A 0.821-Ratio Purely Combinatorial Algorithm for Maximum k-vertex Cover in Bipartite Graphs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

A 0.821-Ratio Purely Combinatorial Algorithm for Maximum k-vertex Cover in Bipartite Graphs

Résumé

We study the polynomial time approximation of the max k-vertex cover problem in bipartite graphs and propose a purely combinatorial algorithm that beats the only such known algorithm, namely the greedy approach. We present a computer-assisted analysis of our algorithm, establishing that the worst case approximation guarantee is bounded below by 0.821.
Fichier non déposé

Dates et versions

hal-01343951 , version 1 (11-07-2016)

Identifiants

Citer

Edouard Bonnet, Bruno Escoffier, Vangelis Paschos, Giorgios Stamoulis. A 0.821-Ratio Purely Combinatorial Algorithm for Maximum k-vertex Cover in Bipartite Graphs. LATIN 2016: Theoretical Informatics - 12th Latin American Symposium, 2016, Ensenada, Mexico. pp.235-248, ⟨10.1007/978-3-662-49529-2⟩. ⟨hal-01343951⟩
97 Consultations
0 Téléchargements

Altmetric

Partager

More