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Abstract

This paper describes a software production chain ded-
icated to end-users which, given a sequential program
to be applied to a set of individual data, enables ef-
ficient parallel processing of huge collections of data
on a grid. This system requires no involvement of the
user and produces fairly good results.

1 Introduction

Frequently the same computation is made indepen-
dently over the elements of a given collection of data,
inducing data parallelism [11]. As grids [9, 4] are get-
ting more and more common, it is therefore important
to be able to run applications involving data paral-
lelism on such target platforms. In order to try and do
so, one has the choice between either design a parallel
application, which may be a hard task reserved to spe-
cialists —unless user-friendly tools are used— or simply
write a sequential program, relying on automatic tools
to produce the corresponding parallel code. However,
this technique is mainly dedicated to symmetric mul-
tiprocessors or vector processors, and can only be used
on clusters through software-based distributed shared
memory systems [2, 14]. As so many computing re-
sources appear to be available by means of grids, we
focus on easing their utilization rather than on making
full use of the available computing power.

One can consider any software component as con-
suming data from a data stream, and producing results
into a results stream. Therefore, in the design of a se-
quential implementation of such a component, these
two streams must be respectively sliced into and gen-
erated from data structures (namely data and result).
Thus, the datatypes data and result have necesseraly
to be specified when writing the sequential correspond-
ing code. As we do not need anything else, we do not
require any extra effort from the user.

So, let’s consider a sequential software compo-

nent which continuously reads data, calls some func-
tion work(in data, out result) on each item and writes
the corresponding result as shown in Fig. 1.  The

result stream
Worker

Figure 1: Generic sequential software component.

data stream

data stream is fed by means of a data source (file sys-
tem, database, sensor network, network connection,
etc), and results are consumed by a consumer process.
Such a software component, could be part of a pipeline
involving a whole chain of successive processing steps.
If one needs to increase the flow through the pipeline,
this component is a potential bottleneck; thus, it is
a good candidate for parallel execution. Due to data
parallelism, one can expect a near linear speed-up; so
increasing the number of processors could allow to in-
crease the flow, possibly leading to another bottleneck
upstream or downstream. Additionnally, introducing
some buffering between pipeline stages can help ab-
sorbe flow fluctuations and make communication and
computation overlap. But in order to be useful to
end-users, the parallel execution should be obtained
by means of a seamless replacement of sequential soft-
ware components by automatically-generated equiva-
lent parallel components.

In this paper, we propose a software production
chain : AIPE (Automatic Integration for Parallel
Execution) to deal with a large variety of applications.
ATPE enables end-users to get parallel execution of an
application on grids without writing anything more
than its sequential code.

Our method has been successfully used to auto-
mate the processing of a huge collection of spectra for
identification of semi-nucleotide polymorphisms in a
database of DNA samples. It can be used either for
mass production of results or for rapid prototyping.
Indeed, it allows the developer to concentrate on de-
tails of algorithms without dealing with anything else



than sequential programming. Moreover, the devel-
oper can get quick feedback when modifying an algo-
rithm, as he can achieve significant results by consid-
ering important samples without incuring dissuasive
delays. Therefore the development phase of the appli-
cation can also benefit from parallelism, with no spe-
cific programming effort, as we provide a transparent
component substitution, not a programming tool.

This paper is organized as follows. The next sec-
tion gives an overview of environments helping users
have their applications execute on a grid. Section 3
presents the software architecture we designed to al-
low efficient parallel execution. Section 4 focuses on
how ATPE makes its usage almost transparent to an
end-user. Section 5 presents performance figures. Sec-
tion 6 compares our new approach to related research
works, outlines future work and concludes the paper.

2 Related works

Among the environments which have been developed
in order to do part of the job for the end-user who
needs to design parallel applications, some are devoted
to parameter sweep applications, such as Nimrod-G [1]
or ILab [13], whereas others could be used in more gen-
eral settings (AppLeS [5], TOP-C [7] or Ninf-G [12]).
Parameter sweep can indeed be considered a partic-
ular form of data parallelism, as it iterates identical
computations on all the elements of a set of numerical
parameters, and each of the individual computations
of a parameter sweep application can be run indepen-
dently of the others, as a different process. Therefore,
a user can create a corresponding set of ad hoc scripts
and schedule their execution on one or more proces-
SOTS.

Nimrod-G [1] is a grid version of a tool de-
signed for distributed parametric modeling, which has
been enhanced from clusters to grids. Built over the
Globus [8] grid middleware, it is dedicated to paramet-
ric studies and provides a graphical user interface to
help the user specify the parameter spaces of his appli-
cation and the computation to be done. Nimrod-G can
then prepare the corresponding independent jobs, con-
trol their execution and manage the results. On user
request, Nimrod-G queries the MDS [15] component of
Globus to locate resources, then selects them accord-
ing to some criteria including both tasks deadlines and
cost usage depending on some economic model. To our
knowledge, no other type of applications can benefit
from Nimrod-G.

In the same way as Nimrod-G, ILab [13] is dedi-
cated to the execution of parameter studies on grids.

It also provides a graphical user interface, to make
the creation of input files easier, and builds automat-
ically a script for each run. Different methods allow
the execution of these scripts, either via “rcp” and “rsh”
commands or through a job scheduler.

The AppLeS [5] (Application Level Scheduling)
environment, as its name suggests, focuses mainly on
scheduling. When dealing with an application, an
AppLeS agent goes through the following steps: re-
source discovery, resource selection, schedule genera-
tion, schedule selection, application execution with it-
erative schedule adaptation in the case of long-running
applications. The main drawback is that the original
application has to be a parallel or a distributed one,
and it must be modified in order to be scheduled by
an AppLeS agent. Therefore, templates have been pro-
posed in order to make things easier for the end-user,
at least for the two classical paradigms of parameter
sweep and Master-Worker; using such templates, the
user merely has to provide an XML description of his
tasks and AppLeS automatically generates an applica-
tion it can schedule. While AppLeS was extended from
networks of workstations to grids, its scheduling tech-
niques have been progressively adapted to deal with
the heterogeneity of grids.

TOP-C 7] (Task Oriented Parallel C/C++) has
been designed to help the end-user parallelize a se-
quential application. It uses a Master-Worker pro-
gramming model and provides a high level API which
has been implemented on various architectures, from
shared memory model to grids based on the Globus
protocols. The intent is to keep the number of lines
that have to be modified in the source code as small as
possible. Although the available primitives are higher
level than MPT ones, the user is required to write a
parallel application.

Ninf-G [12], provides a running environment for
GridRPC, a grid implementation of the RPC proto-
col. Among the applications for which GridRPC has
proven to be effective, one is parameter sweep which is
well-suited for execution by multiple servers on a grid.
However, it is obvious that in order to use Ninf-G, an
application has to be re-written using the GridRPC
APL

On the one hand, these environments make the
use of grids easier. They sometimes allow non trivial
parallelism, whereas the tool presented in this paper
does not, and their main focus is on scheduling, so as
to achieve the best usage of resources.

On the other hand, they either require a signifi-
cant expertise in parallel and distributed programming
(or at least some involvement of the user to describe
the conditions for parallel execution), or they are ex-



plicitely limited to parameter sweep applications and
cannot deal with more sophisticated datatypes. Fur-
thermore, the different runs entail the repeated cre-
ation of processes, together with repeated transfer of
executable code files —either through NFS sharing [5]
or through the use of some grid component [12] such
as the GASS [6] component of Globus— in order to get
a copy of the executable code prior execution of each
individual task. These transfers can result in costly
software interactions which might be an overhead to
be considered, especially for short-running individual
experiments. On the contrary, as is shown in the next
section, we set up a software architecture for the whole
duration of the execution and do not consider repeated
file copy or transfer. As this software architecture uses
neither NFS or NIS, it is well suited for the grid.

3 Software architecture

We based our software architecture on the Master-
Worker paradigm, which makes scheduling easier
thanks to central control. The Worker is application
specific, whereas the Master is kept as generic as pos-
sible.  As shown in Fig. 2, the Master is split into

.| ResultPrinter

Figure 2: Software architecture.

three processes : processes DataScanner and Result-
Printer ensure the interface with both streams, using
respectively data and result formats corresponding to
user-defined datatypes, whereas the third process, Dis-
tributor, interacts with the pool of Workers executing
the function work(data, result). Precisely, the Distrib-
utor process maintains a list of free Workers. When a
data item is available, one of the free Workers is cho-
sen according to the current scheduling policy. Then, a
message containing the data to be processed is sent to
the chosen Worker. Different scheduling policies are
possible, each aiming at a particular criterion about
resource usage or execution time. When a result mes-
sage is available, Distributor communicates the result
to ResultPrinter and puts the corresponding Worker
back into the list of free Workers. If results are not

available within some delay, it is possible to re-schedule
the corresponding work on a different Worker, making
the solution more fault-tolerant.

In order to absorb speed variations in both
DataScanner and ResultPrinter, buffers are used to
store data and result items; this helps keep Workers
busy. So as to avoid extra copies inside the Mas-
ter, all three parts of the Master process are run on
the same host (note that this also allows communi-
cation through shared memory, as shown in Fig. 3).
Therefore, when a data item is read on the data

Worker || host 1
‘ DataScanner E
| »

data stream
‘ ™11 Worker || host 2
Distributor
result stream ‘ |
‘ ResultPrinter — N
- hogn
host 0

Figure 3: Parallel implementation.

stream, it is written only once in user space before
it is sent to a Worker; similarly reasoning applies to
results. Besides avoiding useless copies, this makes
synchronization between Distributor and the interface
processes slightly looser as they just compete shortly
to update indexes to shared memory slots. A greater
number of slots gives more laxity which is useful in
case of large fluctuations in the data stream or in the
processing time of items.

With no information about fluctuations magni-
tude, the number of slots is assumed to be larger
enough so as to avoid Workers from waiting. Due to
possible variations in their processing time, the order
of incoming data might be different from the order
of the corresponding results delivered by the parallel
component. Therefore, process DataScanner attaches
identifiers to data items throughout the Master; if the
order is significant for the rest of the application, these
identifiers could possibly be delivered together with
the results by slightly adapting the result stream. In
case the Master becomes a bottleneck when increasing
the number of Workers, several Masters could be used,
as suggested by [3].

As the software architecture of AIPE is based on
the Master-Worker model, it is not sensitive to ma-
chine heterogeneity. Workers are launched only once,
giving a chance to absorb the start up overhead. On
the contrary, most existing environments consider the
different tasks as independent jobs, which means that



each of them has to be launched independently. There-
fore the penalty incured for finer grain should be less
important when using our system.

Communication between process Distributor and
Workers rely on the MPI recognized standard which
allows immediate sends and receives; this avoids use-
less waitings, especially for Distributor. For imple-
mentation over a grid, we chose to use Globus which
offers all the required services, such as authentication,
information service giving criteria about resources for
scheduling policies and so on, together with the mpich-
G2 implementation of MPI. Moreover, MPI allows the
definition of dynamic datatypes, which helps keep the
Master generic. Indeed, generic messages between Dis-
tributor and Workers are possible without any user
assistance, as long as the software production chain
is able to generate automatically the appropriate MPI
functions, defining MPI datatypes from both date and
result datatypes provided by the user. As MPI pro-
gramming style requires knowledge and expertise, we
relieve the end-user from the burden of writing and de-
bugging any MPI code, as shown in the next section.

4 'Transparent integration

The Distributor and Workers have to exchange MPI
messages for both data items read from the data
stream and results to be written to the result stream.
Thus, the generic prototypes for MPI messages have
to be adapted to include user-defined data and re-
sults which depend upon the application. Regarding
the organization of AIPE, three pieces of information
must be provided by the end-user: datatypes for both
the data stream and the result stream, together with
the function to execute on the Worker. This function
takes two arguments which types are those of the data
stream and the result stream respectively.

As we intend our piece of software to be of trans-
parent use for the end-user, it is important that any
kind of data could be transferred from the Distributor
to Workers. Moreover, we do not want the end-user
to be concerned with our different structures. In or-
der to do so, a specific compiler has been developed to
convert C datatypes to MPI datatypes automatically.

Works have been done [10] already to produce
MPI datatypes from C datatypes. However, these so-
lutions expect the developer to introduce specific com-
ments in program sources so as to indicate which type
to generate. In the present case, we expect the user
to give a specific name to structures used to transfer
data from the distributor to Workers and vice-versa.
Thus, in our solution, no specific comment is required.

This is important as it allows existing applications to
be executed using our solution. In this case, the user
only needs to provide an alias to datatypes used for
both data and result streams.

Almost every datatype can be translated from C
to MPI automatically. At present, two cases (pointers
and unions) lead to problems as they have no equiv-
alence in MPI. For the first case, regarding the fact
that a pointer is the address of another variable in-
side the virtual address space of the process in which
it has been declared, pointers shall not be transferred
from one process to another one as their meaning is
limited to the process they belong to. Thus, the use
of pointers in data structures to be translated results
in an error. If, for any reason, this would be inter-
esting for an application, pointers could be translated
either to an MPI_INT or an array of MPI_BYTE. For the
second case, one has to remind that a union in C rep-
resents various ways to apprehend the same memory
area. Considering that the generated MPI program
may run on an heterogeneous platform, it is not pos-
sible to determin at compilation which representation
should be used for communication. Thus, we left the
transformation of union structures for the future and
their compilation results in an error.

The automatic generation of MPI datatypes from
C datatypes has been made possible by introducing ex-
tra steps in the usual compilation chain as shown in
Fig. 4 on the next page. Typically, in order to make
sure the definition of a given type is complete, the first
step in the compilation chain (cpp for the preproces-
sor) is executed. As the generated file is to be com-
piled by the effective C compiler (cc), it must contain
all the information required by any type in the file (if
not, this file could not be compiled properly by cc).
Thus, instead of feeding cc with the intermediate file
generated by cpp, this intermediate file is transformed
by mpipp (a specific parser we wrote) to produce a new
C file in which the definition of MPI datatypes have
been automatically appended to the original file. This
new source file is then provided to cpp. The interme-
diate file which results is then processed by the usual
compilation chain.

The list of C datatypes from the original file, to
be transformed to MPI datatypes, is provided on the
command line when invoking mpipp. At present, this
list is hard coded and matches the requirements of
our software suite. However, options are scheduled
to allow more flexibility and reuse by other pieces of
software.

The end-user may not be aware of all this as it
is hidden by the compiler suite provided for AIPE. In
fact, in order to compile his application, the devel-



Usual compilation chain

(oo} —(J @@
[+

mpipp @ AIPE
extra stage

OO

Figure 4: The compilation chain with AIPE.

oper simply uses the aipecc compiler which is merely
a wrapper around the GNU C compiler in which two
extra stages have been added for the automatic trans-
formation of C datatypes to MPI datatypes.

5 Performance measurements

The sequential component chosen for the evaluation of
the software production chain iterates the exponenti-
ation of square matrices of integers read on a stream.
So the initial component includes three functions: the
function work(in data, out result) which makes the
computation, the function that reads a matrix on the
standard input and stores it in a data structure, and
the function that writes the contents of a result struc-
ture on the standard output. The data datatype is
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Figure 5: Ellapsed time.

a structure including the contents of the matrix and
the exponent value, whereas the result datatype is a
structure including only the contents of the result ma-
trix. From these elements, the parallel code was gener-

ated automatically in one step, without further effort.
The technique has been successfully applied to vari-
ous example applications involving more sophisticated
datatypes.

The platform used for performance measurements
is composed of eight Pentium IV running at 2.8 GHz
with 512 MB of RAM memory. There is no NFS
file sharing among these computers, and no NIS users
database. Globus 2.4.3 is used to map the user on a
local account on each computer.

8 processors
4 processors
2 processors

| ]

SpeedUp
O R N W A OO N ®

0 1000 2000 3000 4000 5000 6000 7000 8000
Matrix Exponent

Figure 6: Speed-up.

In order to avoid hardware optimization effects
in the computation, odd integers are used for matrix
elements and the matrix size, as the use of even inte-
gers would lead to zeroes through overflows for large
numbers of iterations, when increasing the value of the
exponent. The size chosen for the matrices is 101, and
values for exponents are taken in the range from 200
to 8000. Fig. 5 shows that the ellapsed time varies
linearly when the exponent value increases. In fact, in
the program we have chosen as an example, the higher
the exponent of the matrix, the larger the amount of
computation; however, the amount of communication
remains the same as the size of the result matrix is
constant. Thus, this curve shows that our method can
distribute computations efficiently over the network.
Fig. 6 presents the speed up versus the exponent used
to evaluate the result matrices. It highlights that very
good speed-up can be provided (an efficiency of up
to 80% is achieved for eight processors) even when the
amount of computation is rather low (e.g. an efficiency
of 75% is achieved on eight processors for an exponent
of 2000 in which case the computation time for a single
matrix is 8.9 seconds).



6 Conclusion

In this paper, we have presented the software produc-
tion chain ATPE. Given any sequential sofware com-
ponent, it enables the end-user to obtain a parallel
execution on a grid and exploit the data parallelism
involved in his application. Using AIPE, the end-user
does not have to make any parallel programming effort
to adapt the application in order to benefit from the
system. Experiments have confirmed that the parallel
execution can be efficient.

Yet, up to now, the choice of the free Worker
by the Distributor process has been kept very sim-
ple, more sophisticated scheduling must be consid-
ered in the future. The centralized control of the
Master-Worker paradigm makes the integration of any
scheduling strategy in Distributor quite straightfor-
ward. The user might even be given the opportunity to
decide the trade off between performance and resource
usage that best suits his needs.

Apart from scheduling, other works are in
progress to improve the scalability of the software ar-
chitecture. For instance on the performance side, in
case the Master becomes a bottleneck when increasing
the number of Workers, several Masters could be used.
Fault-tolerance is a direction for future work, together
with portability through the use of a virtual machine.
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