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Abstract

In this note, I revisit integrals over SU(N) of the form
∫
DU Ui1j1 · · ·UipjpU

†
k1l1
· · ·U†

knln
. While

the case p = n is well known, it seems that explicit expressions for p = n+N had not appeared
in the literature. Similarities and differences, in particular in the large N limit, between the two
cases are discussed.



1 Introduction and results

In this note, we consider the SU(N) integrals∫
DU Ui1j1 · · ·UipjpU

†
k1l1
· · ·U †knln , (1)

with DU the normalized Haar measure, or their generating functions

Zp,n(J,K) =

∫
DU (tr (KU))p(tr (JU †))n , (2)

where J and K are arbitrary N ×N matrices.
Such integrals, mainly over the group U(N), have been the object of numerous publications in

the past, in the context of lattice gauge theories [1, 2, 3, 4], or in the large N limit [5, 6], or for
their connections with combinatorics [7, 8]. Integrals over SU(N), however, seem to have received
less attention, see, however, [2, 9]. Recent work by Rossi and Veneziano [10] has prompted this
new investigation.

By ZN invariance, it is clear that the above integrals vanish if

p− n 6= 0 mod N . (3)

From a representation theoretic point of view, the number of independent terms in (2), (i.e., of
independent tensors with the right symmetries in (1)), is given by the number of invariants in
(N)⊗p ⊗ (N̄)⊗n, where (N) and (N̄) denotes the fundamental N -dimensional representation of
SU(N) and its complex conjugate.

Zn,n(J,K) is a well known function of (traces of powers of) JK, (“Weingarten’s function” [1]),
at least for n < N , and one may even collect all Zn,n’s into

ZW (J,K) =
∑
n≥0

β2n

(n!)2
Zn,n =

∫
DU eβtr (UK+U†J) . (4)

For the convenience of the reader, a certain number of known results on these integrals and their
generating function are recalled in the Appendix. This case n = p in eqs. (1), (2) will be referred
to as “the ordinary case”.

Consider now Zn+N,n. This kind of integral appears in the strong coupling calculation of the
“book observable” of ref [10]. First, for n = 0,

∫
DU Ui1j1 · · ·UiN jN is given by the only invariant

in ⊗N (N), namely by the totally antisymmetric tensor product, (i.e., the determinant of U , equal
to 1 in SU(N)). Hence ∫

DU Ui1j1 · · ·UiN jN = Aεi1···iN εj1···jN

with a constantA determined by contraction with εi1···iN and use of εi1···iNUi1j1 · · ·UiN jN = εj1···jN detU ,
hence

∫
DU detU =

∫
DU = 1 = Aεj1···jN εj1···jN = AN !, and A = 1/N !. Thus∫

DU Ui1j1 · · ·UiN jN =
1

N !
εi1···iN εj1···jN . (5)

Equivalently,
ZN,0(J,K) = detK . (6)

More generally, for n < N , ZN+n,n(J,K) is the product of detK by a polynomial of M := JK,
invariant under M 7→ VMV †, for any V ∈ SU(N), and homogeneous of degree n in M , hence a
polynomial that may be expanded on traces of powers of M

ZN+n,n =

∫
DU (tr (UK))N+n (tr (U †J))n = detK

∑
α`n

dαtα . (7)
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with a sum over partitions of n denoted α = [1α1 , 2α2 , · · · , pαp ],
∑

q q αq = n, and with the notation

tα :=
∏
q

t
αq
q , tq := tr (JK)q . (8)

The coefficients dα are determined through recursion formulae resulting from a contraction of (1)
with a Kronecker delta:

δjk
∂2

∂Jlk∂Kji
ZN+n,n = (N + n)n δil ZN+n−1,n−1 . (9)

The first coefficients are readily determined

n = 1 d[1] = 1

n = 2 d[2] = − 1
N d[12] = N+1

N

n = 3 d[3] = 4
N(N−1) d[1,2] = − 3(N+1)

N(N−1) d[13] = (N+1)2−2
N(N−1) (10)

n = 4 d[4] = − 30
N(N−1)(N−2) d[1,3] = 8(2(N+1)2−3)

(N+1)N(N−1)(N−2) d[22] = 3((N+1)2+6)
(N+1)N(N−1)(N−2)

d[12,2] = − 6((N+1)2−4)
N(N−1)(N−2) d[14] = (N+1)4−8(N+1)2+6

(N+1)N(N−1)(N−2)
etc.

These coefficients are in fact simply related to the analogous coefficients zα in the expansion of
the ordinary generating function, see Appendix, eq. (A.3). If zα, α ` n, is written in the form

zα =
Pα(N)

N2(N2 − 1) · · · (N2 − (n− 1)2)
(11)

with Pα(N) a polynomial of N , then

dα =
Pα(N + 1)

(N + 1) · · · (N − (n− 2))
. (12)

This follows from the comparison between the two systems of recursion formulae, see below sect.
2, and may be verified on the first coefficients (10) and (A.5).

Note that the coefficients dα decrease more slowly than the zα, for fixed n, as N grows. This
behavior has consequences on the large N limit of the generating function ZD defined by

ZD =
∑
n≥0

βn

n!
ZN+n,n =

∫
DU eβ trUK trU†J (trUK)N =: Z̃D detK . (13)

Note also the different summations in (4) and (13): here β is a homogeneity parameter for the
eigenvalues of M = JK while in (4), it is β2 that plays that role. In both cases, however, we take
β of order N and set β = Nβ̃. Then while in the ordinary case, a non trivial limit is obtained
by taking the traces tn also of order N , resulting in an exponentation ZW = expN2WW , here one
finds that the traces tn have to be kept of order 1 and then Z̃D = expNWD, with WD a non trivial
function of the tn’s.

Indeed one finds for the first terms

lim
N→∞

1

N
log

ZD
detK

= β̃t1+
β̃2

2
(t21−t2)+

β̃3

3
(t31−3t1t2+2t3)+

β̃4

4
(t41−6t2t

2
1+2t22+8t3t1−5t4)+· · · (14)

which is just the beginning of a simple formula in the large N limit:

WD := lim
N→∞

1

N
log

ZD
detK

=
∑
n≥1

β̃n
∑
α`n

(−1)n−
∑
αq (n− 1)!

(n−
∑
αq + 1)!

∏
p

(Cat(p− 1) tp)
αp

αp!
(15)

in terms of the Catalan numbers Cat(m) = (2m)!
m!(m+1)! . This will be proved below in sect. 3.
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2 The recursion relations

Let us return to (9) and look at the action of the differential operator ∂
∂Kji

on a typical term

tα detK of (7). Making use of the identities

∂

∂Kji
det[K] = (CofK)ji (16)

(CofK)ji(KX)jl = (detK)Xil (17)

one may write for each term in the expansion of ZN+n,n

∂2

∂Kji∂Jlj
(tα detK) =

∂

∂Kji

p∑
q=1

qαq(K(JK)q−1)jl tα̂(q)
detK

=

p∑
q=1

qαq

(
(N + 1)(JK)q−1il +

q−1∑
s=1

ts(JK)q−s−1il

)
tα̂(q)

detK (18)

+

p∑
q=1

q2αq(αq − 1)(JK)2q−1il t̂̂α(q)
detK + 2

∑
1≤q<r≤p

qrαqαr(JK)q+r−1il tα̃(q,r)
detK

with α̂(q) := (1α1 · · · qαq−1 · · · pαp), ̂̂α(q) =:= (1α1 · · · qαq−2 · · · pαp), and α̃(q,r) := (1α1 · · · qαq−1 · · · rαr−1 · · · pαp).
In this way, (9) yields an (overdetermined) system of relations between the coefficients dα at

ranks n and n− 1, namely

∑
α`n

dα

{ p∑
q=1

qαq

(
(N + 1)(JK)q−1il +

q−1∑
s=1

ts(JK)q−s−1il

)
tα̂(q)

det(K) (19)

+

p∑
q=1

q2αq(αq − 1)(JK)2q−1il t̂̂α(q)
det(K) + 2

∑
1≤q<r≤p

qrαqαr(JK)q+r−1il tα̃(q,r)
det(K)

}
= n(N + n)δil

∑
α′ `n−1

dα′tα′ det(K) .

Compare these equations with those satisfied by the coefficients zα in the similar expansion of
Zn,n(J,K) in the ordinary case, see (A.4). Their structure is the same, except for changes on the
terms of (19) marked in red. In the linear system on the dα, the parameter N in the lhs of (A.4)
has been changed into N + 1 while the right hand side is multiplied by (N + n). As a result the
solutions of the dα linear system are obtained from those of the zα one by

for a given n dα = (N + n)(N + n− 1) · · · (N + 1)
(
zα|N→N+1

)
.

If zα is written as in (11), it follows that dα has the form (12), qed.
In particular, this relation implies that zα and dα have the same overall sign, namely (−1)#cy(α)+n.

3 Exponentiation

The differential equation (9) carries over to the generating function ZD of (13) in the form

δjk
∂2

∂Jlk∂Kji
ZD = δil

(
(N + 1)β + β2

∂

∂β

)
ZD . (20)
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We write ZD = detK Z̃D, in which Z̃D is a function of M := J K invariant under M → VMV † for
any V ∈ SU(N), and we rewrite the differential equation as

∂2Z̃D
∂Mlk∂Mji

Mjk + (N + 1)
∂Z̃D
∂Mli

= δil

(
(N + 1)β + β2

∂

∂β

)
Z̃D . (21)

This may be reexpressed as a differential equation wrt to the eigenvalues λi of M (generically M
is diagonalizable). This is a standard procedure [5] with the result that for any i, 1 ≤ i ≤ N

λi
∂2Z̃D
∂λ2i

+ (N + 1)
∂Z̃D
∂λi

+
∑
j 6=i

λj

∂Z̃D
∂λi
− ∂Z̃D

∂λj

λi − λj
=
(

(N + 1)β + β2
∂

∂β

)
Z̃D . (22)

Finally we write Z̃D = expNWD, which results in

λi

(
N
∂2W̃D

∂λ2i
+N2

(
∂WD

∂λi

)2 )
+ (N + 1)N

∂WD

∂λi
+N

∑
j 6=i

λj

∂WD
∂λi
− ∂WD

∂λj

λi − λj
= (N + 1)β +Nβ2

∂WD

∂β
.

(23)
In the large N limit, we rescale β = Nβ̃, keeping all tn =

∑
i λ

n
i of order 1, and after dropping the

subdominant terms, we get for wi := ∂WD
∂λi

the equation

λiw
2
i + wi = β̃ + β̃2

∂WD

∂β̃
. (24)

(Note that this is in contrast with the “ordinary case” where the term
∑

j 6=i · · · contributes in the

large N limit [5].) Now β̃ is just an homogeneity variable of the λ’s, and we may thus substitute
β̃ ∂WD

∂β̃
=
∑

j λj
∂WD
∂λj

=
∑

j λjwj . The equation finally reduces to a system of algebraic equations

for the wi’s
λiw

2
i + wi = β̃(1 +

∑
j

λjwj) . (25)

Assuming w :=
∑

i λiwi known, one finds

λiw
2
i + wi = β̃(1 + w) (26)

wi =
−1 +

√
1 + 4λiβ̃(1 + w)

2λi

and 1 + w is thus the root of

1 + w = 1− N

2
+
∑
i

√
1 + 4λiβ̃(1 + w)

2
. (27)

Equation (26) should be compared with that of the generating function of Catalan numbers

Cat(m) = (2m)!
m!(m+1)! , namely C(t) =

∑
n≥0 Cat(n)tn, tC2(t) − C(t) + 1 = 0. We find that wi =

β̃(1 + w)C(−β̃(1 + w)λi), hence

wi = β̃(1 + w)
∑
n≥0

Cat(n)(−β̃(1 + w)λi)
n (28)

and
w =

∑
i

λiwi = −
∑
n≥1

Cat(n− 1)(−β̃(1 + w))ntn . (29)
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Let f0 = 1, fn := (−1)n−1Cat(n−1)tn for n ≥ 1, y := β̃(1+w), then (29) reads y = β̃
∑

n≥0 fny
n,

whose solution is given by Lagrange formula

y = β̃(1 + w) =
∑
n≥0

β̃n+1

(n+ 1)!
dnz

(∑
m≥0

fmz
m
)n+1∣∣∣

z=0

= β̃ +
∑
n≥1

β̃n+1

(n+ 1)!

∑
α`n

(n+ 1)!

(n+ 1−
∑

q αq)!
∏
q αq!

n!fα

w =
∑
n≥1

mnβ̃
n =

∑
n≥1

β̃n
∑
α`n

n!

(n+ 1−
∑

q αq)!
∏
q αq!

fα

where the multinomial coefficient appears naturally in the expansion of the n + 1-th power, and
the n! results from the n-th derivative of zn. Upon integration we get

WD =
∑
n≥1

β̃n
∑
α`n

(−1)n−
∑
αq (n− 1)!

(n+ 1−
∑

q αq)!
∏
q αq!

∏
p

(Cat(p− 1)tp)
αp

which establishes (15).
Note the similarity of this calculation with the relation between ordinary moments mn and

planar cumulants fn of a given distribution. The combinatorial or diagrammatical interpretation
of (15) remains to be found.
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Appendix

In this Appendix, we recall a certain number of results on the Weingarten’s functions Zn,n(J,K) and
their generating function ZW (J,K) of (4). The Zn,n are well known functions of (traces of powers
of) JK, at least for n < N , see also [2, 3, 4]. For n ≥ N , the traces are no longer independent, or
equivalently the tensors

∏
δiπ(l)δjρ(k), π, ρ ∈ Sn, are no longer independent, and we have to deal

with a “pseudo-inverse” of the Gram matrix, see [7, 8].

Consider the integrals on U(N) (or SU(N), this is irrelevant here, assuming n < N) [1, 4, 7]∫
DU Ui1j1 · · ·UinjnU

†
k1`1
· · ·U †kn`n =

∑
τ,σ∈Sn

C([σ])
n∏
a=1

δia`τ(a)δjakτσ(a) (A.1)

=
∑

τ,σ∈Sn

∑
YYoung diagr.

|Y |=n

(χ(λ)(1))2χ(λ)([σ])

n!2sλ(I)

p∏
q=1

δiq`τ(q)δjqkτσ(q)

where χ(λ)([σ]) is the character of the symmetric group Sn associated with the Young diagram Y ,
(a function of the class [σ] of σ); thus χ(λ)(1) is the dimension of that representation; sλ(X) is the
character of the linear group GL(N) associated with Young diagram Y , that is a Schur function
when expressed in terms of the eigenvalues of X; sλ(I) is thus the dimension of that representation.
Finally the coefficient C([σ]) will be determined below.

Alternatively, in terms of generating functions with sources J and K

Zn,n(J,K) =

∫
DU(trKU)n(tr JU †)n =

∑
α`n

n!|α|C([α]) tα (A.2)

where |α| is the cardinal of class [α] in Sn, thus |α| = n!∏
p p

αpαp!
. In (A.2), the factor n! comes from

the sum over τ and the factor |α| from that over the elements σ ∈ [α]. Thus

ZW (J,K) :=

∫
DU exp[βtr (KU + JU †)] =

∞∑
n=0

β2n

n!

∑
α`n

zαtα (A.3)

with zα = |α|C([α]).
By the same argument as in sect. 2, the zα satisfy the linear system of recursion relations

∑
α`n

zα

{ p∑
q=1

qαq

(
N(JK)q−1il +

q−1∑
s=1

ts(JK)q−s−1il

)
tα̂(q)

(A.4)

+

p∑
q=1

q2αq(αq − 1)(JK)2q−1il t̂̂α(q)
+ 2

∑
1≤q<r≤p

qrαqαr(JK)q+r−1il tα̃(q,r)

}
= nδil

∑
α′ `n−1

zα′tα′ .
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Explicitly, the first coefficients zα = |α|C([α]) read

n = 1 z[1] = 1
N

n = 2 z[2] = − 1
(N2−1)N , z[12] = 1

(N2−1)

n = 3 z[3] = 4
(N2−4)(N2−1)N , z[1,2] = − 3

(N2−4)(N2−1) , z[13] = N2−2
(N2−4)(N2−1)N (A.5)

n = 4 z[4] = − 30
(N2−9)(N2−4)(N2−1)N , z[1,3] = 8(2N2−3)

(N2−9)(N2−4)(N2−1)N2

z[22] = 3(N2+6)
(N2−9)(N2−4)(N2−1)N2 , z[12,2] = − 6(N2−4)

(N2−9)(N2−4)(N2−1)N ,

z[14] = N4−8N2+6
(N2−9)(N2−4)(N2−1)N2

etc.

The overall sign of zα is (−1)#cycles(α)−n and its large N behavior |zα| ∼ N−2n+#cycles(α).

To study the large N limit, we take β = Nβ̃ and tp = Nτp, with β̃ and τp of order 1. Then
Brézin and Gross [5] have shown that

WW (JK) := lim
N→∞

1

N2
logZW (J,K;Nβ̃) (A.6)

exists and satisfies the coupled equations

WW =
2

N

∑
i

(β̃2λi + c)
1
2 − 1

2N2

∑
i,j

log[(β̃2λi + c)
1
2 + (β̃2λj + c)

1
2 ]− c− 3

4
(A.7)

with c =

{
1
N

∑
i(β̃

2λi + c)−
1
2 for 1

N

∑
i(β̃

2λi)
− 1

2 ≥ 2 (“strong coupling”)

0 for 1
N

∑
i(β̃

2λi)
− 1

2 ≤ 2 (“weak coupling”)
(A.8)

The solution has two determinations, in a strong coupling and in a weak coupling phase. Here we
are concerned with the strong coupling regime in which we may expand

WW =
∑
n≥1

β̃2n
∑
α`n

wατα (A.9)

with the first terms

WW = β̃τ1+
β̃2

2
(τ21−τ2)+

2β̃3

3
(2τ31−3τ1τ2+τ3)+

β̃4

4
(24τ41−48τ21 τ2+9τ22 +20τ1τ3−5τ4)+· · · (A.10)

and the general term given in [6]

wα = (−1)n
(2n− 3 +

∑
q αq)!

(2n)!

∏
q

(
−(2q)!

(q!)2

)αq 1

αq!
. (A.11)
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