Eclipse plu-
gins, available on Github7. UMLtoGraphDB takes as input the UML and OCL files
(defined, for instance, using Eclipse-based UML editors such as Papyrus8), that are
then translated, respectively, by the Class2GraphDB and OCL2Gremlin ATL transfor-
mations seen before. These transformations add up to a total of 110 rules and helper
functions.

The code-generator is implemented using the XTend programming language [3].
Even if this language was initially designed as a template-based language for genera-
tion tasks it has now evolved to a more general programming language that provides
syntactic sugar, lambda expressions and other useful extensions on top of Java. The
generator takes the GraphDB and Gremlin models and processes them as described in
Section 5.

The time needed by the entire transformation chain to produce the Java code from
the input UML and OCL specifications is in the order of a few seconds for the several
examples we have tested. A precise analysis of the scalability of the transformation
performance according to the size of the input for very large conceptual model is left
for future work.

7 Related Work

Mapping conceptual schemas to relational databases is a well-studied field of research
[19]. A few works also cover schemas that include (OCL) constraints. For example,
Demuth and Hussman [9] propose a mapping from UML (augmented with OCL con-
straints) to SQL that covers most of OCL and implement it via a code generator [10]
that automates the process. Brambilla et al. [4] propose a methodology to implement
integrity constraints into relational databases recommending alternative implementa-
tions based on performance parameters. While these approaches are well-suited for
relational databases, they all rely on the generation of database constraints. In a NoSQL
environment, and especially for graph databases, there is a lack of support for built-in
constraint constructs, and data validation must be delegated to the application layer as
UMLtoGraphDB does.

Li et al. proposed an approach to transform UML class diagrams into a HBase
data model [18], by mapping classes to tables, attributes to columns, and providing
transformation rules for associations, compositions, and generalization. Still, it is only
applicable to column-based datastores, and does not support the definition of custom
OCL constraints and business rules.

More specific to NoSQL databases, the NoSQL Schema Evaluator [20] generates
query implementation plans from a conceptual schema and workload definition. For
now, the approach is limited to Cassandra, but authors intend to adapt it to different data
models, such as key-values and document stores. However, this solution does not take
into account constraints specified in the conceptual model. Sevilla et al. [25] presented

7 https://github.com/atlanmod/UML2NoSQL
8 https://eclipse.org/papyrus/

a tool to infer versioned schemas from NoSQL databases. The resulting model is then
used to automatically generate a viewer and validator for the schema but they do not
aim to provide support for a full-fledged application nor consider the addition of con-
straints on the reversed schema. Bugiotti et al. [5] propose a database design method-
ology for NoSQL databases. It relies on NoAM, an abstract data model that aims to
represent NoSQL systems in a system-independent way. NoAM models can be imple-
mented in several NoSQL databases, including key-value stores, document databases,
and extensible record stores. Instead, we focus on generating NoSQL databases from
higher-level UML models, and thus, designers do not need to learn a new language/plat-
form. Nevertheless, NoAM could be integrated in our approach if we manage to extend
it with constraint support. In that case, NoAM could be seen as a PSM derived from
UML models and OCL constraints, and can be used to implement non-graph databases,
which are not supported by our approach for now.

8 Conclusion and Future Work

In this article we have presented the UMLtoGraphDB framework, a MDA-based ap-
proach to implement (UML) conceptual schemas in graph databases, including the gen-
eration of the code required to check the OCL constraints defined in the schema. Our
approach is specified as a chain of model transformations that use a new intermediate
GraphDB metamodel. This metamodel can also be regarded as a kind of UML profile
(and could be easily reexpressed as such) for graph databases.

As future work, we plan to provide refactoring operations on top of the GraphDB
model to allow designers to tune the data representation according to specific needs,
such as query execution performance or memory consumption. We also plan to ex-
tend our approach to cover reverse engineering scenarios, by adapting existing work
on schema extraction from relational databases [7] to graph databases. Another ongo-
ing work pursues adapting our framework to cover multiple database types. More pre-
cisely, we aim to support conceptual schema fragmentation between several databases
(even mixing NoSQL and SQL ones). This requires a mechanism to evaluate constraints
over several persistence solutions and query languages. Apache Drill [12] or Hibernate
OGM [17] could be reused for this.

Finally, we plan to reuse existing work on the integration of incremental constraint
checking [6] as part of the code-generation phase so that the scalable performance of
the graph database is not hampered by the constraint evaluation phase.

References

1. Manish Kumar Anand, Shawn Bowers, and Bertram Ludäscher. Techniques for efficiently
querying scientific workflow provenance graphs. In EDBT, volume 10, pages 287–298, 2010.

2. Amine Benelallam, Abel Gómez, Gerson Sunyé, Massimo Tisi, and David Launay.
Neo4EMF, a Scalable Persistence Layer for EMF Models. In Proc. of the 10th ECMFA,
pages 230–241. Springer, 2014.

3. Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing Ltd, 2013.

4. Marco Brambilla and Jordi Cabot. Constraint tuning and management for web applications.
In Proc. of the 6th ICWE Conference, pages 345–352. ACM, 2006.

5. Francesca Bugiotti, Luca Cabibbo, Paolo Atzeni, and Riccardo Torlone. Database design for
nosql systems. In Proc. of the 33rd ER Conference, pages 223–231. Springer, 2014.

6. Jordi Cabot and Ernest Teniente. Incremental integrity checking of UML/OCL conceptual
schemas. JSS, 82(9):1459–1478, 2009.

7. Roger HL Chiang, Terence M Barron, and Veda C Storey. Reverse engineering of relational
databases: Extraction of an EER model from a relational database. Data & Knowledge
Engineering, 12(2):107–142, 1994.

8. Gwendal Daniel, Gerson Sunyé, and Jordi Cabot. Mogwaï: a framework to handle complex
queries on large models. In Proc. of the 10th RCIS Conference [To appear]. IEEE, 2016.
Available Online at http://tinyurl.com/zx6cfam.

9. Birgit Demuth and Heinrich Hussmann. Using UML/OCL constraints for relational database
design. In «UML»’99—The Unified Modeling Language, pages 598–613. Springer, 1999.

10. Birgit Demuth, Heinrich Hußmann, and Sten Loecher. OCL as a specification language
for business rules in database applications. In � UML� 2001—The Unified Modeling
Language, pages 104–117. Springer, 2001.

11. Wenfei Fan. Graph pattern matching revised for social network analysis. In Proc. of the 15th
ICDT, pages 8–21. ACM, 2012.

12. Michael Hausenblas and Jacques Nadeau. Apache drill: interactive ad-hoc analysis at scale.
Big Data, 1(2):100–104, 2013.

13. Javier Luis Cánovas Izquierdo and Jordi Cabot. Discovering implicit schemas in json data.
In Web Engineering, pages 68–83. Springer, 2013.

14. Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A model transfor-
mation tool. SCP, 72(1–2):31 – 39, 2008.

15. Frédéric Jouault and Ivan Kurtev. On the architectural alignment of ATL and QVT. In Proc.
of the 21st SAC conference, pages 1188–1195. ACM, 2006.

16. Mahesh Lal. Neo4j Graph Data Modeling. Packt Publishing Ltd, 2015.
17. Anghel Leonard. Pro Hibernate and MongoDB. Apress, 2013.
18. Yan Li, Ping Gu, and Chao Zhang. Transforming UML class diagrams into HBase based on

meta-model. In Proc. of the 4th ISEEE conference, volume 2, pages 720–724. IEEE, 2014.
19. Esperanza Marcos, Belén Vela, and José María Cavero. A methodological approach for

object-relational database design using UML. SoSyM, 2(1):59–72, 2003.
20. Michael J Mior, Kenneth Salem, Ashraf Aboulnaga, and Rui Liu. NoSE: Schema design for

NoSQL applications. In [Accepted] at the 32nd ICDE Conference. IEEE, 2016. Available
Online at http://tinyurl.com/hqoxddx.

21. Lior Okman, Nurit Gal-Oz, Yaron Gonen, Ehud Gudes, and Jenny Abramov. Security issues
in NoSQL databases. In Proc. of the 10th TrustCom Conference, pages 541–547. IEEE,
2011.

22. OMG. MDA Specifications, 2016. URL: http://www.omg.org/mda/specs.htm.
23. OMG. OCL Specification, 2016. URL: www.omg.org/spec/OCL.
24. OMG. UML Specification, 2016. URL: www.omg.org/spec/UML.
25. Diego Sevilla Ruiz, Severino Feliciano Morales, and Jesús García Molina. Inferring ver-

sioned schemas from NoSQL databases and its applications. In Proc. of the 34th ER Confer-
ence, pages 467–480. Springer, 2015.

26. Tinkerpop. Blueprints API, 2016. URL: blueprints.tinkerpop.com.
27. Tinkerpop. The Gremlin Language, 2016. URL: gremlin.tinkerpop.com.

