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Abstract

The circular restricted three-body problem has five relative equilibria L1, L2,
..., L5. The invariant stable-unstable manifolds of the center manifolds orig-
inating at the partially hyperbolic equilibria L1,L2 have been identified as
the separatrices for the motions which transit between the regions of the
phase–space which are internal or external with respect to the two massive
bodies. This paper is devoted to the global computation of these manifolds
in the spatial case with a suitable finite time chaos indicator. The definition
of the chaos indicator is not trivial, since the mandatory use of the regu-
larizing Kustaanheimo-Stiefel variables introduces branch discontinuities in
the individual Lyapunov indicators. From the study of such discontinuities,
we define geometric chaos indicators which are smooth, globally defined,
and whose ridges sharply approximate the stable and unstable manifolds of
the center manifolds of L1, L2. We illustrate the method for the Sun-Jupiter
mass ratio, and represent the topology of the asymptotic manifolds using
sections and three-dimensional representations.

1 Introduction

The circular restricted three-body problem describes the motion of a massless
body P in the gravitation field of two massive bodies P1 and P2, called primary
and secondary body respectively, which rotate uniformly around their common
center of mass. In a rotating frame the problem has five equilibria, the so called
Lagrangian points L1, . . . , L5, which are the only known simple solutions of the
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equations of motion of P :











ẍ = 2ẏ + x− (1− µ)x+µ

r3
1

− µx−1+µ

r3
2

ÿ = −2ẋ+ y − (1− µ) y

r3
1

− µ y

r3
2

z̈ = −(1− µ) z
r3
1

− µ z
r3
2

,

(1)

where the units of masses, lengths and time have been chosen so that the masses
of P1 and P2 are 1 − µ and µ (µ ≤ 1/2) respectively, their coordinates are
(−µ, 0, 0) and (1 − µ, 0, 0) and their revolution period is 2π; we denoted by
r1 =

√

(x+ µ)2 + y2 + z2 and by r2 =
√

(x− 1 + µ)2 + y2 + z2 the distances of
P from P1, P2. As it is well known, equations (1) have an integral of motion, the
so–called Jacobi constant, defined by:

C(x, y, z, ẋ, ẏ, ż) = x2 + y2 + 2
1− µ

r1
+ 2

µ

r2
− ẋ2 − ẏ2 − ż2. (2)

Fixed values C of the Jacobi constant define level sets MC in the phase-space,
which project on the set:

ΠMC = {(x, y, z) ∈ R
3
0 : x

2 + y2 + 2
1− µ

r1
+ 2

µ

r2
≥ C}

of the physical space:

R
3
0 = {(x, y, z) ∈ R

3 : (x, y, z) 6= (−µ, 0, 0), (1 − µ, 0, 0)}.

The boundary BC of ΠMC separates the so called realm of possible motions
ΠMC from the realm of forbidden motions R3

0\ΠMC .
The Lagrangian equilibria L1, . . . , L5 are critical points for the Jacobi con-

stant; the values C1, C2, ..., C5 of C at the Lagrangian equilibria L1, . . . , L5 cor-
respond to topological changes of the set BC . In particular, for C > C2 the space
R
3
0 is disconnected by BC into a region of motions which contains the massive

bodied P1, P2 and an external region; for C < C2 the realm of possible motions is
connected; in particular, for values of C slightly smaller than C2, the connection
between the internal and external regions is realized through a bottleneck of BC ,
at whose extremities we find the Lagrangian points L1 and L2. The transit of
motions through this bottleneck is guided by the stable-unstable manifolds of the
center manifolds W c

1 ,W
c
2 originating at the equilibria L1,L2, which are partially

hyperbolic, specifically they are saddle×center×center. The center manifold the-
orem (see, for example, [32]) grants the existence of two four-dimensional center
manifolds W c

i , i = 1, 2. Since the restriction of the Jacobi constant to each WC
i

has a strict extremum at the equilibrium point Li, from the general results of [32]
we obtain that the center manifolds of L1 and L2 are unique, and for suitably
small values of C − C2 the sets W c

C,i = W c
i ∩MC , which are diffeomorphic to a

three-sphere, are invariant with respect to the flow of the three-body problem for
any time t ∈ R. Also, both manifolds W c

C,i are normally hyperbolic and have sta-
ble and unstable manifolds holding the topology of hypertubes obtained from the
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product of a three-sphere with an half line; we will call them spherical hypertube
manifolds. The spherical hypertube manifolds act as separatrices for the transit
of motions through the bottleneck of BC connecting the region of internal and
the region of external motions, see [4, 33, 16] (for the planar three-body problem)
and [9] (for the spatial three-body problem). This fact is a consequence of the
structure of the local stable-unstable manifolds of W c

C,i in a small neighbourhood
Ui: motions with initial conditions in Ui approaching the center manifold from
the right-hand side (left-hand side respectively) ’bounce back’ if they are on one
side of the separatrix, while they transit to the left-hand side (right-hand side
respectively) if they are on the other side of the separatrix.

The structure of the global stable and unstable manifolds of W c
C,i is much

more complicate than the structure of the local manifolds: the exponential com-
pressions, expansions and rotations occurring near the center manifolds are al-
ternated to circulations around both primaries. Global representations of these
surfaces have been obtained for several sample values of µ and C in the planar
circular restricted three-body problem, see for example [16, 13, 24]. The compu-
tation of the stable-unstable manifolds in the planar case has several advantages
with respect to the spatial case. First, in the planar case, the level set of the
center manifolds obtained by fixing the value of the Jacobi constant in a suit-
able small left neighbourhood of Ci is made of a periodic orbit, the horizontal
Lyapunov orbit of L1 or L2. To compute their asymptotic manifolds one can use
one of the several methods of computation of the stable and unstable manifolds
of periodic orbits, for example the flow continuation of the local manifolds, the
parametrization method, or the recent method based on chaos indicators (see
[13] and the references therein). Moreover, the phase-space of the planar three-
body problem is four dimensional, and by fixing the value of the Jacobi constant
we obtain a three dimensional space. The stable and unstable manifolds of the
horizontal Lyapunov orbits are therefore two-dimensional surfaces in a three-
dimensional space; their global phase-space development has been graphically
visualized in [24].

In this paper we provide a method, based on the computation of chaos in-
dicators, to compute and represent the global structure of the stable-unstable
manifolds of W c

C,i in the spatial circular restricted three-body problem. While
the computation of the stable and unstable manifolds of equilibria and of peri-
odic orbits has been considered in many papers, much less attention has been
devoted to the computation of the stable and unstable manifolds of center man-
ifolds of higher dimension. Our method applies independently on the dimension
of the center manifold, provided that it is globally invariant with respect to the
flow: first, we construct a neighbourhood Ui of the center manifold W c

C,i where
the local stable and unstable manifolds are represented as Cartesian graphs and
an hyperbolic Birkhoff normal form of some convenient order is defined; then,
we localize the global stable manifold W s

C,i by exploiting at the same time the
peculiar growth of the tangent vectors close to W c

C,i, and the scattering from
Ui of the motions with initial conditions outside the local stable manifold. Both
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properties are coded by a finite time chaos indicator, fast Lyapunov indicator or
finite time Lyapunov indicator, whose ridges provide the stable manifold1 W s

C,i.
The definition of smooth chaos indicators for the spatial three-body prob-

lem is non trivial since equations (1) are singular for (x, y, z) = (−µ, 0, 0) or
(1−µ, 0, 0). Smooth equations of motions are defined by using the Kustaanheimo-
Stiefel regularization (KS hereafter, [17, 18]). The KS transformation had been
originally introduced to regularize the spatial Kepler problem; afterwards, it was
used to regularize also the equations of motions of N-body problems (see [29, 1, 3]
and also [2] and the references therein); in particular the equations of motions of
the spatial circular restricted three-body problem have been regularized at the
secondary, or alternatively at the primary, body (for details, see [6]). The use of
regularizing transformations, with their analytic and computational advantages
(see, for example, [2, 28, 36]) appear to us mandatory to compute long pieces
of the spherical hypertube manifolds of L1, L2, especially close to the secondary
body. In this spirit, the Levi-Civita transformation (LC hereafter), which regu-
larizes the equations of motion of the planar three-body problem [26], has been
used in [13, 24] to define chaos indicators whose ridges approximate the stable
and unstable manifolds of the horizontal Lyapunov orbits of L1, L2. Even if the
KS transformation is the natural extension of the LC transformation, the spa-
tial problem is intrinsically more complicate than the planar one. On the one
hand, we show that as a consequence of Sundman’s proper time transformation
[35] used in KS and LC transformation, for both regularizations the solutions
of the variational equations written in the Cartesian phase-space are not con-
jugate to the solutions of the variational equations written in the KS or LC
variables, so that the Lyapunov exponents (as well as other chaos indicators) de-
fined with the regularized variational equations are different functions from the
chaos indicators defined with the non-regularized variational equations. On the
other hand, the redundancy of the Kustaanheimo-Stiefel variables introduces a
symmetry, degenerate at the singularity, whose consequence is twofold: two ad-
ditional Lyapunov exponents are introduced; the chaos indicators defined by the
KS-regularized variational equations for orbits corresponding the the same initial
conditions of the physical phase-space and the same initial tangent vector have
branch discontinuities. A careful analysis of these branch discontinuities allows
us to define ’geometric’ chaos indicators, which are globally defined and smooth
on the Cartesian phase-space, and to suitably select a family of branched indi-
cators whose ridges approximate the stable and unstable manifolds of W c

C,i, to
conveniently use for the numerical applications.

Once the suitable chaos indicators are defined, we set up a method to repre-
sent the global development in the phase-space of the hypertube manifolds. The
most important problem is related to the dimension of the hypertubes and of the
invariant set MC they belong to. Our first choice is to compute and represent

1As usual, the unstable manifold W u
C,i is obtained by computing the stable manifold of the

inverse flow.
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sections of the hypertubes, which provide us the knowledge of how these mani-
folds intersect well chosen two-dimensional surfaces transverse to it. Because of
the symmetry of the three-body problem, the first condition to define a good
section is to set: y = 0. In the planar problem the condition y = 0 defines the
two-dimensional surface in MC :

ΣP = {(x, y, z, ẋ, ẏ, ż) : y = z = 0, ż = 0, C(x, 0, ẋ, ẏ, 0) = C}. (3)

which we call the planar section. In the planar section there are peculiar initial
conditions, characterized by ẋ = 0, whose orbits satisfy a well known time rever-
sal symmetry. In particular, if they belong to the stable manifold of L1 or L2,
they are homoclinic. The vertical section:

ΣV = {(x, y, z, ẋ, ẏ, ż) : y = 0, ẋ = ż = 0, C(x, 0, ẋ, ẏ, 0) = C} (4)

intersects the planar section ΣP exactly on its line ẋ = 0. The homoclinic planar
orbits of Li on this axes are continued in ΣV to curves of initial conditions on
homoclinic orbits of the center manifold W c

C,i. In fact, we remark that all motions
(x(t), y(t), z(t)) with (x(0), y(0), z(0), ẋ(0), ẏ(0), ż(0)) ∈ ΣV satisfy the time–
reversal symmetry (also (x(−t),−y(−t), z(−t)) is a solution of equations (1)).
Moreover, from the mirror theorem [30], if an orbit hits the section in at least
two points, then it is a periodic orbit and therefore cannot belong to a stable or
unstable manifold. As a consequence, the vertical section is not redundant: all
the points of W s ∩ Σ are not connected by orbits.

We will compute several connected components of W s
C,i ∩ ΣV of both La-

grangian points L1, L2, in the realms of motions around the primary and sec-
ondary body respectively. To define precisely the realms of motions for C < C2

we find useful to consider isolating blocks at L1, L2 [5, 27] of equations:

R1 = {(x, y, z, ẋ, ẏ, ż) ∈ MC : x ∈ [x1, x2]}

R2 = {(x, y, z, ẋ, ẏ, ż) ∈ MC : x ∈ [x3, x4]}
where x1 < xL1

< x2, x3 < xL2
< x4, while we have:

x− (1− µ)
x+ µ

r31
− µ

x− 1 + µ

r32
< −2

√

x2 + y2 + 2
(1− µ)

r1
+ 2

µ

r2
−C

for all (x1, y, z) ∈ ΠMC and (x3, y, z) ∈ ΠMC , and:

x− (1− µ)
x+ µ

r31
− µ

x− 1 + µ

r32
> 2

√

x2 + y2 + 2
(1− µ)

r1
+ 2

µ

r2
− C

for all (x2, y, z) ∈ ΠMC and (x4, y, z) ∈ ΠMC . The two conditions are found
so that any orbit hitting the border of R1 or R2 from the left (resp. from the
right) tangentially, i.e. with ẋ = 0, bounces back because ẍ < 0 (resp. because
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ẍ > 0). The center manifolds W c
C,i are contained in the isolating blocks Ri and,

by taking x1, x3 as large as possible and x2, x4 as small as possible (within their
numerical error determination), we define the realms S, J,E of motions around
the primary, around the secondary mass2 and external to the binary system P1P2

by (see figure 1)

S = Π{(x, y, z, ẋ, ẏ, ż) ∈ MC : x < x1}
J = Π{(x, y, z, ẋ, ẏ, ż) ∈ MC : x ∈ (x2, x3)}
E = Π{(x, y, z, ẋ, ẏ, ż) ∈ MC : x > x4} (5)

respectively.
The connected components of W s

C,i ∩ ΣV of both Lagrangian points L1, L2,

will be denoted by Λi
j if they are in the realm J of motions around the secondary

mass; i = 1 or i = 2 depending on the Lagrangian point L1, L2; j = 1, 2 . . . is
a label for the connected component; the components will be denoted by M1

j if
they are in the realm S of motions around the primary mass defined by x ≤ x1.

Since we find that the Λi
j are closed, and since the spherical hypertube man-

ifolds are separatrices for the transit from/to the realm of motions S, J and E,
all the initial conditions of ΣV which are in the interior of Λ1

j transit from J
to S in the same number of revolutions (j − 1)/2 around the secondary mass
P2; similarly we find that the initial conditions of ΣV which are in the interior
of Λ2

j transit from J to E in the same number of revolutions (j − 1)/2 around
the secondary mass P2. The transits of the orbits with initial conditions in ΣV

which are external to a given Λi
j is not determined, since we find that a curve

Λi
j can be connected by the stable manifold W s

C,i to other curves Λ̃i
j through

the five-dimensional space MC which W s
C,i belongs to, and all the initial condi-

tions in the interiors of both Λi
j , Λ̃

i
j transit from J to S in the same number of

revolutions around P2. Similarly, we compute closed curves M1
j , whose interior

points transits from S to J after the same number of revolutions around P1. The
transits from J to S (or from S to J) and from J to E need a passage through
the isolating blocks R1, R2 respectively.

The article is structured as follows. In Section 2 we discuss the properties of
the variational equations of the restricted three-body problem defined from the
KS variables; in Section 3 we discuss the branch discontinuities of chaos indi-
cators and we define geometric chaos indicators which are globally defined and
smooth on the Cartesian phase-space as well as a family of branched indicators
to conveniently use for numerical computations; in Section 4 we show that the
ridges of the previously defined chaos indicators approximate the stable and un-
stable manifolds of W c

C,i; in Section 5 we provide the explicit definition of the
smooth weight functions entering the definitions of the chaos indicators; in Sec-
tions 6 we provide example of computations of the manifolds for the Sun-Jupiter

2The realm of motions around P1 and P2 are denoted by S, J respectively, since we conven-
tionally identify P1 with the Sun and P2 with Jupiter.
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Figure 1: Representation of the realms of motion S, J,E and of the isolating

blocks R1, R2 in the x, y plane (z = 0), top panels, and in the x, z plane (y = 0),
bottom panels, for a value of the Jacobi constant, slightly smaller than C2. The right
panels are obtained as a zoom at P2 of the left panels. The vertical gray lines, located
at x = x1, x2, x3, x4, represent the boundaries of two isolating blocks R1, R2 containing
the center manifolds of L1 and L2 for the same value C of the Jacobi constant. The
black curves in the x, y plane represent the horizontal Lyapunov orbits of L1, L2, while
the blue curves in the x, z plane represent the intersections of center manifolds of L1, L2

with the vertical section ΣV (computed as explained in Section 6).

mass ratio and we discuss the dynamics of orbits with initial conditions in the
vertical section ΣV ; in Section 7 we provide some Conclusions.
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2 The Kustaanheimo-Stiefel regularization at the sec-

ondary body: variational equations and lineariza-

tions

In this Section we discuss the properties of the variational equations of the re-
stricted three-body problem defined from the KS variables. First, we review the
KS transformation regularizing the equations of motions of the three–body prob-
lem; then we discuss the invariance properties of the solutions of the variational
equations of the regularized equations of motion, and compare them with the
solutions of the variational equations of the non-regularized equations of motion.

2.1 The KS transformation

The Kustaanheimo-Stiefel regularization at the secondary body P2 is defined by
the introduction of redundant spatial variables u = (u1, u2, u3, u4) related to the
Cartesian variables (x, y, z) by:







x = 1− µ+ u21 − u22 − u23 + u24
y = 2(u1u2 − u3u4)
z = 2(u1u3 + u2u4)

(6)

and by the time transformation [35]:

dt = r2ds (7)

where t denotes the physical time, and s is called the proper time. The map
defined by equations (6), a particular case of Hopf transformation [21], will be
denoted by:

π : U −→ R
3

(u1, u2, u3, u4) 7−→ π(u1, u2, u3, u4) = (x, y, z), (8)

where U denotes the space of the u = (u1, u2, u3, u4) variables. As usual, we also
find convenient to consider the four dimensional extension of (8):

π̃ : U −→ R
4

u 7−→ (x, y, z, q) = A(u)u (9)

with:

A(u) =









u1 −u2 −u3 u4
u2 u1 −u4 −u3
u3 u4 u1 u2
u4 −u3 u2 −u1









. (10)

With evidence, any u ∈ U is mapped to some π̃(u) = (x, y, z, q) with q = 0.
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For a fixed value C of the Jacobi constant, the equations of motion of the
spatial restricted three-body problem in the variables u and proper time s are3

(see, for example, [6]):















u′′1 = (K1 +K2)u1 +K3u2 −K4u3
u′′2 = (K1 −K2)u2 +K3u1 −K4u4
u′′3 = (K1 −K2)u3 −K3u4 −K4u1
u′′4 = (K1 +K2)u4 −K3u3 −K4u2

(11)

with:

K1 =
1

4

(

2(1− µ)

r1
− C + x2 + y2

)

K2 =
1

4

(

4y′ + 2r2x− 2(1− µ)r2(x+ µ)

r31

)

K3 =
1

4

(

2r2y − 4x′ − 2mr2y

r31

)

K4 =
1

4

(

2(1− µ)r2z

r31

)

regular functions at u = 0 (x, y, z, x′, y′, r1, r2 are expressed using u1, . . . , u4,
u′1, . . . , u

′
4), complemented with the non holonomic constraint:

u · Ωu′ = 0 , Ω =









0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0









. (12)

In the following, we denote by ξ = (x, y, z, vx, vy, vz) ∈ TR3 the Cartesian phase-
space variables, by ζ = (u, ν) ∈ TU = R

8 the Kustaanheimo Stiefel phase-space
variables and by:

X : TU0 −→ TR3

ζ 7−→ ξ = X (ζ) (13)

the transformation between them defined by:

x = 1− µ+ u2
1 − u2

2 − u2
3 + u2

4

y = 2(u1u2 − u3u4)
z = 2(u1u3 + u2u4)

vx =
2

‖u‖2
(u1ν1 − u2ν2 − u3ν3 + u4ν4)

vy =
2

‖u‖2
(u1ν2 + ν1u2 − u3ν4 − ν3u4)

vz =
2

‖u‖2
(u1ν3 + ν1u3 + u2ν4 + ν2u4) . (14)

3The primes denote derivatives with respect to the proper time s.
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where4 U0 = U\0. Transformation (14) is immediately extended to:

χ̃ : TU0 −→ R
8

(u1, u2, u3, u4, ν1, ν2, ν3, ν4) 7−→ (x, y, z, q, vx, vy, vz , vq) (15)

with:

(x, y, z, q) = A(u)u
(vx, vy, vz, vq) =

1
‖u‖2

(A(u)ν +A(ν)u) = 2
‖u‖2

A(u)ν , (16)

where the last equality in the second line of (16) has been obtained for u ·Ων = 0;
notice that the (u, ν) satisfying the non-holonomic relation u ·Ων = 0 project to
some (x, y, z, q, vx, vy, vz, vq) with vq = 0.

The solutions of equations (11) and the solutions of equations (1) are conju-
gate, in the following sense (again, for the details, see [6]):

Proposition 0. Let us consider a solution u(s) of equations (11), with initial
conditions (u(0), u′(0)) satisfying equations (12), defined in some neighbourhood
S of s = 0 with π(u(s)) 6= (−µ, 0, 0), (1 − µ, 0, 0) for all s ∈ S; denote by:

t(s) =

∫ s

0
‖u(σ)‖2 dσ, (17)

and consider the solutions (x(t), y(t), z(t)) of (1) with initial conditions:

(x(0), y(0), z(0), ẋ(0), ẏ(0), ż(0)) = χ(u(0), u′(0)).

We have:
(x(t(s)), y(t(s)), z(t(s))) = π(u(s)) ∀ s ∈ S.

The inverse of the KS transformation (6), and of its phase-space extension (14),
are undetermined: in fact the projection χ(u, ν) of any (u, ν) ∈ TU0 on the
Cartesian variables (x, y, z, ẋ, ẏ, ż) is invariant under the transformation:

u 7→ Rαu , ν 7→ Rαν (18)

where:

Rα =









cosα 0 0 − sinα
0 cosα sinα 0
0 − sinα cosα 0

sinα 0 0 cosα









, (19)

for all α ∈ [0, 2π]. In particular, the pre-image of the Lagrangian points L1, L2

defined by the map χ is the set of the (u, ν) := (u∗(α), 0) with:

u∗1(α) = u∗4(α) = 0 , u∗2(α) =
√
γ1 cosα , u∗3(α) =

√
γ1 sinα (for L1)

u∗2(α) = u∗3(α) = 0 , u∗1(α) =
√
γ2 cosα , u∗4(α) =

√
γ2 sinα (for L2) (20)

where α ∈ [0, 2π], and γ1, γ2 denote the Cartesian distances of the equilibria
configurations L1, L2 from P2.

4Since we are interested only in the solutions u(s) of (11) which project to solutions of (1),
the restriction to U0 is allowed.
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2.2 Tangent map of the KS phase-space transformation

The tangent map of (15) defines a projection from the space of vectors tangent
to TU0 to the space of vectors tangent to TR8. Precisely, for any (u, ν) ∈ TU0

with u · Ων = 0, consider the map:

Dχ̃(u,ν) : T(u,ν)TU0 −→ Tχ̃(u,ν)R
8

w := (wu, wν) 7−→ V = (Vr, Vv) (21)

defined by:

(

Vr

Vv

)

=

(

A(u)wu +A(wu)u
2
‖u‖2

(

A(wu)ν +A(u)wν − 2
‖u‖2

u · wuA(u)ν
)

)

. (22)

Because of the non-holonomic constraint u ·Ων = 0, we restrict the tangent map
(22) to the set:

T̂(u,ν)TU0 = {(wu, wν) ∈ T(u,ν)TU0 : u · Ωwν +wu · Ων = 0}. (23)

The inverse of Dχ̃(u,ν) is undetermined; the indetermination is fixed by choosing
a smooth local inversion of π. Let us in fact consider a smooth local inversion of
the map (8):

π−1 : W −→ U0

(x, y, z) 7−→ u = π−1(x, y, z), (24)

with W open set. The choice of π−1 uniquely fixes the inversion of equations (9),
by providing:

u = π−1(x, y, z)

ν =
1

2
AT (u)(vx, vy, vz, 0), (25)

and, for tangent vectors (Vr, Vv) ∈ R
8 with Vq, Vvq = 0, also the inversion of

equations (22):

wu = JVr

wv =
1

2
AT (u)Vv −

1

‖u‖2
AT (u)A(wu)ν +

2

‖u‖2
u · wuν (26)

where J is the Jacobian matrix of the map (x, y, z, q) 7→ u = π−1(x, y, z), com-
puted at (x, y, z, 0) (u, ν in the right hand side of (26) are obtained from (25)).

2.3 Variational equations of the restricted three-body problem

The conjugation (Proposition 0) between the solutions of equations (1) and the
solutions of equations (11) does not extend to their variational equations. In
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fact, let us first consider the variational equations of the regularized equations
of motion (11), which are obtained from the first order differential equations:























u′i = νi, i = 1, . . . , 4
ν′1 = (K1 +K2)u1 +K3u2 −K4u3

ν′2 = (K1 −K2)u2 +K3u1 −K4u4

ν′3 = (K1 −K2)u3 −K3u4 −K4u1

ν′4 = (K1 +K2)u4 −K3u3 −K4u2

denoted in compact form by:
ζ ′ = FC(ζ) (27)

with ζ = (u1, . . . , u4, ν1, . . . , ν4). We notice that the vector field FC(ζ) is invariant
with respect to the transformation Rαζ = (Rαu,Rαv), i.e. we have:

FC(ζ) = RT
αFC(Rαζ). (28)

For any solution ζ(s) of (27) we define the variational equations:

w′ =
∂FC

∂ζ
(ζ(s))w, (29)

where w = (wu, wν) ∈ TTU is a vector tangent to the domain of the Kustaan-
heimo Stiefel phase-space variables ζ. Then, we consider the variational equations
of the non-regularized equations of motion (1), obtained from the first order dif-
ferential equations in the extended Cartesian space R

8:



















































ẋ = vx
ẏ = vy
ż = vz
q̇ = vq
v̇x = 2vy + x− (1− µ)x+µ

r3
1

− µx−1+µ

r3
2

v̇y = −2vx + y − (1 − µ) y

r3
1

− µ y

r3
2

v̇z = −(1− µ) z
r3
1

− µ z
r3
2

,

v̇q = 0

denoted in a compact form by:

ξ̇ = Ξ(ξ) (30)

where, with a little abuse of notation, we denote ξ = (r, v) = (x, y, z, q, ẋ, ẏ, ż, q̇);
the extension to the (q, vq) variables is conveniently introduced to simplify the
reference to the projection (22), of course we will only consider solutions with
q(t) = 0, vq(t) = 0. For any solution ξ(t) of (30) we obtain the variational equa-
tions:

V̇ =
∂Ξ

∂ξ
(ξ(t))V, (31)

where V = (Vr, Vv). We prove the following:
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Proposition 1. Let us consider a non constant solution u(s) of equations (11)
with initial conditions (u(0), u′(0)) satisfying condition (12), defined in some
neighbourhood S of s = 0 with π(u(s)) 6= (−µ, 0, 0), (1 − µ, 0, 0) for all s ∈ S;
denote by:

t(s) =

∫ s

0
‖u(σ)‖2 dσ, (32)

and by (x(t), y(t), z(t)) the solution of (1) such that (x(t(s)), y(t(s)), z(t(s))) =
π(u(s)) for all s ∈ S. Then:
(i) there exist solutions w(s) = (wu(s), wν(s)) of (29) defined by ζ(s) = (u(s), u′(s)),
with some w(0) ∈ T̂ TU, such that by denoting with V (t) = (Vr(t), Vv(t)) the func-
tions of time defined by V (t(s)) = Dχ̃(u(s),ν(s))(wu(s), wν(s)) for all s ∈ S, V (t)
is not a solution of (31).
(ii) let us consider a matrix B(ζ) such that, for any solution ζ(s) of (27) and
for all the solutions w(s) of the differential equation:

w′ = B(ζ(s))w,

the functions of time defined by V (t(s)) = Dχ̃(u(s),ν(s))(wu(s), wν(s)) are solu-
tions of (31) with ξ(t(s)) = χ̃(ζ(s)). Then, the matrix B(ζ) is singular at u = 0.

From (i), we have that the variational equations of (1) are not conjugate by
the KS transformation to the variational equations of the regularized equations
of motion (11). This apparent contradiction is due to the fact that the Kus-
taanheimo Stiefel transformation, including the proper time transformation, is
not simply a transformations of variables and therefore the usual conjugation
of variational equations under smooth changes of variables does not apply. In
particular, the chaos indicators constructed from the solutions of the variational
equations, such as the Lyapunov exponents, the fast Lyapunov indicators, the
finite time Lyapunov exponents, are different if they are defined from the solu-
tions of (29) or from the solutions of (31). From (ii), we have that the equation
conjugate to (31) is singular; i.e. the KS transformation regularizes the equations
of motions, not the variational equations.

We are therefore faced with a choice: is it more convenient to define chaos
indicators from the smooth variational equations (29) or from the singular equa-
tions (31)? The choice of using the chaos indicators defined by the smooth varia-
tional equations (29) appears as mandatory. In fact, the numerical integration of
the singular variational equations introduces very strong numerical instabilities5

already in the planar case (see [23]), which instead are completely under control
using equations (29). On the other hand, the definition of chaos indicators us-
ing the evolution of the tangent vectors in the KS variables introduces a subtle
geometric problem, which is analyzed in Section 3.

5The variational equations (31) have singularities of higher order with respect to the singu-
larities of the equations of motion, since they are obtained by further differentiating the singular
terms 1/r31 , 1/r

3

2 .
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Proof of Proposition 1. For any solution w(s) = (wu(s), wν(s)) of (29) with
w(0) ∈ T̂ TU, since u·Ων is a first integral of equations (27), we have w(s) ∈ T̂ TU
for all s ∈ S. Let us consider the functions of time V (t) = (Vr(t), Vv(t)) such that
V (t(s)) = Dχ̃(u(s),ν(s))(wu(s), wν(s)) for all s. By computing the time derivative
of Vr(t), and using w′u = wν , we obtain:

V̇r =
1

‖u‖2
(A(u)wν +A(ν)wu +A(wν)u+A(wu)ν) ,

or equivalently:

V̇r = Vv +
4

‖u‖4
u · wuA(u)ν.

Instead, the solutions Ṽ (t) of (31) satisfy ˙̃Vr = Ṽv. Therefore, if we have:

u(s) · wu(s)A(u(s))ν(s) 6= 0

for some s, V (t) does not solve (31). We remark that since the solution u(s) is
not constant, and u(s) 6= 0, we have A(u(s))ν(s) 6= 0 in an open subset S̃ of S.
Therefore, if there exists s ∈ S̃ such that u(s) · wu(s) 6= 0, V (t) does not solve
(31). We now consider w(0) such that u(0) ·wu(0) 6= 0. Then, in a neighbourhood
of s = 0, we find s ∈ S where both u(s) · wu(s) 6= 0 and A(u(s))ν(s) 6= 0. This
proves that solutions w(s) of the variational equations (29) do not project on
the solutions of the variational equations (31).

Then, let us suppose that the solutions of the differential equation:

(w′u, w
′
ν) = B(u(s), ν(s))(wu, wν) (33)

project on the solution of the variational equations (31). Precisely, by defining
V (t) = (Vr(t), Vv(t)) such that V (t(s)) = Dχ̃(u(s),ν(s))(wu(s), wν(s)), then V (t)
satisfies (31). First, we notice that by computing the time derivative of Vr(t) we
obtain:

V̇r =
1

‖u‖2
(

A(u)w′u +A(ν)wu +A(w′u)u+A(wu)ν
)

.

From:

V̇r = Vv =
1

‖u‖2
(

A(u)wν +A(wu)ν +A(wν)u+A(ν)wu − 4u · wu

‖u‖2
A(u)ν

)

we obtain that, along all the solutions w(s) of (33) we have

A(u)w′u +A(w′u)u = A(u)wν +A(wν)u− 4u · wu

‖u‖2
A(u)ν,

and therefore the matrix B(ζ) satisfies:

A(u)[B(ζ)w]u +A([B(ζ)w]u)u = A(u)wν +A(wν)u− 4u · wu

‖u‖2
A(u)ν.
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If the matrix B(ζ) is regular at u = 0, by taking the limit of u tending to zero
for constant ν,w of the previous equation we obtain:

lim
u→0

4u · wu

‖u‖2
A(u)ν = 0

which is not satisfied for certain choices of ν,wu. �

2.4 Linearizations in the space of KS variables

We need to establish some invariance properties of the Jacobian matrix ∂FC

∂ζ
and

of the solutions of the variational equations (29) with respect to the symmetry
transformation (18). First, from the invariance relations (28), we obtain:

∂FC

∂ζ
(ζ) = RT

α

∂FC

∂ζ
(Rαζ)Rα (34)

for any α and ζ. As a consequence, by denoting with ζ(s), w(s) the solutions of
the equations (27) and (29) with initial conditions ζ0, w0, then Rαζ(s), Rαw(s)
are the solutions of (29) with initial conditions Rαζ0, Rαw0. This invariance will
be used to define a chaos indicator invariant by the transformation ζ 7→ Rαζ.

As a consequence of (34), the eigenvalues of the Jacobian matrices ∂FC

∂ζ
(ζ) are

invariant by the transformation ζ 7→ Rαζ; i.e. they depend only on the projection
X (ζ). In particular, at all ζ = (u∗(α), 0), corresponding to the representatives
(20) of the Lagrangian points L1, L2, the matrix:

FC,α =
∂FC

∂ζ
(u∗(α), 0), (35)

has eigenvalues which are independent of α for all the values of C: for C = Ci

(i = 1, 2 for L1 or L2) the matrices FCi,α have a pair of real eigenvalues ±λ0 6=
0, two pairs of purely complex eigenvalues ±iσ0

j , j = 1, 2, and an additional

eigenvalue λ = 0 of multiplicity 2; we also prove that6 for any fixed value of µ
and C = Ci − ε, with suitably small ε > 0, the matrix FC,α has a pair of real
eigenvalues ±λε, two pairs of purely complex eigenvalues ±iσε

j , j = 1, 2, and the
real pair ±√

ε/2.
In fact, by considering the linearization at L1 (the case of L2 is similar) for

C = C1 − ε with ε > 0, since the eigenvalues are invariant with respect to the
parameter α, we only compute the eigenvalues of the matrix:

FC,0 =

(

O I4
A B

)

(36)

6Since we will consider the dynamics in small neighbourhoods of L1 (or L2) for values of the
Jacobi constant smaller than C1 (or C2), we will consider expansions of

∂FC

∂ζ
(ζ) at ζ = (u∗(α), 0)

also for C < Ci.
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where O is a 4 × 4 square matrix with entries Oij = 0, for i, j = 1, . . . , 4; I4 is
the 4× 4 identity matrix, the matrices A, B are defined by:

A =









a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d









, B =









0 2γ1 0 0
−2γ1 0 0 0
0 0 0 0
0 0 0 0









(37)

where:

a =
ε

4
− γ21

3 + γ21 − 2γ31 + γ41
γ

b =
ε

4
− γ21

−9 + 6γ1 − 5γ21 − 2γ31 + γ41
γ

c =
ε

4

d =
ε

4
− 2γ21

2− γ1 + γ21
γ

γ = 1− 2γ1 + γ21 + 2γ31 − γ41 . (38)

The characteristic equation determining the eigenvalues λ of (36):

det(A+ λB − λ2I4) = 0 (39)

can be represented in the form:

1

γ2

(ε

4
− λ2

)

(

−2γ21(2− γ1 + γ21)

γ
+

ε

4
− λ2

)

(R1 +R2λ
2 +R3λ

4) = 0.

where R1, R2 are coefficients depending only on γ1, ε and R3 dependent only of
γ1. Therefore, four eigenvalues are:

λ1,2 = ±
√
ε

λ3,4 = ±i

√

2γ21(2− γ1 + γ21)

γ
− ε

4
(40)

while the other four eigenvalues are:

λ5,6,7,8 = ±

√

−R2 ±
√

R2
2 − 4R1R3

2R3
. (41)

Since for small ε we have R2 < 0, R3 > 0, and R1R3 < 0, two of the eigenvalues
(41) are opposite real numbers, the other two are opposite purely imaginary
numbers.

Remark 1. The explicit computations of Section 6 will be done for values of µ
corresponding the the Sun-Jupiter system and a value of the Jacobi constant
C = 3.03685...; correspondingly we have:

2γ21(2− γ1 + γ21)

γ
− ε

4
> 0

as well as R2 < 0, R3 > 0, and R1R3 < 0, so that the above analysis is applicable.
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3 Geometric chaos indicators for the spatial restricted

three-body problem

The solutions w(s) of the variational equations (29) enter the definition of the
chaos indicators which we use to compute the hypertube manifolds of the spatial
restricted three-body problem. Through all this section, by φ we denote any fixed
non negative smooth function:

φ : MC −→ [0,+∞).

Definition 1. For any ξ0 = (x0, y0, z0, ẋ0, ẏ0, ż0) ∈ MC we consider a smooth
pre-image of χ:

ζ = χ−1(ξ) = (π−1(x, y, z), π̃−1(ξ))

defined in a neighbourhood W of ξ0. Then, for any positive time T > 0, we define
the modified finite time Lyapunov exponent (mFTLE hereafter):

FT
φ : W −→ R (42)

by:

FT
φ (ξ) = max

t∈[0,T ]
max

w0∈R8,‖w0‖=1

∫ σ(ξ,t)

0

φ(X (ζ(s))
w(s) · w′(s)
‖w(s)‖2

ds. (43)

where ζ(s) is the solution of equations (27) with initial condition ζ(0) = χ−1(ξ);
w(s) is the solution of the variational equations (29) defined by ζ(s) with initial
conditions w(0) = w0; σ(ξ, t) denotes the transformation s := σ(ξ, t) between
any physical time t and the proper time s for the orbit with initial conditions ξ.

Equation (43) provides a local definition for the mFTLE, since it depends on the
specific choice of the local inversion function χ−1. Since we have to compute the
chaos indicators in extended domains of the phase-space, we need to consider
global extensions. A non trivial property of the function defined in (43) is that
its values are independent on the specific choices of χ−1, In fact, we have the
following

Theorem 1. For any value C of the Jacobi constant and for any T > 0,
consider any open set MC,T ⊆ MC such that the solution (x(t), y(t), z(t)) of
(1) with initial conditions (x(0), y(0), z(0), ẋ(0), ẏ(0), ż(0)) ∈ MC,T exist with
(x(t), y(t), z(t)) ∈ R

3
0 for all t ∈ [0, T ]. Then, any local definition of the modified

finite fime Lyapunov exponent obtained from (43) has a unique smooth global
extension to MC,T .

Proof of Theorem 1. The proof is obtained from two lemmas: in Lemma 1 we
establish the uniqueness of the mFTLE in the intersection of the domains of any
two smooth local inversions; in Lemma 2, we define a covering of MC,T with two
smooth local inversions.
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Lemma 1. Let us consider two smooth local inversions:

χ1
−1 : W1 → TU , χ2

−1 : W2 → TU

of the map ξ = χ(ζ), with W1,W2 open sets with non empty intersection W =
W1∩W2 satisfying

7 ΠW1,ΠW2 ⊆ R
3
0. For any T > 0 consider the modified finite

time Lyapunov exponents FT
1,φ, FT

2,φ defined by (43), using the local inversion

χ−11 , χ−12 respectively. For any ξ ∈ W ∩MC we have:

FT
1,φ(ξ) = FT

2,φ(ξ).

Because of Lemma 1, equation (43) defines a global phase-space function, which
is smooth on any domain W where motions with initial conditions in W do not
collide with the primary of the secondary body for t ∈ [0, T ].

Proof of Lemma 1. The proof of the Lemma is obtained from the invariance
properties (28) and (34). In fact, let us consider the transition map:

X1,2 : χ
−1
1 (W) −→ χ−12 (W)

ζ = (u, v) 7−→ ζ̃ = (ũ, ṽ) = X1,2(ζ). (44)

There exists α ∈ [0, 2π), depending only on (x, y, z) = χ1(u, v) = χ2(ũ, ṽ), such
that: (ũ, ṽ) = (Rαu,Rαv). In fact, let us split u ∈ U on the following two-
dimensional projections:

U = (u1, u4), V = (u2, u3),

so that we have:

‖U‖2 − ‖V ‖2 = X

‖U‖2 + ‖V ‖2 =
√

X2 + y2 + z2, (45)

where X = x− (1− µ), as well as:

‖U‖ =
1√
2

√

√

X2 + y2 + z2 +X

‖V ‖ =
1√
2

√

√

X2 + y2 + z2 −X. (46)

The preimages π←(x, y, z) of a Cartesian point (x, y, z) are represented as fol-
lows. If (y, z) = (0, 0) then we have ‖U‖ ‖V ‖ = 0, and:

π←(x, 0, 0) =

{

{u : u2
1 + u2

4 = X , u2 = u3 = 0} for X ≥ 0
{u : u2

2 + u2
3 = −X , u1 = u4 = 0} for X < 0

(47)

Instead, if (y, z) 6= (0, 0), we first define β ∈ [0, 2π) such that:

(y, z) =
√

y2 + z2(cos β, sin β),

7Consistently with the notations of the Introduction, we denote by Π(x, y, z, ẋ, ẏ, ż) =
(x, y, z) the projection from the Cartesian phase–space to the Cartesian configuration space.
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and since ‖U‖2 ‖V ‖2 = (1/4)(y2+z2) 6= 0, we introduce the polar representations

U = ‖U‖ (cos βU , sin βU ) , V = ‖V ‖ (cos βV , sin βV ).

with well defined βU , βV (modulo 2π). From:

X = ‖U‖2 − ‖V ‖2
y = 2 ‖U‖ ‖V ‖ cos(βU + βV )
z = 2 ‖U‖ ‖V ‖ sin(βU + βV ), (48)

we obtain:

π←(x, y, z) = {u : (u1, u4) =
1√
2

√

√

X2 + y2 + z2 +X (cosβU , sinβU ) ,

(u2, u3) =
1√
2

√

√

X2 + y2 + z2 −X (cos(β − βU ), sin(β − βU )) , βU ∈ [0, 2π]}. (49)

From (47) and (49), we obtain that there exist α (dependent on x, y, z) such
that ũ = Rαu. Now we consider v, ṽ. From (16) we have:

(ẋ, ẏ, ż, 0) =
2

‖u‖2
A(u)v =

2

‖ũ‖2
A(ũ)ṽ

and since ũ = Rαu, we obtain8:

A(u)v = A(Rαu)ṽ = A(Rαu)RαRT
α ṽ = A(u)RT

α ṽ.

Therefore, we have A(u)(v−RT
α ṽ) = 0, and since ΠW ⊆ R

3
0 and the matrix A(u)

is non-singular for u 6= 0, we obtain ṽ = Rαv.
Let us now consider ξ0 ∈ W and ζ0 = χ−11 (ξ0), ζ̃0 = χ−12 (ξ0) = Rαζ0; denote

by ζ(s) the solution of the regularized equations (27) with initial condition ζ(0) =
ζ0 and by ζ̃(s) the solution of the regularized equations (27) with initial condition
ζ̃(0) = ζ̃0. For any initial tangent vector w(0), let us consider the solutions
w(s) of the variational equations defined by ζ(s). From the invariance properties
(28) and (34) of the variational equation, w̃(s) = Rαw(s) is the solution of the
variational equations for ζ̃(s) with initial conditions Rαw(0). Let us suppose that
the maximum F on the right hand–side of (43), defined by using χ−11 , is obtained
for a certain w0; then since the integrand is invariant with respect to the rotations
Rα of ζ(s) and w(s), the maximum of the right hand–side of (43), defined by
using χ−12 , is obtained for w̃0 = Rαw0 and is equal to F . This concludes the
proof of the Lemma. �

To complete the proof of Theorem 1 we need to defined a covering of MC,T with
smooth local inversions.

Lemma 2. The maps

π−1− : R3\{(x, 0, 0) : x ≥ 1− µ} −→ U

8The matrix A(U) satisfies: A(Rαu)Rα = A(u).
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π−1+ : R3\{(x, 0, 0) : x ≤ 1− µ} −→ U

defined by

π−1− (x, y, z) =

(

y
√

2(r −X)
,

√
r −X√

2
, 0,

z
√

2(r −X)

)

π−1+ (x, y, z) =

(√
r +X√

2
,

y
√

2(r +X)
,

z
√

2(r +X)
, 0

)

,

where X = x − 1 + µ and r =
√

X2 + y2 + z2, are smooth and satisfy π ◦
π−1− (x, y, z) = (x, y, z), π ◦ π−1+ (x, y, z) = (x, y, z).

We define two local inversions χ−1− , χ−1+ by extending the inverse maps π−1− , π−1+

to the velocities:

(u, v) = χ−1− (x, y, z, ẋ, ẏ, ż) = (π−1− (x, y, z), π̃−1− (x, y, z, ẋ, ẏ, ż))
(u, v) = χ−1+ (x, y, z, ẋ, ẏ, ż) = (π−1+ (x, y, z), π̃−1+ (x, y, z, ẋ, ẏ, ż)) (50)

with π̃−1− , π̃−1+ defined by:

ν = π̃−1± (x, y, z, ẋ, ẏ, ż) =
1

2
AT (π−1± (x, y, z))(ẋ, ẏ, ż, 0). (51)

The proof of Theorem 1 is complete. �.
The computation of the maximum over all the tangent vectors of unitary

norm in (43) is CPU-expensive. Therefore, it can be convenient to consider in-
dicators defined by integrating single initial tangent vectors, in the spirit of the
definition of Fast Lyapunov Indicators originally introduced in [7]. In the present
case, the Fast Lyapunov Indicators will not be not globally defined on MC,T ,
therefore we need to consider at least two indicators defined using the two lo-
cal inversions χ−1− , χ−1+ respectively; the transition formula from the FLI defined
with χ−1− to the FLI defined with χ−1+ is provided below.

Definition 2. For any positive time T > 0, for any ξ0 = (x0, y0, z0, ẋ0, ẏ0, ż0) ∈
MC and any w0 ∈ R

8, if (x0, y0, z0) ∈ R
3\{(x, 0, 0) : x ≤ 1 − µ} we define the

modified fast Lyapunov indicator (mFLI hereafter) by:

FLI+φ (ξ0, w0, T ) = max
t∈[0,T ]

∫ σ(ξ0,t)

0

φ(X (ζ+(s))
w+(s) · w′+(s)
‖w+(s)‖2

ds, (52)

while if (x0, y0, z0) ∈ R
3\{(x, 0, 0) : x > 1 − µ} we define the modified fast

Lyapunov indicator (mFLI hereafter) by:

FLI−φ (ξ0, w0, T ) = max
t∈[0,T ]

∫ σ(ξ0,t)

0

φ(X (ζ−(s))
w−(s) · w′−(s)
‖w−(s)‖2

ds, (53)
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where ζ±(s) are the solutions of equations (27) with initial conditions ζ±(0) =
χ−1± (ξ0); w±(s) is the solution of the variational equations (29) defined by ζ±(s)
with initial conditions w±(0) = w0 and σ(ξ0, t) denotes the the transformation
s := σ(ξ0, t) between the physical time t and the proper time s for the orbit with
initial condition ξ0.

We remark that, for any fixed w0 ∈ R
8, and if (y0, z0) 6= (0, 0), both indicators

FLI−φ , FLI+φ are defined, and the correspondence between them is:

FLI+φ (ξ0, w0, T ) = FLI−φ (ξ0,Rαw0, T ), (54)

where α is defined by χ−1− (ξ0) = Rαχ
−1
+ (ξ0). In fact, denoting by ζ(s), ζ̃(s) the

solutions of the regularized equations (27) with initial conditions ζ0 = χ−1+ (ξ0),

ζ̃0 = χ−1− (ξ0) = Rαζ0 respectively, we have ζ̃(s) = Rαζ(s). Moreover, if w(s), w̃(s)

are the the solutions of the variational equations for ζ(s), ζ̃(s) with initial con-
ditions w0, Rαw0 respectively, we have w̃(s) = Rαw(s). Finally, the integrand in
(52) and (53) is invariant with respect to the transformation w(s) → Rαw(s).
Instead, none of the two indicators FLI±φ (·, w0, T ) has a smooth global extension

to the sets MC,T which are not completely contained in the domain of χ−1+ or of
χ−1− .

Remark 2. If instead of the finite time chaos indicators we consider the Lyapunov
exponents defined using the regularized variational equations (29):

l±(ξ0, w0) = lim
s→+∞

1

s
ln ‖w±(s)‖ ,

where w±(s) denote the solutions of (29) defined by the solutions ζ±(s) of (27)
with initial conditions ζ±(0) = χ−1± (ξ0), we have:

l+(ξ0, w0) = l−(ξ0, Rαw0)

where α is defined by χ−1− (ξ0) = Rαχ
−1
+ (ξ0). Again, the largest Lyapunov expo-

nent:
l(ξ0) = max

w0∈R8:‖w0‖=1
l+(ξ0, w0) = max

w0∈R8:‖w0‖=1
l−(ξ0, w0)

is globally defined (if the limits converge to some real values), while the individual
Lyapunov exponents l±(·, w0) are not.

Remark 3. In [12, 24] we defined modified FLIs by using the variational equations
of the planar circular restricted three-body problem regularized with the Levi-
Civita transformation:

{

x = 1− µ+ u21 − u22
y = 2u1u2

(55)

and by the proper-time transformation dt = r2ds. For (x, y) 6= (1− µ, 0) the LC
transformation has two preimages (u1, u2) and (−u1,−u2). Therefore, since the
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Lyapunov exponents and the fast Lyapunov indicators are defined using norms
of tangent vectors, they are globally defined. The geometric problem appears
only for the KS transformation.

We finally comment the modification of the FTLE (43) and FLI (52),(53) by
the introduction of the function φ(X (ζ(s)) in the integrand which weights the
contribution to the indicator of the solutions w(s) of the variational equations.
For the special choice

φ(ξ) = 1 ∀ξ ∈ MC ,

the mFLI defined in (52),(53) become usual fast Lyapunov indicators (introduced
in [7]), defined using the regularized variational equations (29):

FLI±φ (ξ0, w0, T ) = max
t∈[0,T ]

ln
‖w±(σ(ξ0, t))‖

‖w0‖
, (56)

and the mFTLE becomes:

FT
φ (ξ0) = max

t∈[0,T ]
max
w

ln
‖w(σ(ξ0, t))‖

‖w(0)‖ , (57)

(the quantity following the maxt being the usual finite time Lyapunov exponent
introduced in [37], defined using the regularized variational equations (29)). In-
stead, when the weight function φ(ξ) is equal (or very close) to 1 in a small
neighbourhood Ui of the center manifold W c

C,i, and rapidly decays to zero out-

side Ui, computations of the indicators FLI±φ and FT
φ provide sharp localization

of the stable manifolds W s
C,i of W c

C,i (the unstable manifolds are obtained by
computing the indicators for negative times T ), as it will be explained in Section
4.

4 Hypertube manifolds computations with geometric

chaos indicators

The ridges of finite time chaos indicators, such as the traditional FTLE and FLI
originally defined in [37, 7], have been identified in the last decade as approxima-
tions of the stable and unstable manifolds of equilibria and periodic orbits, and
the so called Lagrangian coherent structures of turbulent flows of many model
systems (see for example [10, 11, 38, 22, 12, 31, 19, 20, 8]). In [13] we have
shown that, depending on certain non-linear properties of the dynamical sys-
tem, the traditional finite time chaos indicators can fail completely the detection
of the stable or unstable manifolds of hyperbolic equilibria or periodic orbits.
The problem has been solved by taking into account for the computation of the
chaos indicator only the contributions from the variational equations due to a
neighbourhood of the hyperbolic fixed point or periodic orbit. The method of
[13] is here generalized to compute approximations of the stable manifolds of the
center manifolds of L1, L2 as the ridges of modified finite time chaos indicators.
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The discussion of this section remains valid, with small modifications, for the
differential equations with a saddle-center-....-center equilibrium point (hypoth-
esis (i)) and with a first integral with a quadratically non degenerate maximum
or minimum when restricted to the center space of the equilibrium (hypothesis
(ii))9.

Several definitions of ridges for finite time chaos indicators have been given
in the literature since [20, 31, 25], corresponding to the motivations related to
the definition of the so called Lagrangian coherent structures. In this paper, the
ridges of the chaos indicators are used with different purposes, for which we
provide the following definition.

Definition 3. Let us consider a two dimensional real function F : R2 → R. The
smooth curve Γ ∈ R

2 is a ridge of F if there exists a family of curves γη(x) (x,
defined in a neighbourhood of 0, is a parameter along the curve; η is defined in an
interval) transverse to Γ at γη(0), and such that F (γη(x)) has a strict absolute
maximum at x = 0.

Specifically, we will consider the ridges of the modified chaos indicators (43),
(52), (53) restricted to two–dimensional surfaces Σ ⊆ MC transverse to the
stable manifolds W s

C,i. We claim that for suitable choices of the neighbourhood

Ui, of the weight function φ(ξ) and, for the FLI±φ of the parameters w0, the
subset W s(T ) ∩ Σ of the stable manifolds defined by:

W s(T ) = {ξ ∈ W s
C,i : ϕ(t, ξ) ∈ W s

C,loc ∀ t ≥ T/2}
where ϕ(t, ξ) denotes the flow of the three-body problem in the Cartesian phase-
space and

W s
C,loc = {ξ ∈ Ui ∩W s

C,i : ϕ(t, ξ) ∈ Ui ∩W s
C,i ∀ t ≥ 0}

denotes the local stable manifold in the set Ui, is close to a ridge of the indicators
FLI±φ (ξ, w0, T ),FT

φ (ξ) restricted to Σ.
Let us continue our discussion by considering the case of L1 (the case of L2

can be obtained with very simple modifications) and by fixing the total time
T and a value C of the Jacobi constant; we will assume, where needed, that
ε = C − C1 > 0 is suitably small. While in Definitions 1 and 2 (as well as
in the applications of Section 6) the weight function φ(ξ) is smooth, in this
Section we consider for simplicity a weight function φ(ξ) corresponding to the
characteristic function of a suitably small neighbourhood Ui of W c

C,i. Similar
results are obtained for smooth weight functions whose value is 1 in the set Ui,
and outside Ui rapidly decay to zero, see Section 5. We consider two properties
of the dynamics in the sets Ui which are valid with the above assumptions.
− The scattering time from Ui. Any solution with initial conditions ξ ∈ Ui\W s

C,loc

is scattered outside Ui in a finite time tξ (i.e. there exists a minimum tξ > 0 such
that ϕ(tξ, ξ) /∈ Ui). The exit time tξ diverges at the local stable manifold.

9In particular, hypothesis (ii) cannot be removed, while hypothesis (i) could be relaxed to
saddle-....-saddle-center-....-center cases, with some non-resonance condition on the eigenvalues.
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− Expansions of tangent vectors in Ui. For any ζ such that χ(ζ) ∈ Ui, and any
s > 0, we consider:

λ(s, ζ) =
1

s
ln

∥

∥

∥

∥

∂ϕ̃

∂ζ
(s, ζ)

∥

∥

∥

∥

,

where ϕ̃(s, ζ) denotes the flow of (27)10 In the above hypotheses, λ(s, ζ) is contin-
uous with respect to ζ; also, for any ζ such that χ(ζ) ∈ Ui and any s ∈ [0, S(ζ, T )]
with:

S(ζ, T ) = min (σ(χ(ζ), T ), sup{s ≥ 0 : χ(ϕ̃(s, ζ)) ∈ Ui}) ,

we have
0 < λ1

ε ≤ λ(s, ζ) ≤ λ2
ε

with λ1
ε, λ

2
ε constants depending only on ε (and the fixed T ) and satisfying:

lim
ε→0

λ1
ε = lim

ε→0
λ2
ε = λε, (58)

with λε defined in Subsection 2.4.

Below we provide estimates for FT
φ (ξ) in three different cases.

(i) Let us consider ξ0 ∈ W s
C(T ) ∩ Σ. Denote by Tξ0 < T/2 the minimum time t

such that ϕ(ξ0, t) ∈ W s
C,loc, for any t ∈ [Tξ0 , T ].

For any solution ζ(s) of equations (27) with χ(ζ(s)) = ϕ(t(s), ξ0) and any
solution w(s) of the variational equations (29) defined by ζ(s) with w(0) = w0,
we have:

∫ σ(ξ0,t)

0
φ(ϕ(t(s), ξ0))

w(s) · w′(s)
‖w(s)‖2

ds = ln
‖w(σ(ξ0, t))‖
‖w(σ(ξ0, Tξ0))‖

, ∀t ≥ Tξ0 . (59)

Since ϕ̃(s, · ) is a diffeomorphism, from (59) and (58) we obtain:

FT
φ (ξ0) = maxt∈[0,T ]maxw0∈R8,‖w0‖=1

∫ σ(ξ0,t)
0 φ(ϕ(t(s), ξ0))

w(s)·w′(s)

‖w(s)‖2
ds =

= maxt∈[0,T ]maxw0∈R8,‖w0‖=1 ln
∥

∥

∥

∂ϕ̃
∂ζ

(σ(ξ0, t)− σ(ξ0, Tξ0), ζ(σ(ξ0, Tξ0)))w0

∥

∥

∥

= maxt∈[0,T ] ln
∥

∥

∥

∂ϕ̃
∂ζ

(σ(ξ0, t)− σ(ξ0, Tξ0), ζ(σ(ξ0, Tξ0)))
∥

∥

∥

= maxt∈[0,T ]

(

σ(ξ0, t)− σ(ξ0, Tξ0)
)

λ(σ(ξ0, t), ζ(σ(ξ0, Tξ0)))

∈
(

σ(ξ0, T )− σ(ξ0, Tξ0)
)

[λ1
ε, λ

2
ε]. (60)

(ii) Let us consider ξ /∈ W s
C(T ), but very close to ξ0. Denote by Tξ the minimum

time such that ϕ(t, ξ) ∈ U i. For any solution ζ(s) of equations (27) with χ(ζ(s)) =
ϕ(t(s), ξ) we denote by w(s) the solution of the variational equations (29) defined
by ζ(s) with w(0) = w0. From standard Lipschitz estimates we have that Tξ

10The norm of the Jacobian matrix is the matrix norm: ‖B‖ = maxV :‖V ‖=1 ‖BV ‖.
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is close to Tξ0 , and for suitably small ‖ξ − ξ0‖, we have ϕ(t, ξ) ∈ Ui for any
t ∈ [Tξ, T ]. The estimate of the FTLE is therefore

FT
φ (ξ) = maxt∈[0,T ]maxw0∈R8,‖w0‖=1

∫ σ(ξ,t)
0 φ(ϕ(t(s), ξ))w(s)·w′(s)

‖w(s)‖2
ds =

= maxt∈[0,T ] ln
∥

∥

∥

∂ϕ̃
∂ζ

(σ(ξ, t) − σ(ξ, Tξ), ζ(σ(ξ, Tξ)))
∥

∥

∥

= maxt∈[0,T ]

(

σ(ξ, t)− σ(ξ, Tξ)
)

λ(σ(ξ, t), ζ(σ(ξ, Tξ)))

∈
(

σ(ξ, T )− σ(ξ, Tξ)
)

[λ1
ε, λ

2
ε]. (61)

(iii) Let us consider again ξ /∈ W s
C(T ) so close to ξ0 that Tξ is close to Tξ0 (as in

case (ii)), but now assume that the scattering time tϕ(Tξ,ξ) of ϕ(Tξ , ξ) satisfies:

tϕ(Tξ ,ξ) ≤ T − Tξ0 ,

so that in the time interval [Tξ, T ] the solution ϕ(t, ξ) exits from Ui. We consider
the sequence of intervals for the proper time s:

I1 = (a1, b1), I2 = (a2, b2), . . . , IMξ
= (aMξ

, bMξ
) ⊆ [σ(Tξ , ξ), σ(T, ξ)]

defined by a1 < b1 ≤ a2 < b2 ≤ . . . < bMξ
such that χ(ζ(s)) ∈ Ui if and only if

s ∈ ∪Ij. We have

FT
φ (ξ) = maxt∈[0,T ]maxw0∈R8,‖w0‖=1

∫ σ(ξ,t)
0 φ(ϕ(t(s), ξ))w(s)·w′(s)

‖w(s)‖2
ds =

≤∑Mξ

j=1

∣

∣

∣ln
∥

∥

∥

∂ϕ̃
∂ζ

(bj − aj , ζ(aj))
∥

∥

∥

∣

∣

∣

≤∑Mξ

j=1(bj − aj)λ(bj − aj ,
∂ϕ̃
∂ζ

(bj − aj , ζ(aj)))

∈∑Mξ

j=1(bj − aj)[λ
1
ε, λ

2
ε]. (62)

It remains to construct a a family of curves γη(x) ∈ Σ which identifies a ridge
Γ ⊆ Σ for FT

φ in the section Σ, and to show that, using estimates (60), (61) and
(62), the ridge is pointwise close to a given curve Γ0 ⊆ W s(T ) ∩ Σ.

Under mild transversality conditions between Σ and W s(T ), using a finite
reduction to the center manifold defined in [14, 15] (see also Section 5), we
construct a family of curves γη(x) such that γη(0) ∈ Γ0 and by considering
γ̃η(x) = ϕ(Tγη(x), γη(x)), if tγ̃η(x) ≤ T it satisfies:

1

λL1
+X

√
ε
ln

X
√
ε

|x| − α1 ≤ tγ̃(η,x) ≤
1

λL1
−X

√
ε
ln

X
√
ε

|x| + α1 (63)

with α1,X positive constants not depending on ε, x. From inequalities (63) we
find a neighbourhood I0 of x = 0 such that γη(x) is as in case (ii), and therefore
FT
φ (γη(x)) is close to FT

φ (γη(0)); we also find a neighbourhood I1 ⊃ I0 of x = 0
such that, for x ∈ I1\I0, γη(x) are as in case (iii) with Mξ = 1. In particular, for
x ∈ I1\I0, we have:

FT
φ (γη(0)) ≥ FT

φ (γη(x)) + [σ(ξ0, T )− σ(ξ0, Tγη(x))− σ(γη(x), tγ̃η(x))]λ
1
ε + ....
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where the dots means terms which are as small as ε and |x|. Therefore, the
ridge defined by the absolute maxima of FT

φ (γ(η, x)) is contained a a smaller
neighbourhood of x = 0, strictly contained in I1. A riparametrization of the
curves γη(x) which moves the origin of the parameter to the absolute maximum
of the FTLE completes the construction of the family of curves identifying the
ridge Γ.

Remark 4. The logarithmic dependence of the scattering time (63) from x makes
the distance between the ridge Γ and the curve Γ0 ⊆ W s(T ) extremely small.
Precisely, we have a linear decrement of the mFTLE with respect to ln |x|, up
to the maximum value of a quantity proportional to T − Tξ − tγ̃η(x) ≤ T −
Tξ0 ; differences of units in the mFTLE value typically determine a proportional
number of precision digits in the localization of the stable manifold.

Remark 5. If the curve Γ0 is completely contained in the domain of the local
inversions χ−1+ or χ−1− , with a very mild assumption of the initial tangent vector
w0, the curve Γ0 is close to a ridge of FLI+φ or FLI−φ , defined by w0. In fact, by

excluding a linear subspace of R8, all the initial tangent vectors are expanded
exponentially at rates between λ1

ε, λ
2
ε.

5 Definition of the weight function φ(ξ)

To compute the chaos indicators defined in Section 3, having the properties
discussed in Section 4, we need to define explicitly a weight functions φ(ξ) whose
values are equal to 1 very close to the center manifold W c

C,i, and then decay
rapidly to zero when the distance between ξ and the center manifold of Li is
larger than a fixed small radius ρ.

It is not sustainable, from a computational point of view, to define φ(ξ) as a
function of the minimum distance between ξ and a refined grid of points on the
selected center manifoldW c

C,i. In fact, this would require to construct a grid of the
same dimension as W c

C,i of step-size smaller than ρ and to compute the distance
of ξ from all the points of the grid. Then, to compute the integrals defining the
modified chaos indicators, such an operation must repeated thousands of times.
As a matter of fact, the geometry of the phase-space close to W c

C,i allows us to
define φ in a more efficient way.

At this purpose, we consider a finite order approximation of W c
C,i provided

by the so called Hamiltonian reductions to the center manifold (see [14, 15]).
Precisely, for any integer N , we explicitly construct canonical variables p, q de-
fined in a neighbourhood of the origin (identified with L1 or L2), giving the
Hamiltonian of the spatial circular restricted three-body problem the form:

H = λp1q1 + ω1
p22 + q22

2
+ ω2

p23 + q23
2

+K(p, q) +R(p, q), (64)

where K depends on p1, q1 only through the product p1q1 and is at least of
order 3 with respect to p, q and R is a remainder of order N . The finite order
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approximations of the center manifold are obtained by setting R = 0 in the
Hamiltonian (64): for the truncated Hamiltonian, the equations p1, q1 = 0 define
the center manifold, the equation q1 = 0 its local stable manifold, the equation
p1 = 0 its local unstable manifold, the action p1q1 is a constant of motion.
The construction of the variables p, q is explicit, and is achieved through N − 2
hyperbolic Birkhoff steps (see [14, 15]).

Using the variables p, q we define a neighbourhood Ui (i = 1 for L1, i = 2 for
L2) of the center manifold in MC . By denoting with

(q, p) := (q(ξ), p(ξ))

the transformation from the Cartesian phase-space variables to the (q, p), we
consider the set:

Ui = {ξ ∈ MC : |q1(ξ)| , |p1(ξ)| < ρ}.
Since for the truncated Hamiltonian the center manifold is defined by p1(ξ), q1(ξ) =
0, for the complete Hamiltonian system (64) (and therefore for the exact three-
body problem) if ρ is not too small the set Ui remains a neighbourhood of the
center manifold.

In principle, one could think to work with the highest possible truncation or-
der N allowed by a certain value of the Jacobi constant C. This is not necessary,
and also not convenient. In fact, on the one hand, we do not need the manifold
to correspond exactly to the center of the neighbourhood U ; on the other hand,
since the variables q, p are explicitly constructed as the sum of polynomials of
maximum order N − 1 of the 6 Cartesian variables ξi, the numerical cost for
their computation increases rapidly with N . We therefore have chosen N = 5,
and found no differences in the numerical computation of the stable-unstable
manifolds with respect to N = 6. The variables are constructed by implement-
ing only 2 Birkhoff normalization steps, as described in the paper [15], and by
truncating the series expansions at order 4. Then, the weight function is defined
by:

φ(ξ) =











1 if ρ(ξ) ≤ ρ
2

1
2 [cos((

ρ(ξ)
ρ

− 1
2 )π) + 1] if ρ

2 < ρ(ξ) ≤ 3r
2

0 if ρ(ξ) > 3ρ
2

. (65)

where ρ(ξ) =
√

q1(ξ)2 + p1(ξ)2.
In particular, we have φ(ξ) = 1 for ρ(ξ) ≤ ρ/2, and φ(ξ) decays to 0 at

ρ(ξ) = 3ρ/2. Since φ(ξ) is smooth, from Theorem 1 also the chaos indicator FT
φ

is smooth, as well as the indicators FLI+φ , FLI−φ in the domains of χ−1+ , χ−1−
respectively. In Section 6 we will also identify with φ1(ξ) and φ2(ξ) the weight
functions (65) defined using the reductions to the center manifolds of L1 and L2

respectively.
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6 Application to the Sun-Jupiter case

In this section we represent the intersections of the stable manifolds W s
C,1,W

s
C,2

of the center manifolds W c
C,1,W

c
C,2 of L1, L2 with the planar section ΣP and the

vertical section ΣV , defined in (3) and (4), computed as the ridges of the chaos
indicators defined in Sections 3,4 and 5. As a model problem we consider the
spatial three-body problem defined by the Sun-Jupiter masses and the value:

C = 3.0368573364394607

of the Jacobi constant, which is slightly smaller than C2. Sections of the realms
S, J,E as well as of the isolating blocks R1, R2 for such value have been repre-
sented in figure 1.

6.1 The planar section of the stable hypertube manifolds

The planar section ΣP of the spatial circular restricted three-body problem is a
subset of the reduced phase-space of the planar problem:

MP = {(x, y, z, ẋ, ẏ, ż) : z = 0, ż = 0}.

The sets W c
C,1∩MP ,W

c
C,2∩MP contain only a planar Lyapunov periodic orbit,

which we denote by LL1, LL2 respectively; the manifolds W s
C,1∩MP , W

s
C,2∩MP

are the tubes of orbits converging to LL1, LL2. Intersections of the tube mani-
folds with the planar section have been provided in [13, 24]; in this subsection we
reconsider the planar problem to support the interpretation of the results of the
genuine spatial problem; in fact, the connected components of the intersections
of the hypertube manifolds W s

C,1,W
s
C,2 with the vertical section ΣV are contin-

uations of planar homoclinic orbits; moreover, different components which are
disconnected in ΣV , are connected in MC through paths contained in the planar
section, specifically paths of W s

C,1 ∩ ΣP ,W
s
C,2 ∩ ΣP .

In the top panel of figure 2 we report the ridges of the mFLI on the section
ΣP , computed using a weight function φ(ξ) which is different from zero only in a
small neighbourhood of LL1; in the realm J we have 4 ridges, which we denote
by λ1

1, . . . , λ
1
4. The ridge λ1

1, intersects LL1 and extends on both sides of the
Lyapunov orbit; all the orbits with initial conditions on λ1

1 converge directly to
LL1 without performing circulations around P1, P2. The dynamics of orbits with
initial conditions on λ1

2, . . . , λ
1
4 is more complicate. Let us consider the tube of

orbits generated by the flow of the three-body problem with initial conditions on
λ1
2 (the red curve in the top panel of figure 2), represented in figure 3. The orbits

obtained by integrating the initial conditions on λ1
2 forward in time perform half

circulation around P2 and then intersect the section ΣP at some point of λ1
1 (see

figure 3, top panel); then, as all the orbits with initial conditions on λ1
1, they

converge directly to LL1. The tube of orbits obtained by integrating the initial
conditions on λ1

2 backward in time, after half a circulation of P2, is so stretched
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Figure 2: Intersection of W s
C,1,W

s
C,2 with the planar section ΣP . We represent

the ridges of the mFLI on the vertical section ΣP , parameterized by x, ẋ. The modulus
|ẏ| is obtained from the value of the Jacobi constant. In the top panel we represent
the ridges µ1

1, λ
1
1, . . . , λ

1
4 (the superscript is omitted in the figure) which approximate

W s
C,1 ∩ ΣP . The curves λ1

2, λ
2
4 are ridges of FLI+φ , while the other curves are ridges

of FLI−φ ; all the points of µ1
2, λ

1
2, λ

1
4 are characterized by ẏ > 0, while λ1

1, λ
1
3 contain

points with ẏ ≥ 0 and ẏ < 0. In the bottom panel we represent the ridges λ2
1, . . . , λ

2
6

(the superscript is omitted in the figure) which approximate W s
C,2 ∩ ΣP . The curves

λ2
1, λ

2
3, λ

2
5 are the ridges of FLI+φ , while the other curves are ridges of FLI−φ ; all the

points of λ2
3, λ

2
5 are characterized by ẏ > 0, λ2

2, λ
2
4, λ

2
6 by ẏ < 0, while λ1

1 contains points
with ẏ ≥ 0 and ẏ < 0. The gray curves represent the projection on ΣP of two orbits with
initial conditions on W s

C,1,W
s
C,2 respectively; the orbits return to the section several

times, intersecting different connected ridges on the points marked with a black bullet.29



that a part transits directly to the realm of motions S without intersecting ΣP ;
another part transits to the realm of motions S after two intersections with λ1

3

(one with positive and one with negative ẏ); another part performs a circulation
around P2 intersecting ΣV in a point of λ1

3 and a point of λ1
4. In particular,

there are orbits tangent to the section ΣP , determining such bifurcations in
the transit properties. The possible transitions are summarized in figure 4, top
panel; by extending the computations of the ridges to longer integration times
we would detect additional ridges λ1

i and additional transitions. The topology of
the manifold W s

C,1 in the realm S (described in [24]) develops like a strip which
folds in the interior realm S filling a large portion of S.

In the bottom panel of figure 2 we report the ridges of the mFLI on the
section ΣP , computed using a weight function φ(ξ) which is different from zero
only in a small neighbourhood of LL2; in the realm J we find six ridges, which we
denote by λ2

1, . . . , λ
2
6. The ridge λ

2
1 intersects LL2 and extends on both sides of the

Lyapunov orbit; all the orbits with initial conditions on λ2
1 converge directly to

LL2 without performing circulations around P1, P2. The tube of orbits generated
by the forward-time flow of the three-body problem with initial conditions on λ2

4

(the red curve in the bottom panel of 2) performs a full circulation of P2, and
intersects the section ΣP at λ2

3, λ
2
2 (see figure 5, top panel); then, the orbits with

initial conditions on λ2
2 perform an additional half circulation around P2 and

then intersect the section ΣP at some point of λ2
1; afterwards, as all the orbits

with initial conditions on λ2
1, they converge directly to LL2. Then, we consider

the tube of orbits generated by the backward-time flow with initial conditions on
λ2
4. Again, the tube perform half a circulation around P2 till it intersects ΣP in

λ2
5; then by continuing the backward integration of orbits with initial conditions

on λ2
5 we have three different possibilities: the orbit intersect ΣP at λ2

6, or they
transit to the external realm E, or they transit to the internal realm S. The
possible transitions are summarized in figure 4, bottom panel.

6.2 The vertical section of the hypertube manifolds

In the figures 6 and 7 we report the ridges of the mFLI on the section ΣV ,
computed using both the weight functions φ1(ξ), φ2(ξ) defined in Section 5. For
x > 1 − µ we report the ridges of the FLI+φi

indicator, while for x < 1 − µ we

report the ridges of the FLI−φi
indicator: since all the ridges do not cross the line

x = 1−µ, we are allowed to use the two modified FLI in place of the more CPU
expensive modified FTLE.

The black curves are ridges of FLI±φ1
: the bold black curve, which we denote

by Λ1
1, represents the intersection of the center manifold W c

C,1 with the vertical
section ΣV ; the other ridges represent intersections W s

C,1 ∩ ΣV . Two of these

curves, which we denote by M1
1 ,M

1
2 , belong to the left hand side branch of the
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Figure 3: Tube of orbits generated by λ1
2 obtained by integrating a sample of

initial conditions both for positive and negative times. On the top panel we represent
the projection of these orbits on the x, y plane. The red curves represent the orbits
integrated for positive times; the blue curves represent the orbits integrated up to the
negative proper time s = −45. The bold blue curve represents the border of the tube at
s = −45. In the bottom panel we represent the tubes generated by the same orbits in the
three-dimensional phase-space x, y, ẋ; a transparent mesh samples the border of MC .
The light-green surface is the portion of stable–manifold obtained by integrating forward
the initial conditions on λ1

2, the pink surface represents the tube obtained by integrating
backward the initial conditions on λ2. The perspective is reversed with respect to the
upper panel: the positive x axis points toward the left.
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Figure 4: Transitions between the curves λi
j and the realms J and S. In the top

panel we summarize the transition properties for the orbits with initial conditions on λ1
i .

The forward time evolution is simple: any initial conditions in λ1
i will intersect the section

in λ1
i−1, . . . , λ

1
1 and then converges to LL1. The backward time evolution has bifurcations,

summarized by the diagram. In the bottom panel we summarize the transition properties
for the orbits with initial conditions on λ2

i . The forward time evolution is simple: any
initial conditions in λ2

i will intersect the section in λ2
i−1, . . . , λ

2
1 and then converges to

LL2. The backward time evolution has bifurcations, summarized by the diagram.

stable manifold (see figure 7) and are in the realm S: the initial conditions on M1
1

(which is on the right of the primary body) perform half of a circulation around
the primary body before approaching the center manifold; the initial conditions
on M1

2 (which is on the left of the primary body) perform a complete circulation
around the primary body before approaching the center manifold. The remaining
curves (light black curves in figure 6) are on the right hand-side branch of the
stable manifold, and we denote them by Λ1

2,Λ
1
3, . . . ,Λ

1
7; where the lower index

j labels the number (j − 1)/2 of circulations around the secondary body before
entering permanently the region R1. These ridges intersect the corresponding
planar ridges λ1

j (reported in figure 2, top panel) at the one dimensional section:

ΣV P = {(x, y, z, ẋ, ẏ, ż) : y = z = 0, ẋ = ż = 0, C(x, 0, 0, ẏ, 0) = C}. (66)

As a matter of fact, we found two disconnected ridges Λ1
4, Λ̃

1
4 such that the orbits

with initial conditions on both of them perform 3/2 circulations around P2 before
entering permanently the region R1, see the bottom panels of figure 6. These two
curves are disconnected in ΣV but are connected in the phase-space MC through
the intersection W s

C,1 ∩ ΣP of the stable manifold with the planar section, see
figure 8. Such connections are expected to exist also for other ridges, and are
important to determine the transit properties of the orbits with initial conditions
on ΣV , see Subsection 6.3.

The blue curves are ridges of FLI±φ2
: the bold blue curve, which we denote

by Λ2
1, represents the intersection of the center manifold W c

C,2 with the vertical
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Figure 5: Tube of orbits generated by λ2
4 obtained by integrating a sample of

initial conditions both for positive and negative times. On the top panel we represent
the projection of these orbits on the x, y plane. The red curves represent the orbits
integrated for positive times; the blue curves represent the orbits integrated for negative
times. The bold blue curve represents the border of the tube. In the bottom panel
we represent the tubes generated by the same orbits in the three-dimensional phase-
space x, y, ẋ; a transparent mesh samples the border of MC . The light-green surface is
the portion of stable–manifold obtained by integrating backward the initial conditions
on λ2

4, the pink surface represents the tube obtained by integrating forward the initial
conditions on λ2

4. The perspective is reversed with respect to the upper panel: the positive
x axis points toward the left.
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section ΣV , while the other ridges of FLI±φ2
(light blue curves in figure 6) are in

the right left-hand side branch of the stable manifold W s
C,2∩ΣV . We denote them

by Λ2
3, . . . , λ

2
7, where the lower index j labels the number (j−1)/2 of circulations

around the secondary body before entering permanently R2 (see figure 1). These
ridges intersect at ΣV P the corresponding planar ridge λ2

j reported in figure 2,
bottom panel.

Methods of grids computation. The ridges represented in this paper are
computed as an ordered sequence of close points π0, π1, . . .. Since the sections ΣV

and ΣP intersect at the one dimensional section ΣV P , we preliminary compute
the modified FLI for a grid of initial conditions on ΣV P . Each maximum of
the FLI on this one dimensional grid is close to a ridge of the FLI. Precisely,
we select a point π̃0 corresponding to one of these maxima, and we compute
again the modified FLI on a much more refined one-dimensional grid centered
in π̃0. The maximum FLI on this new grid provides a better estimate of the
the first point π0 on the ridge of the FLI. The second point π1 of the ridge
is obtained by computing the FLI on another one-dimensional grid of points
on ΣV characterized by a small value ε0 of the coordinate z, and the same
coordinates x, y, ẋ, ż of π0; the value of |ẏ| is determined from the value of the
Jacobi constant. The maximum FLI on this second grid provides π1. The third
point π2 is computed from a one-dimensional grid of N points chosen on an
segment which is orthogonal to π1 − π0, whose center is at a distance ε0 from
π1, and whose amplitude is equal to another small parameter ε1. The maximum
FLI on this grid provides the point π2. The procedure is then iterated, providing
an ordered set of points on a curve which samples a ridge of the mFLI with
maximum error ε1/N . The values of the parameters ε0, ε1, N are adjusted at
each step. Then, we select a subset of points πi, and we refine the computation
by recomputing the FLI on one dimensional grids centered on πi, orthogonal to
πi − πi−1, and with a new value for ε1 which is set equal to ε1/2. After K of
these refinements, we obtain an ordered set of points on a curve which samples a
ridge of the mFLI with maximum error ε1/(2

KN). After few iterations K of this
process we arrive a the limit of the double precision floating point arithmetics (to
reach the double precision in the computation of the manifold we perform the
last steps of the iteration with the extended precision floating point arithmetics).

The equations of motion (27) and their variational equations (29) are numer-
ically integrated with an explicit Runge-Kutta integration scheme of order six
using double or extended floating point precision.

6.3 Survey of the dynamics in the section ΣV

In this section we represent the dynamics of the orbits with initial conditions
in the section ΣV , with particular attention to the orbits with initial conditions
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Figure 6: Intersection of W s
C,1 with the vertical section ΣV in the realm J . We

represent the ridges of the mFLI on the vertical section ΣV , parameterized by x, z. The
modulus |ẏ| is obtained from the value of the Jacobi constant; the other initial conditions
are y, ẋ, ż = 0. The black curves have been obtained from FLI±φ1

: the bold black curve

Λ1
1 representsW

c
C,1∩ΣV , the light black curves represent the Λ1

2, . . . ,Λ
1
7. The blue curves

have been obtained from FLI±φ2
: the bold blue curve Λ2

1 represents W c
C,2 ∩ΣV , the light

blue curves represent the Λ2
2, . . . ,Λ

2
6. In the bottom panels we zoom in the red boxes.

From the zooms, we notice an additional ridge, which is the Λ̃1
4 discussed in the text,

connected to the Λ1
4 through the planar ridge λ1

4. Both ridges Λ1
4, Λ̃

1
4 are represented in

orange in the bottom panels.
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Figure 7: Intersection of W s
C,1 with the vertical section ΣV in the realm S. The

light black curves represent the ridges M1
1 (left panel) and M1

2 (right panel).

close to the ridges of the chaos indicators previously computed.
We first represent the tube of orbits with initial conditions on the ridges

Λi
j of the modified FLIs. Ideally, these orbits converge to the center manifold

W c
C,i for both positive and negative times; but, since the ridges approximates

the stable/unstable manifolds up to a numerical error, which in this case is
ε1 ∼ 10−14, the orbits approach and remain close to W c

C,i only up to some

finite time T . In figures 9 and 10 we represent the tubes generated by Λ1
2 and

Λ1
4 respectively: in the top panels we represent the projection of a sample of

orbits on the xy (top-left) and the xz (top-right) planes; the orbits represented
in bold-red are on the planar section of the lobes, while the orbits represented in
bold-blue are close to the ’cusps’ of Λ1

4. We notice the sense of rotation around
P2 of the orbits, which is anti-clockwise, until they enter the realm R1, where
they change their rotation sense to follow a clockwise rotation around the center
manifold. In the bottom panels we represent the projection of the tubes on the
three dimensional space xyz.

Even if the numerical error is very small, by extending the integration time
these orbits will transit through the bottleneck of BC at L1 or bounce back,
depending on which side of the stable manifold they actually are. As a matter
of fact, the meaning of the numerical computation of each curve Λi

j is the de-

termination of an annulus σi
j ⊆ ΣV delimited by an inner curve and an outer

curve, whose points are at distance from Λi
j larger than the numerical error ε1.

Therefore, with the exception of the points of the annulus σi
j, we are able to
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Figure 8: Intersection of the ridges Λ2
4, Λ̃

2
4 with λ2

4. The ridges Λ2
4, Λ̃

2
4 of ΣV and

the ridge λ2
4 of ΣP are all represented in the same three-dimensional section of the

phase-space Σ = {(x, y, z, ẋ, ẏ, ż) : y = 0, ż = 0, C(x, y, z, ẋ, ẏ, ż) = C}. The section is
parametrized by the variables x, z, ẋ, so that the horizontal yellow plane represents the
planar section ΣP , the blue vertical plane represents the vertical section ΣV . The ridges
Λ2
4, Λ̃

2
4 are clearly connected by λ2

4.

identify with numerical error ε1 the interior and the exterior of the tubes of or-
bits generates by W s

C,i ∩ ΣV . The dynamics of orbits with initial conditions in

the tubes approximated by a Λi
j is such that, after (j − 1)/2 circulations around

P2, the orbits transit to the internal realm S, if i = 1, or to the external realm E,
if i = 2. In figure 11 we report the different time evolutions of the internal and
external borders of the two annuli σ1

2 , σ
2
4 (whose borders have distance ε = 10−10

from λi
j; we selected ε much larger than the numerical precision, to appreciate

the dynamics of all the orbits on the border in short times): for i = 1, 2 all the
orbits in the inner border, after some circulations of the center manifold, transit
to S,E respectively; all the orbits in the external border, after some circulations
of the center manifold, bounce back to the realm J .

The transit properties of orbits which are external to the tubes is in part
uncertain, since there can be different branches of Λi

j (see figure 8) which are
disconnected in ΣV but are connected through ΣP : an initial condition which is
external to a connected component of Λi

j, but internal to a different connected

component of Λi
j, transits to the realm S in (j − 1)/2 circulations. Therefore,

while the dynamics of the inner border of the σi
j is certainly determined, the

dynamics on the external border of σi
j is determined for a certain integration

time T only if the error ε1 is suitably small. Global snapshots of the transit
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properties from the realm J to the realms S,E are provided in figure 12. For
any initial condition on a refined grid of 10000×2000 initial conditions of ΣV we
computed their orbits until they reach a value for the x coordinate smaller than
0.933 or larger than 1.067. In the former case, we represent the initial condition
with a violet pixel, in the latter we represent the initial condition with an orange
pixel. If none of the conditions is met in a certain fixed integration time T , we
represent the initial condition with a yellow pixel. Though such representations
have a poor precision with respect to the FLIs computations (here, the precision
in separating the interior from the exterior of a tube is provided by the step-size
of the grid, and is 9 orders of magnitude worst than the FLI computations), they
provide a snapshot of the global dynamics on the section ΣV .

7 Conclusions

The global computations of the manifolds asymptotic to the center manifolds
originating at the Lagrangian points L1, L2 is a problem at the frontier of the
dynamical systems science; in fact, in addition to usual numerical difficulties in-
duced by hyperbolic dynamics, the gravitational singularities determine a non
trivial geometry of the phase-space and a source of numerical limitations. Geo-
metric regularizations, such as the Kustaanheimo-Stiefel regularizations, provide
excellent solutions to the numerical issues, but introduce hidden gauge symme-
tries with subtle consequences. In this paper, we abandon the traditional way of
computing the asymptotic manifolds for a strategy based on the use of chaos in-
dicators. We had to formulate from scratch the variational theory related to the
Kustaanheimo-Stiefel regularizations, especially to study the relationship with
the orbits in the physical phase space. We found natural to define the chaos in-
dicators in a geometric framework, by exploiting all the properties of the gauge
symmetry. The applications of these ideas to the Sun-Jupiter case have provided
new insights about the structures of the asymptotic manifolds as well as of the
dynamics in the vertical section ΣV . We plan in the future to consider further
extension of this theory, by including perturbations of the spatial three-body
problem, such as elliptic problems or perturbations from an additional massive
body.
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Figure 9: Geometry of the tube generated by Λ1
2. A sample of orbits in Λ1

2 has
been integrated forward in time. The top-left panel represents the projection of these
orbits on the xy plane (the the two orbits represented in bold are on the planar section
of the lobe); the top-right panel represents the projection of these orbits on the xz plane.
The light-blue and the yellow regions represent the forbidden regions in the plane xy
and xz respectively. Then, the same initial conditions have been integrated backward
in time. In the bottom panel we represent in the three–dimensional space xyz the mesh
generated by the orbits obtained with the forward integration (represented in green) and
with the backward integration (represented in pink). The transparent mesh represents
the border of the real of the forbidden motions. The pink disk inside the center manifold
is a surface whose border is the Lyapunov orbit LL1.
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Figure 10: Geometry of the tube generated by Λ1
4. A sample of orbits in Λ1

4 has
been integrated forward in time. The top-left panel represents the projection of these
orbits on the xy plane, the top-right panel represents the projection of these orbits on
the xz plane (the two orbits represented in red-bold are on the planar section of the
lobe; the two orbits represented in blue have initial conditions close to the ’cusps’ of
λ4). The light-blue and the yellow regions represent the forbidden regions in the plane
xy and xz respectively. In the bottom panel we represent in the three dimensional space
xyz the mesh generated by the same orbits (represented in light blue). The transparent
mesh represents the border of the forbidden region.
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Figure 11: Evolution of orbits with initial conditions on the annuli σ1
2 , σ

2
4. We

represent the projection on the xy plane of orbits with initial conditions in a sample of
the inner border (top-left panel) and outer border (top-right panel) of σ1

2 , and on the
inner border (bottom-left panel) and outer border (bottom-right panel) of σ2

4 .
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Figure 12: Transits from the realm J to the realms S,E. For any initial condition
on a refined grid of 10000 × 2000 initial conditions of ΣV we computed their orbits
until they reach a value for the x coordinate smaller than 0.933 or larger than 1.067. In
the former case, we represent the initial condition with a violet pixel, in the latter we
represent the initial condition with an orange pixel. If none of the conditions is met in
a certain fixed integration time T , we represent the initial condition with a yellow pixel.
The top panel has been obtained with the integration time T = 5; the bottom panel
with the integration time T = 10.
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Math., vol. 42, 99-144, 1920.

[27] Moeckel R., Isolating Blocks Near the Collinear Relative Equilibria of the
Three-Body Problem, Transactions of the American Mathematical Society
356, 4395-4425, 2004.

[28] Mikkola S., Few-Body Problem: Theory and Computer Simulations, Annales
Universitatis Turkuensis, Series 1A, Vol. 358, C. Flynn, ed., 2006.

[29] Peters C. F., Numerical Regularizations, Bull. Astron., 3, 167, 1968.

[30] Roy A. and Ovenden M.W., On the occurrence of commensurable mean
motions in the Solar System II, The mirror theorem, Mon. Not. Roy. Astr.
Soc. 115, pag. 296, 1955.

[31] Shadden S.C., Lekien F. and Marsden J.E., Definition and properties of
Lagrangian coherent structures from finite-time Lyapunov exponents in two-
dimensional aperiodic flows, Physica D 212, 271304, 2005.

[32] Sijbrand J., Properties of Center Manifolds, Transactions of the American
Mathematical Society, vol. 289, n. 2, pp. 431-469, 1985.
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